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Abstract: In this paper, we investigate a delayed HIV-1 infection model with immune response.
Though a logistic growth is incorporated in the growth of the target cells, our focus is on the effect
of delays on the infection dynamics. We first study the existence of steady states, which depends on
the basic reproduction number R0. When R0 ≤ 1, there is only the infection-free steady state, which
is globally asymptotically stable if R0 < 1. When R0 > 1, besides the unstable infection-free steady
state, there is a unique infected steady state. We then study the local stability of the infected steady
state and local Hopf bifurcation at it. The theoretical analysis indicates that the dynamics scenario
is complicated. For example, there can be three sequences of critical values, stability switches and
double Hopf bifurcation can occur. Some of the theoretical results are also illustrated with numerical
simulations.
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1. Introduction

AIDS (acquired immunodeficiency syndrome) is a syndrome caused by HIV (human
immunodeficiency virus). HIV is a lentivirus (a subgroup of retrovirus). It infects vital cells in the
human immune system, such as helper T cells (specifically CD4+ T cells), macrophages, and dendritic
cells [1]. When the number of CD4+ T cells declines below a critical level, cell-mediated immunity is
lost, and the body becomes progressively more susceptible to opportunistic infections, leading to the
development of AIDS. Mathematical modeling has contributed a lot to the understanding of HIV
infection (see, for example, the review by Perelson and Ribeiro [2] for within-host models).
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In the simplest and earliest models of HIV infection, only the key players were taken into account.
These models include uninfected target cells (T ), productively infected cells (T ∗), and free viruses (V).
One such model is described by the following system of ordinary differential equations,

dT
dt

= λ − dT − kVT,

dT ∗

dt
= kVT − δT ∗,

dV
dt

= pT ∗ − cV.

For more detail, we refer the readers to Ribeiro and Perelson [3]. Inspired by this model, researchers
have proposed many other HIV models by considering, for example, different uninfected target cell
growth and incidence, latently infected CD4+ T cells, treatment, drug resistance, and immune response
(to name a few, see [4–16]).

Time delay is commonly observed in many biological processes. For HIV infection, on the one
hand, it roughly takes about 1 day for a newly infected cell to become productive and then to be
able to produce new virus particles [17]. On the other hand, during CTL response, effector CTLs
need time to recognize infected cells and destroy them. Herz et al. [18] were the first to introduce an
intracellular delay to describe the time between the initial viral entry into a target cell and subsequent
viral production. They obtained the effect of the delay on viral load change. Since then, delayed HIV
models have attracted the attention of many researchers. See, for example, [19–26] and the references
therein.

In this paper, motivated by the studies in [7, 10, 27], we propose and study the following delayed
HIV model,

dT (t)
dt

=s − dT (t) + rT (t)
(
1 −

T (t)
Tmax

)
− kV(t)T (t), (1.1a)

dT ∗(t)
dt

=k1V(t − τ1)T (t − τ1) − δT ∗(t) − dxE(t)T ∗(t), (1.1b)

dV(t)
dt

=NδT ∗(t) − cV(t), (1.1c)

dE(t)
dt

=λE + pT ∗(t − τ2) − dEE(t). (1.1d)

Here T (t), T ∗(t), V(t), and E(t) represent the densities of uninfected CD4+ T-cells, productively infected
CD4+ T-cells, free viruses, and immune effectors at time t, respectively. As in [7, 28], k1 = ke−ατ1 ,
where α ∈ [d, δ] is the death rate of infected cells before becoming productive. τ1 denotes the time
delay between viral entry and viral production while τ2 stands for the time needed for the CTLs immune
response to emerge to control viral replication. The interpretations of the parameters are summarized
in Table 1, where their units and ranges will be given in Section 4. The logistic growth in target cells
and natural growth of immune effectors combined is a new feature of Model (1.1). Our main focus is
on the effects of delays, especially τ2, on the dynamics of (1.1).
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Table 1. Descriptions of parameters in (1.1).

Parameter Description
s Production rate of uninfected CD+

4 T-cells
d Death rate of uninfected CD+

4 T-cells
r Proliferation rate of uninfected CD+

4 T-cells
Tmax CD+

4 T-cells density where proliferation stops
k Infection rate of CD+

4 T-cells with virus particles
α Death rate of infected CD+

4 T-cells before becoming productive
δ Death rate of infected CD+

4 T-cells
dx CTL effectiveness
N Bursting term for viral production after lysis
c Clearance rate of virus
λE Proliferation rate of CTL from natural resources
p Production rate of CTL response
dE Death rate of CTL response

The rest of the paper is organized as follows. In Section 2, we present some preliminary results
of (1.1), which include the positivity and boundedness of solution, the existence of steady states. Then
we analyze the stability of steady states and possible Hopf bifurcation in Section 3. We conclude the
paper with some numerical simulations to illustrate the main theoretical results.

2. Preliminaries

The suitable phase space for (1.1) is C = C1 × C2 × C1 × R, where Ci = C([−τi, 0],R) is the Banach
space of all continuous functions from [−τi, 0] to R equipped with the supremum norm, i = 1, 2.
The norm on C is the usual product norm. The nonnegative cone of Ci is C+

i = C([−τi, 0],R+). To
be biologically meaningful, in the sequel, the initial conditions of (1.1) will be always from C+ =

C+
1 × C

+
2 × C

+
1 × R+.

For each Φ = (φ1, φ2, φ3, φ4) ∈ C+, by the standard theory of functional differential equations [29],
Model (1.1) has a unique and global solution through it. For such a solution, we first claim that T (t) > 0
for t > 0. In fact, it is clear that there exists t0 > 0 such that T (t) > 0 for t ∈ (0, t0). Suppose to the
contrary that there exists t1 > t0 such that T (t) > 0 for t ∈ (0, t1) and T (t1) = 0. Then by (1.1a),
dT (t1)

dt = s > 0 and hence there exists ε ∈ (0, t1) such that T (t) < 0 for t ∈ (t1 − ε, t1), a contradiction.
This proves the claim. Next, with step-by-step method we show that T ∗(t) ≥ 0 and V(t) ≥ 0 for t ≥ 0.
Note that, for t ≥ 0, by (1.1b) and (1.1c), we have

T ∗(t) = e−
∫ t

0 (δ+dxE(s))dsT ∗(0) +

∫ t

0
e−

∫ t
u (δ+dxE(s))dsk1V(u − τ1)T (u − τ1)du (2.1)

and

V(t) = e−ctV(0) +

∫ t

0
ec(u−t)NδT ∗(u)du, (2.2)

respectively. It follows from (2.1) that T ∗(t) ≥ 0 for t ∈ [0, τ1]. This, combined with (2.2), gives
V(t) ≥ 0 for t ∈ [0, τ1], which together with (2.1) yields T ∗(t) ≥ 0 for t ∈ [0, 2τ1]. In turn from (2.2)
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we have V(t) ≥ 0 for t ∈ [0, 2τ1]. Continuing this way gives the desired result. Finally, from (1.1d), we
get

E(t) = e−dE tE(0) +

∫ t

0
edE(u−t)(λE + pT ∗(u − τ2))du

for t ≥ 0 and hence E(t) ≥ 0 for t ≥ 0. Therefore, the solution of (1.1) with initial condition in C+ is
nonnegative.

Next, we consider the boundedness of solutions. Firstly, we obtain from (1.1a) that

dT (t)
dt
≤ s − dT (t) + rT (t)

(
1 −

T (t)
Tmax

)
for t ≥ 0. It follows that

lim sup
t→∞

T (t) ≤ T0,

where

T0 =
Tmax

2r

r − d +

√
(r − d)2 +

4rs
Tmax


is the unique positive zero of s − dT + rT (1 − T

Tmax
). Moreover, if T (0) ≤ T0 then T (t) ≤ T0 for t ≥ 0.

Secondly, consider the Lyapunov functional

L1(t) = T (t − τ1) +
k
k1

T ∗(t).

The derivative of L1 along solutions of (1.1) is

dL1(t)
dt

= s − dT (t − τ1) + rT (t − τ1)
(
1 −

T (t − τ1)
Tmax

)
−

kδ
k1

T ∗(t) −
kdx

k1
E(t)T ∗(t)

≤ −dT (t − τ1) − δ
k
k1

T ∗(t) + rT (t − τ1) −
r

Tmax
T 2(t − τ1) + s

≤ −d1L1(t) + M0,

where d1 = min{δ, d} and M0 = rTmax+4s
4 (> 0). Then lim sup

t→∞
L1(t) ≤ M0

d1
. In particular, lim sup

t→∞
T ∗(t) ≤

k1 M0
kd1

. Finally, this combined with (1.1c) and (1.1d) immediately gives

lim sup
t→∞

V(t) ≤
Nδk1M0

ckd1
and lim sup

t→∞
E(t) ≤ λEkd1+pk1 M0

dEkd1
, respectively.

Lastly, we study the lower boundedness of T . For any ε > 0, there exists t2 > 0 such that V(t) ≤
Nδk1 M0

ckd1
+ ε for t ≥ t2. This, together with (1.1a), gives us

dT (t)
dt
≥ s − dT + rT

(
1 −

T
Tmax

)
− kT

(
Nδk1M0

ckd1
+ ε

)
for t ≥ t2.

Hence, as ε is arbitrary, we get

lim inf
t→∞

T (t) ≥
Tmax

2r

r − d −
Nδk1M0

cd1
+

√(
r − d −

Nδk1M0

cd1

)2

+
4rs
Tmax

 .
To summarize, we have shown the following result.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2587–2612.



2591

Proposition 2.1. The solutions of (1.1) with initial conditions in C+ are nonnegative and bounded.
Moreover, the region

Γ =

Φ = (φ1, φ2, φ3, φ4) ∈ C+

∣∣∣∣∣∣∣∣∣∣∣∣
the solution (T (t),T ∗(t),V(t), E(t)) of (1.1)
through Φ satisfies φ1(0) ≤ T0,
φ1(0) + k

k1
T ∗(τ1) ≤ M0

d1
, φ3(0) ≤ Nδk1 M0

ckd1
,

and φ4 ≤
λEkd1+pk1 M0

dEkd1


is a positively invariant and attracting subset of (1.1) in C+.

In the remaining of this section, we consider the steady states of (1.1). Note that a steady state is a
solution of the following system of algebraic equations,

s − dT + rT
(
1 −

T
Tmax

)
− kVT = 0, (2.3a)

k1VT − δT ∗ − dxET ∗ = 0, (2.3b)
NδT ∗ − cV = 0, (2.3c)

λE + pT ∗ − dEE = 0. (2.3d)

It follows from (2.3c) that V = NδT ∗
c . Sustituting it into (2.3b) gives

k1Nδ
c

T ∗T − δT ∗ − dxET ∗ = 0.

Then T ∗ = 0 or T =
c(δ+dxE)

Nδk1
. When T ∗ = 0, we get the infection-free steady state P0 = (T0, 0, 0, E0),

where E0 = λE
dE

. Now assume T =
c(δ+dxE)

Nδk1
. Combining it with E =

λE+pT ∗

dE
obtained from (2.3d), we can

get after a little computation that

T ∗ =
[Nδk1T − c(δ + dxλE

dE
)]dE

cdx p
. (2.4)

Then

V =
dENδ
c2dx p

[
Nδk1T − c

(
δ +

dxλE

dE

)]
.

Substituting it into (2.3a) yields
G(T ) = 0,

where

G(T ) = s +

[
r − d +

kdENδ
cdx p

(
δ +

dxλE

dE

)]
T −

[
r

Tmax
+

(Nδ
c

)2
kk1

dE

dx p

]
T 2.

Note that G always has a positive zero and it only has one positive zero. However, for infected steady

states, we have T >
c(δ+ dxλE

dE
)

Nδk1
from (2.4), or equivalently, G

( c(δ+ dxλE
dE

)

Nδk1

)
> 0 or

c(δ+ dxλE
dE

)

Nδk1
< T0. Thus there is

an infected steady state if and only if R0 > 1, where

R0 =
Nδk1T0

c(δ + dx
λE
dE

)
.

In summary we have obtained the following result.
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Theorem 2.1. (i) If R0 ≤ 1 then (1.1) only has the infection-free steady state P0.
(ii) If R0 > 1 then, besides P0, (1.1) also has a unique infected steady state P1 = (T1,T ∗1 ,V1, E1), where

T1 =
b +
√

b2 + 4as
2a

,

a =
r

Tmax
+

(Nδ
c

)2 kk1dE

dx p
,

b = r − d + (δdE + dxλE)
Nδk
cpdx

,

T ∗1 =
dE

dx p

(
Nδk1T1

c
− δ − dx

λE

dE

)
,

V1 =
Nδ
c

T ∗1 ,

E1 =
λE + pT ∗1

dE
.

Note that, in epidemiology, R0 is called the basic reproduction number, whose expression can also
be derived by the procedure in [30].

3. Stability and bifurcation

3.1. Global stability of P0

We start with the local stability of the infection-free steady state P0.

Theorem 3.1. (i) If R0 < 1, then the infection-free steady state P0 of (1.1) is locally asymptotically
stable.
(ii) If R0 > 1, then P0 is unstable.

Proof. The characteristic equation at P0 is

(λ + dE)
(
λ + d − r +

2rT0

Tmax

) [
λ2 + (c + δ + dxE0)λ + c(δ + dxE0) − Nδk1T0e−λτ1

]
= 0.

Clearly, −dE and −(d−r+ 2rT0
Tmax

) = − s
T0
−

rT0
Tmax

are eigenvalues and both are negative. The other eigenvalues
are roots of the following transcendental equation,

∆0(λ) = λ2 + (c + δ + dxE0)λ + c(δ + dxE0) − Nδk1T0e−λτ1 = 0. (3.1)

Noting

R0 =
Nδk1T0

c(δ + dxE0)
,

we can rewrite (3.1) as

∆0(λ) = λ2 + (c + δ + dxE0)λ + c(δ + dxE0)(1 − R0e−λτ1) = 0 (3.2)
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or equivalently

R0 =

(
λ

c
+ 1

) (
λ

δ + dxE0
+ 1

)
eλτ1 . (3.3)

(i) Assume R0 < 1. We claim that all roots of (3.3) have negative real parts. Otherwise, (3.3) has a
root λ = σ + ωi with σ ≥ 0 and σ2 + ω2 > 0 since 0 is not a root by R0 > 1. Taking moduli of both
sides of (3.3) gives

R0 = eστ1

√[(
σ

c
+ 1

)2
+
ω2

c2

] ( σ

δ + dxE0
+ 1

)2

+

(
ω

δ + dxE0

)2.
This is impossible as the right side of the above is > 1 and R0 < 1. This proves the claim and hence P0

is locally asymptotically stable if R0 < 1.
(ii) Assume R0 > 1. In this case, (3.2) has a positive root. In fact, this follows from the Intermediate

Value Theorem and

∆0(0) = c(δ + dxE0)(1 − R0) < 0 and lim
λ→∞

∆0(λ) = ∞.

Therefore, P0 is unstable if R0 > 1. This completes the proof. �

In fact, the local stability of P0 implies its global stability.

Theorem 3.2. If R0 < 1, then the infection-free steady state P0 of (1.1) is globally asymptotically
stable.

Proof. Define the Lyapunov functional

W0(t) = T ∗(t) +
k1T0

c
V(t) + k1

∫ t

t−τ1

V(θ)T (θ)dθ.

Then the time derivative of W0 along solutions of (1.1) is

dW0(t)
dt

=
dT ∗(t)

dt
+

k1T0

c
dV(t)

dt
+ k1V(t)T (t) − k1V(t − τ1)T (t − τ1)

= k1V(t − τ1)T (t − τ1) − δT ∗(t) − dxE(t)T ∗(t)

+
Nδk1T0

c
T ∗(t) − k1T0V(t)

+k1V(t)T (t) − k1V(t − τ1)T (t − τ1)

=

(
Nδk1T0

c
− (δ + dxE(t))

)
T ∗(t) + k1V(t)(T (t) − T0)

≤

(
Nδk1T0

c
− (δ + dxE0)

)
T ∗(t)

= (δ + dxE0)(R0 − 1)T ∗(t)
≤ 0.

Moreover, dW0
dt = 0 if and only if T ∗(t) = 0 and V(t)(T (t) − T0) = 0. Then one can see that the largest

invariant subset of { dW0
dt = 0} is {P0}. By the Lyapunov-LaSalle invariance principle (see [29, Theorem

5.3.1] or [31, Theorem 3.4.7]) and Theorem 3.1, we conclude that if R0 < 1 then P0 is globally
asymptotically stable. �
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3.2. Stability of P1 and bifurcation analysis

Recall that P1 exists only when R0 > 1, which implies that necessarily Nδk1T0

c(δ+dx
λE
dE

)
> 1 as k1 = ke−ατ1 .

The purpose of this paper is to consider the effects of delays on the dynamics. As a result, in the sequel
of this section, we always assume that Nδk1T0

c(δ+dx
λE
dE

)
> 1 and denote

τ̂1 =
1
α

ln
NδkT0

c(δ + dx
λE
dE

)
.

Then R0 > 1 is equivalent to τ1 < τ̂1.
The characteristic equation at P1 is(

λ + d − r +
2rT1

Tmax
+ kV1

)
(λ + c)[(λ + δ + dxE1)(λ + dE) + pdxT ∗1e−λτ2]

=

(
λ + d − r +

2rT1

Tmax

)
(λ + dE)Nδk1T1e−λτ1 .

(3.4)

In the following, we follow the arguments in [23] to first show that P1 is locally stable for τ1 ∈ [0, τ̂1)
and τ2 = 0. Then for given τ1 ∈ [0, τ̂1), we discuss the possible bifurcations.

Theorem 3.3. Suppose τ1 ∈ [0, τ̂1), τ2 = 0, and 0 ≤ r < d
1− T1

Tmax

. Then the infected steady state P1 is

locally asymptotically stable.

Proof. When τ2 = 0, the characteristic equation (3.4) reduces to

(λ + d − r + 2rT1
Tmax

+ kV1)(λ + c)
[
(λ + δ + dxE1)(λ + dE) + pdxT ∗1

]
= (λ + d − r + 2rT1

Tmax
)(λ + dE)Nδk1T1e−λτ1 .

(3.5)

We will prove that all roots of (3.5) have negative real parts in three steps.
Firstly, we show that (3.5) has no roots on the imaginary axis with contradictory arguments. Let

λ = iω0 with ω0 ≥ 0 be a root of (3.5). Then

(iω0 + d − r + 2rT1
Tmax

+ kV1)(iω0 + c)
[
(iω0 + δ + dxE1)(iω0 + dE) + pdxT ∗1

]
= (iω0 + d − r + 2rT1

Tmax
)(iω0 + dE)Nδk1T1e−iω0τ1 .

(3.6)

Note that the modulus of the right hand side of (3.6) is

Nδk1T1|iω0 + dE | ·

∣∣∣∣∣iω0 + d − r +
2rT1

Tmax

∣∣∣∣∣ = c(δ + dxE1)|iω0 + dE | ·

∣∣∣∣∣iω0 + d − r +
2rT1

Tmax

∣∣∣∣∣ .
However, since

|(iω0 + δ + dxE1)(iω0 + dE) + pdxT ∗1 |
2 − (δ + dxE1)2|iω0 + dE |

2

= ω2
0d2

E + 2pdEdxT ∗1(δ + dxE1) + (ω2
0 − pdxT ∗1)2

> 0
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and ∣∣∣∣∣∣
(
iω0 + d − r +

2rT1

Tmax
+ kV1

)
(iω0 + c)

∣∣∣∣∣∣2 −
∣∣∣∣∣∣
(
iω0 + d − r +

2rT1

Tmax

)∣∣∣∣∣∣2 c2

>

∣∣∣∣∣∣
(
iω0 + d − r +

2rT1

Tmax

)∣∣∣∣∣∣2 c2 −

∣∣∣∣∣∣
(
iω0 + d − r +

2rT1

Tmax

)∣∣∣∣∣∣2 c2

= 0,

it follows that the modulus of the left hand side of (3.6) is strictly larger than that of its right hand side,
a contradiction. Thus we have verified that (3.5) has no roots on the imaginary axis.

Secondly, we show that (3.5) has no nonnegative real roots. Again, by contradiction, assume
that (3.5) has a root λ0 ≥ 0 and we know that e−λ0τ1 ∈ (e−λ0τ̂1 , 1]. Noting(

λ0 + d − r +
2rT1

Tmax

)
(λ0 + dE)Nδk1T1e−λ0τ1 ≤

(
λ0 + d − r +

2rT1

Tmax

)
(λ0 + dE)Nδk1T1,

we get from (3.5) that

(λ0 + d − r + 2rT1
Tmax

+ kV1)(λ0 + c)
[
(λ0 + δ + dxE1)(λ0 + dE) + pdxT ∗1

]
≤ Nδk1T1(λ0 + d − r + 2rT1

Tmax
)(λ0 + dE).

(3.7)

But (
λ0 + d − r +

2rT1

Tmax
+ kV1

)
(λ0 + c)

[
(λ0 + δ + dxE1)(λ0 + dE) + pdxT ∗1

]
>

(
λ0 + d − r +

2rT1

Tmax

)
(λ0 + c)(λ0 + δ + dxE1)(λ0 + dE)

≥ c(δ + dxE1)
(
λ0 + d − r +

2rT1

Tmax

)
(λ0 + dE)

= Nδk1T1

(
λ0 + d − r +

2rT1

Tmax

)
(λ0 + dE)

as Nδk1T1 = c(δ + dxE1), which contradicts with (3.7). This proved that (3.5) has no nonnegative real
root.

Finally, we claim that there exists η0 > 0 such that all roots of (3.5) have negative real parts when
1 < R0 < 1 + η0. If this is not true, then there exists a sequence of values for the parameters where
R0 (> 1) → 1 such that for each set of values for the parameters there exists a pair of conjugate roots
for (3.5) with positive real parts (which follows from the results just proved above). Note that roots
of (3.5) having nonnegative real parts are uniformly bounded. Without loss of generality, we suppose
that the sequence of the conjugate roots converges to α0 ± iβ0, otherwise just consider a subsequence.
Then α0 ≥ 0 and α0 ± iβ0 are roots of the characteristic equation of the infection-free steady state P0

when R0 = 1. However, when R0 = 1, this characteristic equation has no roots with nonnegative real
parts except the simple root 0. Then α0 = β0 = 0, which implies that 0 is a root of at least multiplicity
2 of this characteristic equation, a contradiction. This proves the claim.

Now the proof is done by noting the fact that the roots of (3.5) depend continuously on the
parameters. �
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Theorem 3.4. If τ1 = τ2 = 0 and 0 ≤ r < d
1− T1

Tmax

holds, then the infected steady state P1 is global

asymptotically stable.

Proof. We define a Lyapunov functional

W1(t) = T1

(
T
T1
− 1 − ln

T
T1

)
+

k
k1

T ∗1

(
T ∗

T ∗1
− 1 − ln

T ∗

T ∗1

)
+

kT1

c
V1

(
V
V1
− 1 − ln

V
V1

)
+

kdxE1

k1 p
E1

(
E
E1
− 1 − ln

E
E1

)
.

Then the time derivative of W1(t) along solutions of system (1.1) is

dW1

dt
=

(
1 −

T1

T

) dT
dt

+
k
k1

(
1 −

T ∗1
T ∗

)
dT ∗

dt
+

kT1

c

(
1 −

V1

V

) dV
dt

+
kdxE1

k1 p

(
1 −

E1

E

) dE
dt

=

(
1 −

T1

T

) (
s − dT + rT −

rT 2

Tmax
− kVT

)
+

k
k1

(
1 −

T ∗1
T ∗

)
(k1VT − δT ∗ − dxET ∗)

+
kT1

c

(
1 −

V1

V

)
(NδT ∗ − cV) +

kdxE1

k1 p

(
1 −

E1

E

)
(λE + pT ∗ − dEE)

= 2dT1 − 2rT1 +
rT 2

1

Tmax
− dT + rT −

rT 2

Tmax
−

dT 2
1

T
+

rT 2
1

T
−

rT 3
1

TTmax
+

rTT1

Tmax

+kV1T1 −
kV1T 2

1

T
−

k
k1
δT ∗ −

k
k1

dxET ∗ − kVT
T ∗1
T ∗

+
k
k1
δT ∗1 +

k
k1

dxET ∗1

+
kNδT1T ∗

c
−

kNδV1T1T ∗

cV
+ kT1V1 +

kdxE1

k1 p
dEE1 −

k
k1

dxE1T ∗1 +
k
k1

dxE1T ∗

−
kdxE1

k1 p
dEE −

kdxE1E1

k1 pE
dEE1 +

kE1

k1E
dxE1T ∗1 −

kE1

k1E
dxE1T ∗ +

kdxE1

k1 p
dEE1

=

(
r − d −

rT1

Tmax
−

rT
Tmax

)
(T − T1)2

T
+ kV1T1

(
3 −

T1

T
−

T ∗1VT
T ∗V1T1

−
V1T ∗

VT ∗1

)
+

kdxE1

k1 p
dEE1

(
2 −

E
E1
−

E1

E

)
−

k
k1

dxE1T ∗1

(
2 −

E
E1
−

E1

E

)
+

k
k1

dxE1T ∗
(
2 −

E
E1
−

E1

E

)
=

(
r − d −

rT1

Tmax
−

rT
Tmax

)
(T − T1)2

T
+ kV1T1

(
3 −

T1

T
−

T ∗1VT
T ∗V1T1

−
V1T ∗

VT ∗1

)
+

k
k1

dxE1

(
λE

p
+ T ∗

) (
2 −

E
E1
−

E1

E

)
≤ 0.

It is clear that dW1
dt = 0 if and only if (T,T ∗,V, E) = P1. By the Laypunov asymptotic stability theorem,

we conclude that P1 of system (1.1) is globally asymptotically stable. �

In the following, we study the effects of delays by fixing τ1 = τ0
1 ∈ [0, τ̂1) and changing τ2. Then

the characteristic equation (3.4) can be rewritten as

P(λ, τ0
1) + Q(λ, τ0

1)e−λτ
0
1 + R(λ, τ0

1)e−λτ2 = 0, (3.8)
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where

P(λ, τ0
1) = λ4 + A3λ

3 + A2λ
2 + A1λ + A0,

Q(λ, τ0
1) = B2λ

2 + B1λ + B0,

R(λ, τ0
1) = C2λ

2 + C1λ + C0,

A3 = c + δ + dxE1 + dE +
S
T1

+
rT1

Tmax
,

A2 = c(δ + dxE1) + (c + δ + dxE1)
(
dE +

S
T1

+
rT1

Tmax

)
+ dE

(
S
T1

+
rT1

Tmax

)
,

A1 = dE(c + δ + dxE1)
(

S
T1

+
rT1

Tmax

)
+ c(δ + dxE1)

(
dE +

S
T1

+
rT1

Tmax

)
,

A0 = cdE(δ + dxE1)
(

S
T1

+
rT1

Tmax

)
,

B2 = −Nδk1T1 = −c(δ + dxE1),

B1 = −c(δ + dxE1)
(
dE + d − r +

2rT1

Tmax

)
,

B0 = −cdE(δ + dxE1)
(
d − r +

2rT1

Tmax

)
,

C2 = pdxT ∗1 ,

C1 = pdxT ∗1

(
c +

S
T1

+
rT1

Tmax

)
,

C0 = cpdxT ∗1

(
S
T1

+
rT1

Tmax

)
.

Since

P(0, τ0
1) + Q(0, τ0

1) + R(0, τ0
1) = A0 + B0 + C0

= cdE(δ + dxE1)kV1 + cpdxT ∗1

(
S
T1

+
rT1

Tmax

)
> 0,

we know that λ = 0 is not a root of (3.8). Therefore, for stability changes of P1 to occur, we first
look for τ2 where (3.8) has a pair of conjugate roots λ = ±iω(τ0

1, τ2) with ω(τ0
1, τ2) > 0. Substitute

λ = iω(τ0
1, τ2) into (3.8) and then separate the real and imaginary parts to obtain

(−C2ω
2 + C0) cosωτ2 + C1ω sinωτ2 = M1,

C1ω cosωτ2 − (−C2ω
2 + C0) sinωτ2 = M2,

(3.9)

where

M1 = (−ω4 + A2ω
2 − A0) − (−B2ω

2 + B0) cosωτ0
1 − B1ω sinωτ0

1,

M2 = (A3ω
3 − A1ω) − B1ω cosωτ0

1 + (−B2ω
2 + B0) sinωτ0

1.
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It follows that

sinωτ2 =
M1C1ω − (−C2ω

2 + C0)M2

(−C2ω2 + C0)2 + C2
1ω

2
,

cosωτ2 =
(−C2ω

2 + C0)M1 + C1ωM2

(−C2ω2 + C0)2 + C2
1ω

2
.

Using sin2 ωτ2 + cos2 ωτ2 = 1, we see that ω(τ0
1, τ2) satisfies F(ω, τ0

1) = 0, where

F(ω, τ0
1) = ω8 + a6ω

6 + a5ω
5 + a4ω

4 + a3ω
3 + a2ω

2 + a1ω + a0 (3.10)

with

a6 = A2
3 − 2A2 − 2B2 cosωτ0

1,

a5 = 2(B1 − A3B2) sinωτ0
1,

a4 = 2A0 + A2
2 − 2A1A3 + B2

2 + 2(B0 − A3B1 + A2B2) cosωτ0
1 −C2

2,

a3 = 2(A3B0 − A2B1 + A1B2) sinωτ0
1,

a2 = A2
1 − 2A0A2 + B2

1 − 2B0B2 − 2(A2B0 − A1B1 + A0B2) cosωτ0
1 −C2

1 + 2C0C2,

a1 = 2(−A1B0 + A0B1) sinωτ0
1,

a0 = A2
0 + B2

0 + 2A0B0 cosωτ0
1 −C2

0.

Therefore, ω(τ0
1, τ2) is independent of τ2. Denote

Iτ0
1

= {ω : F(ω, τ0
1) = 0},

which is a finite set. If Iτ0
1

= ∅ then P1 is stable for τ1 = τ0
1 and τ2 ≥ 0. Now, suppose Iτ0

1
, ∅. For

example, this is true if A0 + B0 < C0 since

F(0, τ0
1) = (A0 + B0)2 −C2

0, lim
ω→∞

F(ω, τ0
1) = ∞,

and A0 + B0 + C0 > 0.
Assume Iτ0

1
= {ω1(τ0

1), . . . , ω j(τ0
1)(τ0

1)}. For j ∈ N(τ0
1) = {1, . . . , j(τ0

1)}, choose the unique angle
θ j(τ0

1) ∈ [0, 2π) such that

sin θ j(τ0
1) =

C1ω j(τ0
1)M1 − (−C2ω

2
j(τ

0
1) + C0)M2

(−C2ω
2
j(τ

0
1) + C0)2 + C2

1ω
2
j(τ

0
1)

,

cos θ j(τ0
j) =

(−C2ω
2
j(τ

0
1) + C0)M1 + C1ω j(τ0

1)M2

(−C2ω
2
j(τ

0
1) + C0)2 + C2

1ω
2
j(τ

0
1)

.

(3.11)

Now, define

τn
2 j(τ

0
1) =

θ j(τ0
1) + 2nπ
ω

for n ∈ N = {0, 1, 2, . . .}.

Then the characteristic equation (3.8) at τ2 = τn
2 j has a pair of conjugate eigenvalues λ = ±iω j(τ0

1) for
j ∈ N(τ0

1) and n ∈ N. The following result comes from [32, Theorem 2.2].
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Theorem 3.5. Let τ0
1 ∈ [0, τ̂1). Then the following two statements are true.

(i) If Iτ0
1

= ∅, then P1 is locallay asymptotically stable for τ1 = τ0
1 and τ2 ≥ 0.

(ii) If Iτ0
1
, ∅, then a pair of simple conjugate pure imaginary roots λ(τn

2 j(τ
0
1)) = ±iω j(τ0

1) of (3.8)
exists at τ2 = τn

2 j(τ
0
1) for j ∈ N(τ0

1) and n ∈ N, which crosses the imaginary axis from left to right
if δ(τn

2 j(τ
0
1)) > 0 and crosses the imaginary axis from right to left if δ(τn

2 j(τ
0
1)) < 0, where

δ(τn
2 j(τ

0
1)) = sign

{
dRe λ

dτ2

∣∣∣∣
τ2=τn

2 j(τ
0
1)

}
= sign{F′ω(ω j(τ0

1), τ0
1)}.

By Theorem 3.5, for any τ1 ∈ [0, τ̂1), there exists a τ∗2(τ1) ∈ (0,∞] such that P1 is locally
asymptotically stable for τ < τ∗2(τ1).

In general, it is hard to determine whether Iτ1 is empty or not. Moreover, if Iτ1 , ∅ and has more
than one element, then Theorem 3.5 indicates that there may be stability switches for P1. To get a clear
picture of it, we consider the case where τ0

1 = 0. Moreover, F(ω, 0) in (3.10) reduces to h(ω2), where

h(z) = z4 + b3z3 + b2z2 + b1z + b0 (3.12)

with

b3 = A2
3 − 2(A2 + B2),

b2 = 2A0 + A2
2 − 2A1A3 + B2

2 + 2(B0 − A3B1 + A2B2) −C2
2,

b1 = A2
1 − 2A0A2 + B2

1 − 2B0B2 − 2(A2B0 − A1B1 + A0B2) −C2
1 + 2C0C2,

b0 = (A0 + B0)2 −C2
0.

In this case, δ(τn
2 j(0)) in Theorem 3.5 is sign(h′(ω2

j(0))). As a result, for Hopf bifurcation to occur, we
only focus on the situations where h(z) defined by (3.12) has simple positive real zeros.

Though a simple calculation gives b3 = d2
E + (c + δ + dxE1)2 + ( s

T1
+ rT1

Tmax
)2 > 0, we cannot easily

get the signs of the other coefficients. By Descartes’ rule of sign, the polynomial h(z) has at most three
positive real zeros. In fact, Yan and Li [33] have obtained the conditions on the existence of at least
one positive real zero for h(z). To cite the result, let

p =
8b2 − 3b2

3

16
,

q =
b3

3 − 4b3b2 + 8b1

32
,

∆ =
q2

4
+

p3

27
,

z∗1 = −
b3

4
+

3

√
−

q
2

+
√

∆ +
3

√
−

q
2
−
√

∆ if ∆ > 0,

z∗2 = max
{
−

b3

4
− 2 3

√
q
2
,−

b3

4
+

3

√
q
2

}
if ∆ = 0,

z∗3 = max
{
−

b3

4
+ 2Re{ρ},−

b3

4
+ 2Re{ρε},−

b3

4
+ 2Re{ρε̄}

}
if ∆ < 0,
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where ρ is one of the cubic roots of the complex number −q
2 +
√

∆ and ε = −1+
√

3i
2 . Note that when

∆ > 0, z∗1 is the only real zero of h′(z); when ∆ = 0, z1 = −b3
4 − 2 3

√
q
2 , z2 = z3 = −b3

4 + 3
√

q
2 are the three

real zeros of h′(z); when ∆ < 0, −b3
4 +2Re{ρ}, −b3

4 +2Re{ρε}, and −b3
4 +2Re{ρε̄} are the three real zeros

of h′(z) and we arrange them as ẑ1 < ẑ2 < z∗3.

Proposition 3.1 ( [33, Lemma 2.1]). (i) If b0 < 0, then h(z) has at least one positive real zero.
(ii) If b0 ≥ 0, then h(z) has no positive real zero if one of the following conditions holds.

(ii-1) ∆ > 0 and z∗1 < 0;
(ii-2) ∆ = 0 and z∗2 < 0;
(ii-3) ∆ < 0 and z∗3 < 0.

(iii) If b0 ≥ 0, then h(z) has at least one positive real zero if one of the following conditions holds.

(iii-1) ∆ > 0, z∗1 > 0 and h(z∗1) < 0;
(iii-2) ∆ = 0, z∗2 > 0 and h(z∗2) < 0;
(iii-3) ∆ < 0, z∗3 > 0 and h(z∗3) < 0.

When τ1 = 0, by Proposition 3.1 we can have the following result.

Theorem 3.6. Assume τ1 = 0 and one of the conditions in statement (ii) of Proposition 3.1 holds. Then
the infected steady state P1 is locally asymptotically stable for all τ2 ≥ 0.

In the following result, we characterize the situations where h(z) has simple positive real zeros,
which is not difficult to see by considering the possible graphs of h(z) and h′(z). Recall that h(z) can
have at most three positive real zeros.

Proposition 3.2. For the polynomial h(z) defined by (3.12), the following results hold.

(i) h(z) has one simple positive zero and no other positive zeros if and only if (H1): one of the
following conditions hold.

(i-1) ∆ ≥ 0 and b0 < 0.
(i-2) ∆ > 0, b0 = 0, and z∗1 > 0.
(i-3) ∆ = 0, b0 = 0 and (z∗2 = z1 > 0 or z∗2 = z2 > z1 > 0).
(i-4) ∆ < 0, b0 < 0 and ẑ2 ≤ 0.
(i-5) ∆ < 0, b0 < 0, ẑ2 > 0 and h(ẑ2) < 0.
(i-6) ∆ < 0, b0 < 0, ẑ2 > 0, h(ẑ2) > 0 and h(z∗3) > 0.
(i-7) ∆ < 0, b0 = 0 and ẑ2 < 0 < z∗3.
(i-8) ∆ < 0, b0 = 0, ẑ1 > 0, h(ẑ2) > 0 and h(z∗3) > 0.
(i-9) ∆ < 0, b0 = 0, ẑ1 > 0 and h(ẑ2) < 0.

(ii) h(z) has two simple positive zeros and no other positive zeros if and only if (H2): one of the
following conditions holds.

(ii-1) ∆ > 0, b0 > 0, z∗1 > 0 and h(z∗1) < 0.
(ii-2) ∆ = 0, b0 > 0, z∗2 = z1 > 0 and h(z∗2) < 0.
(ii-3) ∆ = 0, b0 > 0, z∗2 = z2 > z1 > 0 and h(z1) < 0.
(ii-4) ∆ < 0, b0 = 0, ẑ1 ≤ 0 < ẑ2 and h(z∗3) < 0.
(ii-5) ∆ < 0, b0 > 0, ẑ2 ≤ 0 < z∗3 and h(z∗3) < 0.
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(ii-6) ∆ < 0, b0 > 0, ẑ1 ≤ 0 < ẑ2 and h(z∗3) < 0.
(ii-7) ∆ < 0, b0 > 0, ẑ1 > 0, h(ẑ1) > 0 and h(z∗3) < 0.
(ii-8) ∆ < 0, b0 > 0, ẑ1 > 0, h(ẑ1) < 0 and h(ẑ2) < 0.
(ii-9) ∆ < 0, b0 > 0, ẑ1 > 0, h(ẑ1) < 0, h(ẑ2) > 0 and h(z∗3) > 0.

(iii) h(z) has three simple positive zeros and no other positive zeros if and only if (H3): one of the
following conditions holds.

(iii-1) ∆ < 0, b0 < 0, ẑ2 > 0, h(ẑ2) > 0, and h(z∗3) < 0.
(iii-2) ∆ < 0, b0 = 0, ẑ1 > 0, h(ẑ2) > 0 and h(z∗3) < 0.

If (H1) holds, let z̃ > 0 be the unique simple positive zero of h(z) and denote ω̃ =
√

z̃. Solving (3.11)
to obtain the unique θ̃ ∈ [0, 2π). Define

τn
2 =

2nπ + θ̃

ω̃
for n ∈ N.

As h′(z̃) > 0, we have δ(τn
2) = 1 and hence the following result holds.

Theorem 3.7. Assume that τ1 = 0 and assumption (H1) holds. Then there exists a sequence 0 < τ0
2 <

τ1
2 < τ

2
2 < · · · such that P1 is locally asymptotically stable for τ2 ∈ [0, τ0

2) and unstable for τ > τ0
2, and

system (1.1) undergoes a Hopf bifurcation at P1 when τ2 = τn
2 for n ∈ N.

Now, assume (H2) holds. Let z̃2 < z̃1 be the only positive real zeros of h(z), which are also simple.
Similarly as for the case of (H1), we can get two increasing positive sequences {τn

21} and {τn
22},

associated with z̃1 and z̃2, respectively. Since h′(z̃1) > 0 > h′(z̃2), we easily see that τ0
21 < τ0

22. Since
ω̃1 =

√
z̃1 >

√
z̃2 = ω̃2, we have 2π

ω̃1
< 2π

ω̃2
. Thus we define

k = min
{

l ∈ N : τl+1
21 = τ0

21 +
2π(l + 1)

ω̃1
≤ τ0

22 +
2πl
ω̃2

= τl
22

}
.

Such k exists due to τl+1
21 − τ

l
22 → −∞ as l → ∞. Then the first few Hopf bifurcation values can be

ordered as
τ0

21 < τ
0
22 < τ

1
21 < τ

1
22 < · · · < τ

k−1
21 < τk−1

22 < τk
21 < τ

k+1
21 ≤ τ

k
22 < · · · .

Theorem 3.8. Assume τ1 = 0 and (H2) holds. Given n ∈ N and j ∈ {1, 2}, system (1.1) undergoes
Hopf bifurcation at τ2 = τn

2 j if τn
2 j , τ

l
2(3− j) for all l ∈ N. Furthermore, the stability of P1 switches off

(namely, it becomes unstable) when τ2 crosses τ0
21, . . ., τk

21 and switches on (namely, it becomes stable)
when τ2 crosses τ0

22, . . ., τk−1
22 . In other words, P1 is stable when τ2 ∈ [0, τ0

21)∪(τ0
22, τ

1
21)∪· · ·∪(τk−1

22 , τ
k
21)

and unstable when τ2 ∈ (τ0
21, τ

0
22) ∪ · · · ∪ (τk−1

21 , τ
k−1
22 ) ∪ (τk

21,∞).

We mention that we can study the global continuation of Hopf bifurcation in Theorem 3.8 as in Li
and Shu [34]. We believe that the Hopf bifurcation branches are bounded and each joins a pair of τn

21
and τn

22 for n ∈ N. As a result, for τ2 ∈ (τk+1
21 , τ

k
22), there will be two stable periodic orbits.

Also in Theorem 3.8, we exclude the situation where τn
21 = τl

22 for some n, l ∈ N. If this happens,
then n > l since τ0

21 < τ0
22 and 2π

ω̃1
< 2π

ω̃2
. In this critical situation, as τ2 crosses this common critical

value, two pairs of purely imaginary eigenvalues ±iω̃1 and ±iω̃2 appear and all other eigenvalues have
nonzero real parts. Therefore, a double Hopf bifurcation occurs.
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Theorem 3.9. Assume τ1 = 0 and (H2) holds. If there exist integers n > l ≥ 0 such that τn
21 = τl

22 = τ20,
then (1.1) undergoes a double Hopf bifurcation at P1 when τ2 = τ20.

When (H3) holds, we can similarly get three sequences of critical values for τ2. Similar results
as those in Theorem 3.8 and Theorem 3.9 can be obtained. Moreover, the global Hopf bifurcation
associated with the third sequence is unbounded (one can refer to Li et al. [35] for a similar discussion).

4. Numerical simulations

In this paper, we rigorously analyzed an HIV-infection model with CTL-immune response and two
time delays. The model incorporates a logistic growth term for the target cell growth and a natural
resource for the immune effectors. The basic reproduction number R0 played an important in the
infection dynamics. If R0 < 1 then the infection-free steady state is globally asymptotically stable.
Note that R0 explicitly depends on τ1. It follows that if τ1 is large enough then the virus will be cleared.
We emphasize that this has not been noted in most existing study. Of course, in the real situation, this
delay between viral entry and subsequent viral production usually is not very big. This leads to the
complicated dynamics when R0 > 1. In this case, the unique infected steady state could be stable or
unstable, depending on the parameter values. In particular, we focused on the effects of time delays.
Theoretical results indicate that there can be Hopf bifurcation, double Hopf bifurcation and stability
switches.

We conclude this paper with some numerical simulations to illustrate the above mentioned main
results. The ranges of the parameters except the delays are summarized in Table 2.

Table 2. Parameter values for simulation.

Parameter Unit Range References
s cells ml−1day−1 0 ∼ 10 [28]
d day−1 0.0001 ∼ 0.2 [23]
r day−1 0.03 ∼ 3 [36]
Tmax cells ml−1 600 ∼ 1600 [36]
k ml−1day−1 4.6 × 10−8 ∼ 0.5 [7]
α day−1 α ∈ [d, δ] [7]
δ day−1 0.00019 ∼ 1.4 [23]
dx ml−1day−1 0.0001 ∼ 4.048 [7, 23]
N viron cells−1 6.25 ∼ 23599.9 [23]
c day−1 2 ∼ 36 [23, 36]
λE cells ml−1day−1 0 ∼ ∞ [37]
p day−1 0.0051 ∼ 3.912 [23]
dE day−1 0.004 ∼ 8.087 [23, 37]
τ1 days 0 ∼ 1.5 [7]
τ2 days 0 ∼ 35 [7]

For simplicity, we use the same initial condition (T0,T ∗0 ,V0, E0) = (100, 0, 10−2, 0.6) in all
simulations.
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First, we take s = 10, d = 0.01, r = 0.03, Tmax = 1500, α = 0.02, δ = 0.3, dx = 0.01, N = 21, c = 3,
λE = 1, p = 0.3, dE = 0.1, τ1 = 1.2 and k = 2.4 × 10−5. Then R0 = 0.1680 < 1. By Theorem 3.2,
the infection-free steady state P0 = (1366, 0, 0, 10) is globally asymptotically stable (see Figure 1 with
τ2 = 4).
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Figure 1. When R0 < 1 the infection-free steady state P0 is globally asymptotically stable.
See the text for the parameter values.

Next, we only change k to k = 2.4 × 10−3 and keep the others as above. In this case, we have
τ̂1 = 142.2801. Take τ1 = 1.2 ∈ [0, τ̂1). Then R0 = 16.8038 > 1. Through numerical calculations,
we get the first few critical values τ0

21 = 2.9940 and τ1
21 = 32.9360 associated with ω1 = 0.2098

and τ0
22 = 28.8271 associated with ω2 = 0.1066. By Theorem 3.5, the infected steady state P1 =

(171.7615, 14.8383, 31.1604, 54.5149) is locally asymptotically stable for τ2 < τ0
21 (see Figure 2 with

τ2 = 2).
In fact, numerical simulations indicates that there is Hopf bifurcation for τ2 ∈ (τ0

21, τ
0
22) (see Figure 3

with τ2 = 5) and there is a stability switch at τ2 = τ0
22, that is, P1 is locally asymptotically stable for

τ2 ∈ (τ0
22, τ

1
21) (see Figure 4 with τ2 = 32).

In the following we illustrate this more clearly with the special case where τ1 = 0. We distinguish
three cases.

Case 1: (ii) of Proposition 3.1 holds. We take s = 5, d = 0.2, r = 0.03, Tmax = 1500, α = 0.2,
δ = 0.3, dx = 0.01, N = 2800, c = 15, λE = 1, p = 0.3, dE = 0.1, τ1 = 0 and k = 2.4 × 10−3. Then
R0 = 9.8484 > 1 and system (1.1) has the unique infected steady state
P1 = (4.5277, 6.9510, 389.2547, 30.8529). In this case, ∆ = 4.1507 × 106 > 0, b0 = 0.6078 > 0, and
z∗1 = −1.9553 × 10−2 < 0. This means that (ii-1) of Proposition 3.1 holds. It follows from Theorem 3.6
that the infected steady state P1 is locally asymptotically stable for all τ2 ≥ 0 (see Figure 5 with
τ2 = 1).
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Figure 2. The infected steady state P1 is locally stable. We refer to the text for the parameter
values.
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Figure 3. There is a periodic solution bifurcated from the infected steady state P1 through
Hopf bifurcation. Parameter values are given in the text.
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Figure 4. The infected steady state P1 gains stability and this indicates a stability switch.
See the text for the parameter values.
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Figure 5. The infected steady state P1 is locally asymptotically stable. For parameter values,
see the text.
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Case 2: Assumption (H1) holds. We choose the parameter values s = 10, d = 0.01, r = 0.25,
Tmax = 1500, α = 0.02, δ = 0.3, dx = 0.01, N = 21, c = 3, λE = 1, p = 0.3, dE = 0.1 and
k = 2.4 × 10−4. Then R0 = 1.8655 > 1 and system (1.1) has the unique infected steady state P1 =

(1448.2000, 10.9961, 23.0918, 42.9882). Note that ∆ = −0.2247 < 0, b0 = −6.0220 × 10−4 < 0, and
ẑ2 = −0.0442 < 0, namely, assumption (H1) (i-4) holds. We can get ω = 0.1519 and τ j

2 = 4.3175 +
2 jπ
ω

for j ∈ N. It follows from Theorem 3.7 that the infected steady state P1 is locally asymptotically stable
for τ2 ∈ [0, τ0

2) (see Figure 6 with τ2 = 4 < τ0
2) and unstable for τ > τ0

2. Moreover, system (1.1)
undergoes Hopf bifurcation at τ2 = τ

j
2 for j ∈ N. Figure 7 supports this with τ2 = 5 > τ0

2. Figure 8
provides the bifurcation diagram.

0 300 600 900 1200 1500
t (days)

0

500

1000

1500

2000

T
(t

) 
(c

el
ls

/m
l)

0 300 600 900 1200 1500
t (days)

0

25

50

T
* (t

) 
(c

el
ls

/m
l)

0 300 600 900 1200 1500
t (days)

0

50

100

V
(t

) 
(R

N
A

 c
op

ie
s/

m
l)

E(t) (cells/ml)T*(t) (cells/ml)

5025
0

50

V
(t

) 
(R

N
A

 c
op

ie
s/

m
l)

100

100

75 50 25 00

Figure 6. The infected steady state P1 is locally asymptotically stable. For parameter values,
we refer to the text.

Case 3: Assumption (H2) holds. This time we replace k with k = 2.4×10−3, and r with r = 0.03, and
keep the other parameter values as in Case 2. It follows that R0 = 17.2119 > 1 and system (1.1) has the
unique infected steady state P1 = (168.9145, 15.0443, 31.5930, 55.1329). Moreover, ∆ = −0.4441 < 0,
b0 = 3.0321 × 10−4 > 0, ẑ1 = −11.1936 < 0 < ẑ2 = 0.0018 > 0, and h(z∗3) = −9.3650 × 10−4 < 0.
Therefore, assumption (H2) (ii-6) holds. In this case, we have ω̃1 = 0.2845, ω̃2 = 0.1401, τ j

21 =

2.0033 +
2 jπ
ω̃1

, and τ
j
22 = 22.3237 +

2 jπ
ω̃2

for j ∈ N. Then the first few Hopf bifurcation values are
ordered as τ0

21 < τ0
22 < τ1

21 < τ2
21 < τ1

22 < · · · . By Theorem 3.8, the infected steady state P1 is locally
asymptotically stable for τ2 ∈ [0, τ0

21) ∪ (τ0
22, τ

1
21) (see Figure 9 and Figure 10 with τ2 = 1.5 < τ0

22 and
τ2 = 24 ∈ (τ0

22, τ
1
21), respectively) and is unstable for τ2 ∈ (τ0

21, τ
0
22) ∪ (τ1

21,∞). Thus there are stability
switches for P1. Moreover, there are supercritical Hopf bifurcation at τ2 = τ

j
21 and subcritical Hopf

bifurcation at τ2 = τ
j
22 (see Figures 11 and 12). The numerical simulations also strongly indicate that

the global Hopf bifurcation branches are bounded and each branch connects a pair τ j
21 and τ j

22, which
we will confirm in a future work.
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Figure 7. There is a periodic orbit bifurcated through Hopf bifurcation at the infected steady
state P1 when τ2 = 5 > τ0

2. See the text for parameter values.
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Figure 8. The bifurcation diagram at P1 with τ2 as the bifurcation parameter. See the text
for the other parameter values.
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Figure 9. The infected steady state P1 is locally asymptotically stable for τ2 = 1.5 < τ0
21 =

2.0033. See the text for the values of the other parameters.
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Figure 10. The infected steady state P1 is asymptotically stable for τ0
22 < τ2 = 24 < τ1

21. We
refer to the text for values of the other parameters.
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Figure 11. There is a periodic orbit bifurcated from the infected steady state P1 through
supercritical Hopf bifurcation when τ0

21 < τ2 = 2.5 < τ0
22. See the text for the values of the

other parameters.
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Figure 12. There is a periodic orbit bifurcated from the infected steady state P1 through
subcritical Hopf bifurcation when τ0

21 < τ2 = 19 < τ0
22. See the text for the values of the

other parameters.
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