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Abstract: Cerebral autoregulation is the ability to keep almost constant cerebral blood flow (CBF) for
some range of changing the mean arterial pressure (MAP). In preterm infants, this range is usually very
small, even absent, and a passive (linear) dependence of CBF on MAP is observed. Also, variations of
the partial CO2 pressure and intracranial/venous pressure result in fluctuations of CBF. The absence of
cerebral autoregulation may be a cause of intracranial hemorrhages due to instability of cerebral blood
vessels, especially in the so-called germinal matrix which exists in a developing brain from 22 to 32
weeks of gestation. In the current paper, a mathematical model of impaired cerebral autoregulation is
extended compared with previous works of the authors, and a heuristic feedback control that is able to
keep deviations from a nominal CBF within a reasonable range is proposed. Viability theory is used
to prove that this control can successfully work against a wide range of disturbances.

Keywords: Cerebral autoregulation; feedback control; viability set; leadership kernel; discriminating
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1. Introduction

Cerebral autoregulation is an important option of the brain vascular system to provide a stable
CBF under variations of MAP [1]. This ensures continuous oxygen supply to the brain tissue.
Cerebral autoregulation is impaired in preterm infants, i.e., the dependence of CBF on MAP is almost
linear, and the autoregulatory plateau usually exists for a very narrow range of MAP [2]. Additionally,
the slope of the autoregulatory curve strongly depends on the arterial partial CO2 level (pCO2) [3].
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Increased pCO2 values (e.g. permissive hypercapnia), being often observed in ventilated infants, lead
to progressively impaired autoregulation. Moreover, variations in intracranial/cerebral venous
pressure (ICP/CVP) may cause additional fluctuations of CBF. All this may be damaging for
unstable cerebral blood vessels, especially for those of the germinal matrix (GM) [4, 5]. The germinal
matrix, a highly vascularized site of origin for neuronal and glial cells, disappears by the 32nd week
of gestation. Thus, the risk of rupture of unstable GM-vessels is especially high in very preterm
infants. Another risk concerns a raised CVP, which can reduce the perfusion pressure defined as the
difference between MAP and CVP. This may result in a decrease of CBF with the threat of cerebral
hypoperfusion [6, 7].

Mathematical modeling of cerebral autoregulation is the topic of many publications, see e.g. [8–
14]. A comprehensive survey on models of CBF autoregulation can be found in the monograph [15].
The purpose of the current paper is to model impaired cerebral autoregulation in premature newborns
and to develop a feedback control that prevents large fluctuations of CBF caused by variations of
MAP, pCO2, and ICP/CVP. Based on the polynomial autoregulation models proposed by the authors
in [14, 16], an extended model of impaired cerebral autoregulation, coupled to a model of cerebral
blood vessel network from [17], is suggested. The new feature of this model, compared with [14]
and [16], consists in accounting for the effect of pCO2 and CVP on CBF. According to the literature
(cf. [3, 18]), such an effect is very important in ventilated preterm infants. Moreover, a new heuristic
feedback control maintaining CBF within a safety range in the presence of unpredictable variations in
MAP, pCO2, and ICP/CVP is constructed. Viability theory [19] and differential game approach [20]
are used to prove the reliability of this control. It should be noted that the controller designed gives
much better results compared with that proposed in [16].

The paper is organized as follows.

Section 2 describes a model of cerebral autoregulation assuming a polynomial dependence of vessel
radii on the mean arterial blood pressure. The model is coupled with a hierarchical model of blood
vessel network from [17] and adjusted to experimental data for preterm infants using a polynomial
fitting.

In Section 3, the autoregulation model from Sect. 2 is modified by adding a mechanism of impaired
autoregulation. Variations in MAP, pCO2, and CVP are considered as main factors influencing CBF.

In Section 4, a heuristic feedback controller based on the discrepancy between ideal and impaired
autoregulation is proposed. The control action can be interpreted as injection of medicaments causing,
with some delay, the dilation or shrinkage of vessels. In Subsection 4.1, a conflict control problem
with appropriate state constraints is introduced, and a state-based feedback controller is designed in
Subsection 4.2. Subsection 4.3 outlines viability approach and describes a grid numerical method for
constructing leadership kernels, i.e. maximal domains where the control can keep the dynamic system
infinitely long for all unpredictable admissible disturbances. The idea of the proof of robustness of the
heuristic controller is then explained in terms of leadership sets. In Subsection 4.4, a modified grid
algorithm for the treatment of not quickly changing disturbances is given.

Section 5 describes results of numerical simulations. It is shown that the controller introduced
in Section 4 is able to correct the impaired autoregulation, i.e. the controller is robust against all
unpredictable admissible not quick changes of MAP, pCO2, and CVP.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2334–2352.



2336

2. Mathematical model of cerebral autoregulation

In this Section, a model of cerebral autoregulation for preterm infants, originally introduced in [14],
is recalled and extended to account for effects of carbon dioxide vasoreactivity.

A hierarchical model of cerebrovascular network proposed in [17] is used to compute CBF. It is
supposed that 9 arterial, one capillary, and 9 venous compartments are sequentially connected. In the
case of Poiseuille flow of a Newtonian liquid, CBF can be evaluated using Kirchhoff’s law as follows
(see [21] for details):

CBF = (pa − pv)

 19∑
i=1

8µ`i

πmir4
i

−1

. (2.1)

Here, pa = MAP is the mean arterial pressure, pv = CVP is the cerebral venous pressure, `i and ri are
the length and radius of vessels of the i th compartment, respectively, and µ is the dynamic viscosity of
blood.

To describe the process of autoregulation, assume that the vascular radius ri depends on the arterial
pressure pa as follows:

ri = r∗i
[
(p∗a − pv)/(pa − pv)

]1/4
,

where p∗a is a baseline value of pa, and r∗i is a reference value of ri corresponding to p∗a. It is easy to see
that such a choice stabilizes CBF because ri appears as the fourth power in formula (2.1) for CBF.

To fit this model to experimental data on cerebral autoregulation in preterm infants (see [3,22–24],
the following modification is introduced (see also [14]):

ri = r∗i
[
(p∗a − pv)/(pa − pv)

]1/4
P(pa, a1, a2, a3), (2.2)

P(pa, a1, a2, a3) = 1 + a1(pa − p∗a) + a2(pa − p∗a)2 + a3(pa − p∗a)3. (2.3)

Therefore,

CBF(pa, pv, a1, a2, a3) =

(pa − pv) kage

 19∑
i=1

8µ`i

πmir4
i

−1

, (2.4)

where ri are given by formulas (2.2) and (2.3), and kage is a scale factor to adjust CBF to the age of
infants. The values p∗a = 35 [mmHg] and kage = 0.08 correspond to hemodynamic system of premature
infants of 31-34 weeks’ gestational age, the brain weight of 260 g and the CBF of 15.5 mL/100 g/min
(cf. [22, 24]). The value of pv is set to be equal to 5 [mmHg] in the fitting procedure. The values of `i,
mi, and r∗i , i = 1, ..., 19, are taken from [17].

The coefficients a1, a2, and a3 are fitted through the minimization of the residual

R(a1, a2, a3) =

5∑
k=1

[
CBF(pk

a, pv, a1, a2, a3) −CBFk
]2
, (2.5)

where the pairs
(
pk

a [mmHg],CBFk [mL/s]
)
, k = 1, ...5, are chosen according to experimental data from

[22, 24] as follows:

(κ · 20, 0.24); (κ · 30, 0.67); (κ · 34, 0.67); (κ · 38, 0.67); (κ · 50, 2).
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Here κ = 133.322 Pa/mmHg is the conversion factor from mmHg to Pa.
Note that the polynomial (2.3) of degree 3 and the five data points are sufficient to approximate the

autoregulation plateau experimentally found in [22].

The values of the minimizers of (2.5) read

a1 = 8.384e-7 Pa−1, a2 = 5.718e-9 Pa−2, a3 = 3.518e-11 Pa−3.

Although the coefficients ai are very small, the last three summands in (2.3) are not too small because
the pressure is measured in pascals.

To account for dilation/constriction of blood vessels caused by the change of carbon dioxide partial
pressure in arterial blood, the following dependence of the reference radii r∗i , i = 1, ..., 19, on the partial
CO2 pressure, pCO2, is adopted from [17]:

r∗i = r∗i (pCO2) = r0
i · (1 + ci · (pCO2 − pCO0

2)), (2.6)

where ci is the pCO2 reactivity coefficient, pCO0
2 a baseline value of the partial CO2 pressure, and r0

i
the baseline vessel radius.

3. Modeling impaired cerebral autoregulation

In this section, the autoregulation model from Sect. 2 is modified to describe autoregulation defects
in preterm infants. Namely, it will be supposed that the horizontal plateau observed in Figure 1 may
be distorted due to the change in pCO2 and CVP, which also extends the model of impaired cerebral
autoregulation introduced by the authors in [16]. Making the substitutions

pa ← x1, pCO2 ← x2, a1 ← φ(x2) a1, r∗i ← (1 + x3) r∗i , pv ← x4,

in formulas (2.2)-(2.4) and (2.6) yields a function

q(x1, x2, x3, x4) = kage(x1 − x4)
(∑19

i=1
8µ`i

πmir4
i (x1, x2, x3, x4)

)−1

,

ri(x1, x2, x3, x4) = (1 + x3)r0
i (1 + ci(x2 − pCO0

2))×[
(p∗a − x4)/(x1 − x4)

]1/4(φ(x2)a1(x1 − p∗a) + a2(x1 − p∗a)2 + a3(x1 − p∗a)3)

describing the disturbed autoregulation. Here; x1 denotes the mean arterial pressure, pa; x2 denotes the
partial CO2 pressure, pCO2; the multiplier φ(x2) changes the slope of the plateau observed in Figure 1;
the variable x3 modifies the vascular volume to restore the horizontal autoregulation plateau; and x4

stands for the venous pressure.
The dependence φ = φ(x2) is reconstructed from the experimental data for preterm infants

(
see [3]

where the slope s(pCO2) of the curve presenting CBF velocity versus pCO2 is measured
)
. The function

φ is found numerically from the relation

CBF(pa, p∗v, φ(x2)a1, a2, a3) −CBF(pa, p∗v, φ(x2)a1, a2, a3)

pa − pa
= S · s(x2),
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Figure 1. Normal autoregulation response in premature infants of 31–34 gestation weeks.

where pa and pa are the starting and finishing values of the arterial blood pressure for the autoregulation
plateau, p∗v = 5 mmHg is the same value used in the fitting procedure for the coefficients a1, a2, a3,
and S is the estimate of the mean cross-section area of the blood vessels. The graph of φ is shown in
Figure 2. Obviously, the relation φ(pCO0

2) = 1 holds.
Note that the function q(x1, pCO0

2, 0, p∗v) represents the normal autoregulation response shown in
Figure 1. Therefore, the function

ω(x1, x2, x3, x4) := q(x1, x2, x3, x4) − q(x1, pCO0
2, 0, p∗v) (3.1)

can be considered as the measure of the violation of autoregulation. This discrepancy will be used
below to define a state constraint in the forthcoming conflict control system.

4. Conflict control problem and heuristic quasi-optimal control

In this section, a conflict control model governing the variables x1, x2, x3, x4 and accounting for
different state constraints will be stated. Moreover, a feedback control based on the discrepancy
between the current and nominal CBF will be designed.

4.1. Conflict control problem

Consider now the following conflict control problem (differential game [20]):
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Figure 2. Function φ(x2) defining slope of autoregulation curve versus pCO2.

ẋ1 = −k1(x1 − v1),
ẋ2 = −k2/φ

′(x2)(φ(x2) − v2),
ẋ3 = −k3(x3 − u),
ẋ4 = −k4(x4 − v3)

(4.1)

where u is the control variable of the first player, which can be interpreted as input of a medicament that
dilates or constricts blood vessels with some time delay defined by the coefficient k3. The disturbance
variables v1, v2, and v3 are at the disposal of the second player. They have effect on the arterial pressure,
x1, the partial CO2 pressure, x2, and the venous pressure, x4, respectively. The coefficients k1, k3, and
k4 define the corresponding time delays. It should be noted that the second equation is equivalent to
the following: χ̇2 = −k2(χ2 − v2) with χ2 = φ(x2). Thus, the model (4.1) uses the physical variable
x2 := pCO2 instead of the abstract parameter χ2 utilized (up to notation) in the model presented in [16].

The state variables are assumed to be constrained as follows:

x1 ∈ [28, 42] mmHg, x2 ∈ [35, 60] mmHg,
x3 ∈ [−0.2, 0.2], x4 ∈ [0, 10] mmHg. (4.2)

The disturbances and control are constrained as follows:

v1 ∈ [28, 42] mmHg, v2 ∈ [30, 55] mmHg,
u ∈ [−0.2, 0.2], v3 ∈ [0, 10] mmHg. (4.3)
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The right-hand side values of the constraints in (4.2) and (4.3) are chosen based on clinical
measurements presented in [23, 25, 26]. The bounds on control inputs are set to enable the control to
compensate large deviations of CBF from the autoregulation plateau within 10 minutes.

It should be stressed that equations (4.1) represent the so called PT1 filters, where the coefficients
k1, k2, k3, and k4 define the time constants, reaction times to input changes. It is assumed that time in
system (4.1) is measured in minutes, and the coefficients are chosen as follows:

k1 = 0.01 min−1, k2 = 0.01 min−1, k3 = 0.1 min−1, k4 = 0.01 min−1.

So, we suppose that the reaction time to changes of the arterial pressure, partial carbon dioxide
pressure, and cerebral venous pressure is about 100 minutes, which is consistent with our clinical
observations. Moreover, the response to the medication occurs in about 10 minutes after injection.

The dynamical system (4.1)–(4.3) will be considered as an antagonistic differential game with two
opposite players. The objective of the first player is to ensure the constraints (4.2) and the following
constraint:

|ω(x1(t), x2(t), x3(t), x4(t))| ≤ ω0, t ∈ [0,∞), (4.4)

where ω0 = 2 mL/min is the admissible deviation from the perfect autoregulation performance.
Note that the highly nonlinear state constraint (4.4) is the central part of the model, since it reflects

the deviation of computed CBF from the reference value, whereas equations (4.1) only restrict the
rate of change of model variables in time. Obviously, the constraints (4.2) and (4.4) should hold for
all disturbances v1(·), v2(·), and v3(·) satisfying the bounds (4.3). It is easy to prove that the state
constraints (4.2) hold whenever the bounds (4.3) hold. Thus, the control u should not spend much
trouble on keeping these state constraints. The second player strives to violate the constraint (4.4).

4.2. Control design

It is easy to check that the following relation holds:

q(x1, x2, x3, x4) = (1 + x3)4 · q(x1, x2, 0, x4) (4.5)

According to the relation (4.5) and the definition (3.1), it is sufficient to set

x3 =
(q(x1, pCO0

2, 0, p∗v)
q(x1, x2, 0, x4)

) 1
4
− 1 (4.6)

to provide ω = 0.
Assume now that the control u is chosen at a time instant t and at a state

{
x1 = x1(t), x2 = x2(t), x3 =

x3(t), x4 = x4(t)
}

as follows:

u =
(q(x1, pCO0

2, 0, p∗v)
q(x1, x2, 0, x4)

) 1
4
− 1. (4.7)

Due to the third equation of (4.1), it should be expected that the variable x3(t) will follow the control
u(t) because the coefficient k3 is essentially larger than k1, k2, and k4. Thus, the relation (4.6) will be
approximately fulfilled, which will provide the condition ω ≈ 0.

Taking into account the relation (4.5) and using the notation x = (x1, x2, x3, x4), we can rewrite (4.7)
as follows:

u(x) =
(q(x1, pCO0

2, 0, p∗v)
q(x1, x2, x3, x4)

) 1
4 (1 + x3) − 1. (4.8)
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Here, q(x1, x2, x3, x4) represents the current CBF that can physically be measured, and
q(x1, pCO0

2, 0, p∗v) is the reference CBF at arterial pressure x1, which is supposed to be known. The
variable x3 depends on the amount of medicine injected, and, therefore, the current value of x3 can be
easily computed.

Note that the control (4.8) compensates the deviation of CBF from its reference value not perfectly
because of a time delay caused by the dynamics of the third equation of (4.1). This will be seen below
from simulations with a discrete control scheme. To improve the quality of the control (4.8), it is
reasonable to permit an oversteering that is proportional to the discrepancy ω(x1, x2, x3, x4) with the
experimentally obtained coefficient of 0.9. Thus, we arrive at a modified control

u∗(x) =
(q(x1, pCO0

2, 0, p∗v) − 0.9 · ω(x1, x2, x3, x4)
q(x1, x2, x3, x4)

) 1
4 (1 + x3) − 1.

The role of the oversteering will be clearly seen in simulations based on discrete-time control scheme
with large time sampling intervals. Finally, the following feedback control is suggested:

ũ(x) =


−µ, u∗(x) < −µ,
µ, u∗(x) > µ,
u∗, u∗(x) ∈ [−µ, µ], µ = 0.2.

(4.9)

Thus, to compute the control (intake of medicine), the current CBF and the arterial blood pressure are
measured, the reference CBF value for the actual arterial pressure is calculated by the formula, and
the accumulated value of injected medicine is evaluated. We will see that the control (4.9) is able to
better track the reference CBF curve, i.e., provide smaller values of the discrepancy ω. Moreover,
using a relaxed algorithm for computing leadership sets, we will prove that ũ guarantees keeping
trajectories within the state constraint (4.2) for all admissible disturbances with not quick variations.
For consistency, a base algorithm for constructing leadership kernels will be sketched in the next
section.

4.3. Viability approach and a base numerical algorithm for computing leadership kernels

The notion of viability kernel (see [19]) is used for control problems, whereas, in the case of
differential games, the notions of leadership and discriminating kernels are conventionally utilized.

Leadership kernel is the maximal subset of the state constraint where the system trajectories can
remain arbitrary long if the first player utilizes an appropriate pure feedback control, and the second
player generates any admissible disturbances (see [27, 28]). In contrast, the notion of discriminating
kernel corresponds to the case where the first player can exactly measure current actions of the second
one to use the so-called counter feedback strategies (see [20]). Obviously, this case is not realistic.

In this section, viability approach and a numerical method developed in [21, 29] for constructing
leadership kernels will be briefly outlined. Note that in our case leadership and discriminating kernels
coincide, because Isaacs’ saddle point condition holds for dynamic system (4.1).

Remember that x = (x1, x2, x3, x4) is the state vector and denote by f (x, u, v), v = (v1, v2, v3), the
right-hand side of system (4.1). Let P and Q be compact sets defining the bounds (4.3) on the control
and disturbances, respectively.

The results of this subsection hold for arbitrary dimension n of the state space and rather general
function f (see e.g. [29]), which is reflected in the description below.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2334–2352.
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Let u→ v(u) be a Borel measurable function with values in Q. Consider the differential inclusion

ẋ ∈ Fv(·)(x) = co{ f : f (x, u, v(u)), u ∈ P}. (4.10)

Definition 4.1 (leadership property). A set K ⊂ Rn has leadership property if for any x∗ ∈ K and any
Borel measurable function v(·) with values in Q there exists a solution x(·) of (4.10) such that x(0) = x∗
and x(t) ∈ K for all t ≥ 0.

Definition 4.2 (leadership kernel). For a given compact set G ⊂ Rn denote by Lead(G) the largest
subset of G with the leadership property. This subset is called the leadership kernel of G.

Let
Gλ = {x ∈ Rn, g(x) ≤ λ}

be a family of state constraints. In the simulations below, g(x) = maxi gi(x) is set, where g1(x) =

|x1 − 35| − 7, g2(x) = |x2 − 47.5| − 12.5, g3(x) = |x3| − 0.2, g4(x) = |x4 − 5| − 5, and g5(x) = |ω(x)| −ω0.

The first four functions account for the state constraints (4.2) and the last one is responsible for the
constraint (4.4). Therefore, Gλ is equivalent to the constraints (4.2) and (4.4) if λ = 0.

It is required to construct a function V , such that

Lead(Gλ) = {x ∈ Rn, V(x) ≤ λ}. (4.11)

Denote by δ > 0 the time step length. Let h := (h1, ..., hn) be the space grid steps with |h| = max
1≤i≤n

hi.

For any continuous functionV : Rn → R introduce the following upwind operator:

Π(V; δ, h)(x) = V(x) + δmin
u∈P

max
v∈Q

n∑
i=1

(pright
i f +

i + ple f t
i f −i ),

where fi are the components of f , and

a+ = max{a, 0}, a− = min{a, 0},

pright
i = [V(x1, ..., xi + hi, ..., xn) −V(x1, ..., xi, ..., xn)]/hi,

ple f t
i = [V(x1, ..., xi, ..., xn) −V(x1, ..., xi − hi, ..., xn)]/hi.

Note that pright
i and ple f t

i are typical finite differences in Godunov-like methods for hyperbolic problems.
The operator Π will be applied to grid functions to return grid functions.

DenoteVh(xi1 , ..., xin) = V(i1h1, ..., inhn), gh(xi1 , ..., xin) = g(i1h1, ..., inhn) being the restrictions ofV
and g to the grid. Let a sequence {δ`} is chosen, such that δ` → 0,

∑∞
`=0 δ` = ∞.

Consider the following grid scheme:

Vh
`+1 = max

{
Π
(
Vh

` ; δ, h
)
, gh

}
, Vh

0 = gh, ` = 0, 1, . . . . (4.12)

It can be proven that Vh
` monotonically point-wise converges to a grid function Vδ,h, and this

function approximates the function V defining leadership kernels according to formula (4.11) if δ and
h are sufficiently small.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2334–2352.



2343

Proposition 1 (see [30] for the proof). Let |Fv(x)| ≤ B for all x ∈ Rn and δ`/|h| ≤ 1/(B
√

n) for all `.
ThenVh

` ↗ Vh as ` → ∞.

Note that in the case n = 4 the relation δ/|h| ≤ (2B)−1 should hold. Other secondary stability
conditions can be found in [21, 31].

The estimate |Vh − V | ≤ C
√
|h| is expected (cf. [21, 31]), and therefore Vh

` approximates V if ` is
large and |h| is small. The stopping criterion in the computation is sup

grid
|Vh

`+1 −V
h
` | ≤ ε.

To be sure that the control (4.9) works well for all unpredictable admissible disturbances that change
not quickly, the following technique can be applied. First, extend the system (4.1) by adding three PT1
filters for v1, v2, and v3 with the same time constant k = 0.1 min−1, which will restrict the rate of change
of the disturbances. Thus, the extension of (4.1) looks as follows:

v̇i = −k(vi − v̄i), i = 1, 2, 3, (4.13)

where v̄i, i = 1, 2, 3, are new disturbances constrained in the same way as the old ones, cf. (4.3).
Second, put ũ into the extended system (4.1) and compute a leadership set of the state constraints

(4.2),(4.4) according to a method described below. If this leadership set is nonempty, the heuristic
rule (4.9) is appropriate to work against all unpredictable admissible disturbances that change not
quickly. Note, that the leadership set will be computed in the four-dimensional space of the variables
x1, x2, x3, x4. The variables v1, v2, and v3 are not considered as new states, but as accumulated optimal
values of the new artificial controls.

4.4. Modified (relaxed) algorithm for quick treatment of additional PT1 filters

Let wi, i = 1, 2, 3, be given grid functions. Consider now the following operator:

Π̃(V; δ, h,w1,w2,w3)(x) = V(x) + δ max
(v̄1,v̄2,v̄3)

4∑
i=1

(pright
i f̃ +

i + ple f t
i f̃ −i ), (4.14)

where

f̃1(x, v̄1) = −k1(x1 − v1),
f̃2(x, v̄2) = −k2/φ

′(x2)(φ(x2) − v2),
f̃3(x) = −k3(x3 − u),
f̃4(x, v̄3) = −k4(x4 − v3)

with the substitution

v1 = w1(x) − k δ
(
w1(x) − v̄1

)
, (4.15)

v2 = w2(x) − k δ
(
w2(x) − v̄2

)
, (4.16)

v3 = w3(x) − k δ
(
w3(x) − v̄3

)
, (4.17)

u = ũ(x).

The recurrent computation scheme (4.12) transforms now into the following one:

Vh
0(x) = gh(x), w0

1(x) = w0
2(x) = w0

3(x) = 0, (4.18)
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Vh
`+1(x) = max

{
Π̃
(
Vh

` ; δ, h,w
`
1,w

`
2,w

`
3
)
(x), gh(x)

}
, (4.19)

w`+1
i (x) = w`

i (x) + kδ
(
w`

i (x) − v̄`,max
i (x)

)
, i = 1, 2, 3. (4.20)

Here, v̄`,max
i (x), i = 1, 2, 3, are the maximizes, over v̄i, i = 1, 2, 3, when computing the term

Π̃
(
Vh

` ; δ, h,w
`
1,w

`
2,w

`
3
)
(x)

according to formula (4.14).
Note that the relations (4.15)–(4.17) represent, at each node x, a time-step approximation of

equations (4.13) with initial conditions wi(x), i = 1, 2, 3. These initial conditions are obtained from the
previous time step as solutions of (4.13) with some optimal values of v̄i, i = 1, 2, 3. Therefore,
w`

i (x), i = 1, 2, 3, accumulate, according to equation (4.13), values of v̄i, i = 1, 2, 3, that are optimal at
the grid point x, see (4.20). Taking into account that first player’s control is a prescribed function, the
relation (4.20) expresses the dynamic programming optimality principle. It should be noted that the
starting functions w0

i (x), i = 1, 2, 3, can be chosen arbitrary, under the constraints (4.3) with vi being
replaced by w0

i (x) for i = 1, 2, 3.
It can be proven that the modified grid scheme (4.18)–(4.20) is monotone and a similar convergence

result as in Proposition 1 can be established. Moreover, the limiting function does not increase on
the trajectories of the system (4.1),(4.13), with u = ũ(x), for all admissible controls v̄i(t), i = 1, 2, 3.
Therefore, level sets of the limiting function are leadership sets.

5. Simulation results

Here, simulation results for system (4.1) will be presented, and the robustness of the above proposed
heuristic feedback controller (4.9) against not quickly changing admissible disturbances v1, v2, v3 will
be checked.

First, the ability of the control ũ against open-loop disturbances, such as e.g. those shown in
Figure 3, is tested. Here, the behavior of the mean arterial pressure is as follows: It increases from 28
mmHg to 42 mmHg during first 16 hours, remains constant (equals 42 mmHg) during further 17
hours, linearly decreases to 28 mmHg during 1.5 days, then remains constant (equals 28 mmHg)
during 2 days, and finally increases to 42 mmHg during 10 hours. The pCO2 value changes
periodically every 30 hours, taking values between 30 and 55 mmHg. For the cerebral venous
pressure, a sinusoidal change with the amplitude of 5 mmHg and the periodicity of approximately 31
hours is set. The control (4.9) is applied continuously. Note that the chosen disturbances obey the
constraints (4.3) and simulate apparent clinical conditions.

In Figure 4, the resulting autoregulation curve (red) computed with the control (4.9) and above
described disturbances is shown. Additionally, the reference autoregulation response curve (green) is
plotted. Note that the graphs are plotted parametrically, i.e., x = x1(t), y = q

(
x1(t), x2(t), x3(t), x4(t)

)
and x = x1(t), y = q

(
x1(t), pCO0

2, 0, p∗v
)
, respectively. The time development of the feedback control

(4.9) is presented in Figure 5 in green color. In red color, the time development of the variable x3 is
shown. One can see a good closeness of x3(t) and u(t) in the case of continuous-time control scheme.

A discrete-time control scheme with 2 hours time sampling is tested. This means that the feedback
control is computed every 2 hours according to the rule (4.9) and is kept constant in between. It can
be interpreted as a regular intake of a medicine like e.g. indomethacin [32] for lowering CBF. The
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Figure 3. Open-loop disturbances v1(t), v2(t), v3(t).
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Figure 4. Response to the disturbances presented in Figure 3 in the case of continuous-
time control scheme. Reference autoregulation curve (green) and controlled impaired
autoregulation curve (red) are shown. The graph is not single-valued because x1(t) is not
monotone.
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Figure 5. Time development of the feedback control ũ (green line) and the variable x3 (red
line) in continuous-time control scheme.

resulting autoregulation curve for such a discrete feedback control and disturbances shown in Figure 3
is presented in Figure 6. One can see that, even in this less favorable case, deflections of CBF do not
exceed 2 mL/min, which is visualized with the help of a strip around the undisturbed autoregulation
curve. The time development of the discrete feedback control with oversteering (green line) is depicted
in Figure 7. Simultaneously the time development of the variable x3 (red line) is shown there. It is seen
that these lines remain close to each other, as it was in the case of continuous-time control scheme. It
should be noted that the control without oversteering term is not able to sufficiently push the trajectory
to the reference curve because of a time delay caused by the dynamics of the third equation of (4.1),
which produces an unsatisfying result (see Figure 8).

Note that the oscillations of the CBF curve around the autoregulation plateau, observable in
Figures 6 and 8, are caused by the discrete-time control scheme with large sampling interval of 2
hours. During the sampling time, the disturbance pushes the CBF curve away from the autoregulation
plateau, and the controller should bring the trajectory back to the plateau level. Apparently, it might
be possible to modify the control in order to smooth the cusps, which, however, will not decrease the
amplitude of the oscillations. Moreover, these oscillations are not dangerous because they lie in
admissible physiological range (5% of the CBF plateau value).

To prove that the proposed feedback control is powerful against all “slow” admissible disturbances
constrained similar to (4.3), this control is inserted into the extended system (4.1) and (4.13), and the
leadership kernel of the state constraints (4.2), (4.4) is computed as described in Subsection 4.4. Note
that the nonlinearity both of the system (4.1) and of the state constraint (4.4) as well as the relatively
high dimension of the state vector (four) make the computation of the leadership kernel to be a complex
problem.
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Figure 6. Response to the disturbances presented in Figure 3 in the case of discrete-
time control scheme. Reference autoregulation curve (green) and controlled impaired
autoregulation curve (red) are shown. The graph is not single-valued because x1(t) is not
monotone. It is worth to note that the oversteering is clearly observable here: The control
pushes the disturbed curve not exactly at the reference one but with some excesses.
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Figure 7. Time development of the feedback oversteering control ũ (green line) and variable
x3 (red line) in discrete-time control scheme.
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Figure 8. Response to the disturbances presented in Figure 3 in the case of discrete-
time control scheme without the oversteering term. Reference autoregulation curve (green)
and controlled impaired autoregulation curve (red) are shown. The control is not able to
completely push the disturbed curve to the reference one.
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Figure 9. The section of the leadership set in variables x1 = pa, x2 = pCO2, and ω at x4 = p∗v.
The set lies inside the state constraints.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2334–2352.



2349

The computation was performed on the SuperMUC system at the Leibniz Supercomputing Centre
of the Bavarian Academy of Sciences and Humanities. The problem was parallelized between 25
compute nodes with 16 cores per node. A grid of 100× 100× 100× 100 cells was used, and about 104

steps of the algorithm (4.18)–(4.20) were performed. The runtime was about 1 hour.
The result of the computation is presented in Figure 9. The section of the leadership set at x4 = p∗v is

shown. The vertical axis measures the discrepancy ω. The non-emptiness of the computed leadership
kernel means that the control (4.9) is able to keep trajectories within the state constraints (4.2) and (4.4)
for all admissible disturbances with not quick variations.

6. Discussion and Conclusion

The scientific awareness about possible controlling of impaired cerebral autoregulation in preterm
infants is still far from satisfactory. To the best of our knowledge, there are no mathematical models
available to control impaired cerebral autoregulation in preterm infants. Adequate mathematical
modeling can help to improve understanding of cerebral circulation in premature brain and assess the
influence of the most important factors like MAP, pCO2, and CVP on the cerebral blood flow.

In the current paper, impaired cerebral autoregulation in preterm infants has been mathematically
modeled. Feedback control that can be interpreted as a medication strategy preventing large deviations
of CBF from some physiological (reference) autoregulation curve has been developed. The slope of
the autoregulation plateau due to hypercapnia is reconstructed from the experimental data for preterm
infants in [3]. The ranges of change for mean arterial pressure, partial CO2 pressure, and cerebral
venous pressure are consistent with clinical measurements in [26], however, because of the lack of
measurements, the time-evolutions of these variables used in our simulations are heuristic curves that
satisfy the chosen constraints.

The model developed can be a reasonable starting point to improve understanding of
autoregulation in preterm infants. Apparently, such a modeling may support refining clinical therapies
and monitoring strategies. Viability theory is applied to prove that the proposed control works well
against all admissible disturbances of arterial, venous, and partial CO2 pressure. Moreover,
satisfactory result is obtained in the case of discrete-time control scheme with time sampling of 2
hours. The advantage of the controller is its simple usage based on only two measurements, CBF and
MAP, at each sampling time instant. However, it would be interesting to improve the controller, for
example, to avoid oversteering, by using nonlinear automatic control techniques such as output
regulation or disturbance rejection.

It is worth to mention that the described viability approach and numerical method can be used in
various applications to assess the quality of controls. Future work will be focused on coupling of the
control-based models of cerebral autoregulation with models of cerebral vascular systems accounting
for peculiarities of the immature brain (see e.g. [33]).
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