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Abstract: The growth of the species population is greatly influenced by seasonally varying environ-
ments. By regarding the maturation age of the species as a periodic developmental process, we propose
a time periodic and diffusive model in bounded domain. To analyze this model with periodic delay,
we first define the basic reproduction ratio R0 of the spatially homogeneous model and then show that
the species population will be extinct when R0 ≤ 1 while remains persistent and tends to periodic
oscillation if R0 > 1. Finally, combining the comparison principle with the fact that solutions of the
spatially homogeneous model are also solutions of our model subject to Neumann boundary condition,
we establish the global dynamics of a threshold type for PDE model in terms of R0.
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1. Introduction

Structured population models can be used to describe the interaction of different population com-
munities in such diverse fields as demography, epidemiology, ecology, etc [1]. One of the most im-
portant structuring variables in population dynamics is the chronological age. It reflects the reproduc-
tion and survival capabilities among individuals [2]. The earliest age-structured models dated back
to the pioneering works of Sharpe and Lotka [3] and M’Kendrick [4]. Since then, various types of
age-dependent models have been developed and studied, along with many generalizations (see, e.g.,
[2, 5, 6, 7, 8, 9, 10, 11, 12] and references therein).

In the real world, the dynamics of many populations is greatly affected by seasonally varying en-
vironmental factors, in particular, the weather conditions [8]. For example, during one year period,
the birth rate may be high in spring and summer when the humidity and temperature are appropriate
for the breeding of species and low in winter due to low temperature and dry weather [6]. Therefore,
formulating seasonally forced mathematical models is a more effective way for describing population
dynamics. In this paper, we will construct a time periodic and diffusive model by taking into account
periodic birth, death and maturation rate by age.
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In modeling the dynamics of the species with age-structure, the general approach is to divide the
population into two stages by age: immature and mature, with the time delay being the maturation
period [11]. Since the maturation age is determined by seasonally varying weather conditions, we will
use a time dependent positive number τ(t) to describe the duration from newborn to being adult. That
is, an individual at time t becomes mature only if its age exceeds τ(t). Within each age group, all
individuals have the same behavior. Mathematically, we make the following assumptions for τ(t):

(B1) τ(t) is a C1 periodic function in [0,+∞) with the period T , being one year.
(B2) t − τ(t) is strictly increasing in t, that is, τ′(t) < 1.

The assumption (B1) is described as above. The assumption (B2) is well-understood in [10], namely,
“juveniles cannot reach maturation before those born ahead of them since the developmental rate
depends only on time”. For more explanations on periodic delay τ(t), the reader further refer to [8, 10,
12] and their references.

Our model to be formulated is a time periodic and reaction-diffusion equation (see the model equa-
tion (2.5) in the next section). The emergence of periodic delay τ(t) in (2.5) makes dynamics analysis
become a challenge. Currently, there is an increasing attention for such kind of models. Wu et al. [12]
constructed a stage-structured population model by considering the interstadial development durations
as time-dependent maturation delays. Although they defined the basic reproduction ratio R0 for the
model, they didn’t provide the mathematical analysis of threshold dynamics with respect to R0. The
difficulty lies in how to deal with the periodic delays since the general theory of functional differential
equation is not directly used. Fortunately, Lou and Zhao [8] developed an effective theoretical approach
in studying the global dynamics of a host-parasite interaction model subject to seasonal effects. The
basic idea is to first choose a suitable phase space on which a periodic semiflow can be defined, and
then apply the theory of monotone dynamical systems. Further developments and applications for this
approach can be found in recent works [2, 13, 14, 15, 16]. Our approach in the present study is also
highly motivated by [8].

This work is organized as follows. Section 2 devotes to deriving the model in the form of a nonlocal
reaction-diffusion equation with periodic delay. In Section 3, the basic reproduction ratio R0 for the
spatially homogeneous model (3.1) is defined, and it is shown that the global asymptotic stability of
zero or the positive periodic state is completely determined by the sign of R0 − 1. In order to lift the
threshold type result for (3.1) to (2.5), Section 4 firstly gives some preliminary results concerning the
well-posedness of (2.5), and then presents the main results on global dynamics. The final is a brief
discussion.

2. Derivation of the model

Let u(t, a, x) denote the population density of the species under consideration at time t ≥ 0, age a ≥ 0
and location x ∈ Ω. Here our focus is on the case of a open bounded Ω ⊂ Rn with smooth boundary
∂Ω. By a standard argument on population with age structure and diffusion, Metz and Diekmann [9]
give

∂u
∂t

+
∂u
∂a

= D(t, a)∆u − d(t, a)u,

where ∆ = ∂2

∂x2
1

+ ∂2

∂x2
2

+ · · · + ∂2

∂x2
n

is the Laplacian operator, and D(t, a) and d(t, a) are the diffusion rate
and the death rate of species of age a at time t, respectively. Then the total matured population M at
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time t and location x is given by

M(t, x) =

∫ +∞

τ(t)
u(t, a, x)da. (2.1)

The density of age +∞ is assumed to be zero, that is, u(t,+∞, x) = 0. Differentiating the both sides of
(2.1) in time leads to

∂

∂t
M(t, x) =

∫ +∞

τ(t)

∂

∂t
u(t, a, x)da − τ′(t)u(t, τ(t), x)

=

∫ +∞

τ(t)

[
−
∂

∂a
+ D(t, a)∆ − d(t, a)

]
u(t, a, x)da − τ′(t)u(t, τ(t), x)

=

∫ +∞

τ(t)
[D(t, a)∆ − d(t, a)] u(t, a, x)da + (1 − τ′(t))u(t, τ(t), x).

(2.2)

To proceed further, we assume that only the mature can reproduce, namely,

u(t, 0, x) = f (t,M(t, x)),

where f (t, ·) is the birth rate at time t. We also suppose that the diffusion and death rates are age-
independent for mature individuals, that is, D(t, a) = DM(t) and d(t, a) = dM(t) for a ∈ [τ(t),+∞).
Then one deduces from (2.2) that

∂M
∂t

= DM(t)∆M − dM(t)M + (1 − τ′(t))u(t, τ(t), x). (2.3)

To close the system, one needs to calculate u(t, τ(t), x). For this purpose, fix s ≥ 0 and let V s(t, x) =

u(t, t − s, x) for s ≤ t ≤ s + τ(t). Then

∂

∂t
V s(t, x) =

∂

∂t
u(t, a, x)

∣∣∣∣
a=t−s

+
∂

∂a
u(t, a, x)

∣∣∣∣
a=t−s

= D(t, t − s)∆V s(t, x) − d(t, t − s)V s(t, x),

with V s(s, x) = u(s, 0, x) = f (s,M(s, x)). It follows that

V s(t, x) = e−
∫ t

s d(ξ,ξ−s)dξ
∫

Ω

Γ

(∫ t

s
D(ξ, ξ − s)dξ, x, y

)
V s(s, y)dy,

where Γ is the Green function associated with ∆ and the Neumann boundary condition. Biologically,
this implies that all populations remain confined to the domain Ω for all time.

Setting s = t − τ(t), we have, for t ≥ τ(t),

u(t, τ(t), x) = V t−τ(t)(t, x) = b(t)
∫

Ω

Γ(a(t), x, y) f (t − τ(t),M(t − τ(t), y))dy, (2.4)

where

a(t) =

∫ t

t−τ(t)
D(ξ, ξ − t + τ(t))dξ, b(t) = e−

∫ t
t−τ(t) d(ξ,ξ−t+τ(t))dξ.
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Substituting (2.4) into (2.3), we obtain the following reaction-diffusion equation:

∂M
∂t

= DM(t)∆M − dM(t)M

+ (1 − τ′(t))b(t)
∫

Ω

Γ(a(t), x, y) f (t − τ(t),M(t − τ(t), y))dy, t > 0, x ∈ Ω,

∂M
∂ν

= 0, t > 0, x ∈ ∂Ω,

(2.5)

where ∂
∂ν

denotes the differentiation along the unit outward normal ν to ∂Ω. In model (2.5), D(t, ·) ≥
0, d(t, ·) ≥ 0,DM(t) > 0, dM(t) > 0 and f (t, ·) ≥ 0 are all C1 functions and T -periodic in time t.
Moreover, we assume

(H1) f (t, 0) = 0, ∂2 f (t, u) > 0 for all t ≥ −τ̂ and u ≥ 0, where τ̂ = maxt∈[0,T ] τ(t);
(H2) f (t, v) is strictly subhomogeneous in v in the sense that for any λ ∈ (0, 1) f (t, λv) > λ f (t, v) for all

t ≥ −τ̂ and v > 0;
(H3) there exists positive number L > 0 such that

−dM(t)M + (1 − τ′(t))b(t) f (t − τ(t),M) ≤ 0

for all t ≥ 0 and M ≥ L.

Assumption (H1) represents the case that when the population size is small, the birth rate increases
with respect to the size, and the birth rate is zero if there is no adult population. (H2) implies that
f (t, u) ≤ ∂2 f (t, 0)u for all t ≥ −τ̂ and u ≥ 0, that is, the birth rate is bounded above by its linearization
at zero. As mentioned in [17], (H3) means that the population growth is density dependent and is
negative when the density is over L, and hence, the population will not explode. In the biological
literature, one of typical examples is the linear birth rate f (t, u) = p(t)u with p > 0 being T -periodic in
time. It describes the circumstance in which the resources are plentiful.

Here we should mention that the paper [10] has studied the propagation dynamics of (2.5) in un-
bounded domain, but not considered the bounded case. The motivation of the current study stems from
this.

3. Dynamics of the spatially homogeneous model

In this section, we consider the spatially homogeneous model corresponding to (2.5):

dM
dt

= −dM(t)M + (1 − τ′(t))b(t) f (t − τ(t),M(t − τ(t))). (3.1)

We first establish the well-posedness of (3.1), then define the basic reproduction ratio R0 of (3.1), and
finally investigate the global dynamics of (3.1) in terms of R0.

3.1. Well-posedness and the basic reproduction ratio

To address the well-posedness of (3.1), we introduce some notations. Recalling that τ̂ =

maxt∈[0,T ] τ(t), then let X := C([−τ̂, 0],R) and X+ := C([−τ̂, 0],R+). For φ ∈ X, denote ‖φ‖ =
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max−τ̂≤θ≤0 |φ(θ)|. Then, (X, X+) is an ordered Banach space with X+ being normal and Int(X+) , ∅.
For any continuous function u(·) ∈ C([−τ̂, σ),R), where σ > 0, we define ut ∈ X, t ∈ [0, σ), by

ut(θ) = u(t + θ), θ ∈ [−τ̂, 0].

Then we have the following preliminary result for (3.1).

Lemma 3.1. For any ϕ ∈ X+, (3.1) has a unique nonnegative and bounded solution u(t, ϕ) with u0 = ϕ

on [0,+∞).

Proof. For any ϕ ∈ X+, we define

f̃ (t, ϕ) = −dM(t)ϕ(0) + (1 − τ′(t))b(t) f (t − τ(t), ϕ(−τ(t))).

One easily sees that f̃ (t, ϕ) is continuous and Lipschitz in ϕ on each compact subset of X+. It follows
from [18, Theorem 2.2.3] that (3.1) has a unique solution u(t, ϕ) on its maximal interval [0, σϕ) of
existence with u0 = ϕ.

In view of (H3), for any given ρ ≥ 1, denote [0, ρL]X be the order interval in X by

[0, ρL]X := {φ ∈ X : 0 ≤ φ(θ) ≤ ρL,∀θ ∈ [−τ̂, 0]}.

If ϕ ∈ [0, ρL]X and ϕ(0) = 0(ϕ(0) = ρL), then f̃ (t, ϕ) ≥ 0( f̃ (t, ϕ) ≤ 0). By [19, Theorem 5.2.1 and
Remark 5.2.1], one deduces that [0, ρL]X is positively invariant for (3.1). Since ρ can be chosen as
large as we wish, one obtains the positivity and boundedness of solutions in X+. Hence, σϕ = +∞, as
desired. �

Now we apply the recent theory developed in [20] to introduce the basic reproduction ratio for (3.1).
It should be pointed out that the general definition of R0 proposed in [21] can also be used for (3.1).
However, its derivation is technical. For convenience, we directly use the method in [20]. Linearizing
(3.1) at its zero solution yields a T -periodic linear delay equation

dv
dt

= −dM(t)v + (1 − τ′(t))b(t)∂2 f (t − τ(t), 0)v(t − τ(t)). (3.2)

Define β(t) = (1 − τ′(t))b(t)∂2 f (t − τ(t), 0) and let

F(t)φ = β(t)φ(−τ(t)), V(t) = dM(t).

One easily sees that F(t) and V(t) satisfy assumptions (H1) and (H2) given in [20]. Let CT be the
Banach space of all T -periodic functions from R to R, equipped with the maximum norm and the
positive cone C+

T := {u ∈ CT : u(t) ≥ 0,∀t ∈ R}. The next generation operator L on CT is defined as

[Lw](t) =

∫ +∞

0
e−

∫ t
t−s dM(η)dηβ(t − s)w(t − s − τ(t − s))ds, t ∈ R,w ∈ CT .

Then we denote the basic reproduction ratio as the spectral radius of L, i.e. R0 = r(L).
For any given t ≥ 0, let P̂(t) be the time-t map of (3.2) on X, that is, P̂(t)φ = v̄t(φ), where v̄(t, φ)

is the unique solution of (3.2) with v̄0 = φ ∈ X. Then P̂ := P̂(T ) is the Poincaré map associated with
(3.2). Let r(P̂) be the spectral radius of P̂. By [20, Theorem 2.1], we have the following observation.

Lemma 3.2. R0 − 1 has the same sign as r(P̂) − 1.
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3.2. The global dynamics

The basic approach to studying the threshold dynamics of (3.1) is to use the theory of monotone
and subhomogeneous (see [22, Sect. 2.3]). To this end, we define a new phase space on which (3.1)
can generate an eventually strongly monotone periodic semiflow. Let

Y := C([−τ(0), 0],R), Y+ := C([−τ(0), 0],R+).

Then we have the following result.

Lemma 3.3. For any φ ∈ Y+, (3.1) admits a unique nonnegative solution M(t, φ) on [0,+∞) with
M0 = φ, where for t ≥ 0, Mt is defined by

Mt(θ) = M(t + θ), θ ∈ [−τ(0), 0].

Proof. Let τ̄ = mint∈[0,T ] τ(t). For any t ∈ (0, τ̄], since t − τ(t) is strictly increasing, we have

−τ(0) ≤ t − τ(t) ≤ τ̄ − τ(τ̄) ≤ τ̄ − τ̄ = 0,

and hence, M(t − τ(t)) = φ(t − τ(t)). As a result, we get the following equation for t ∈ (0, τ̄]:

dM
dt

= −dM(t)M + (1 − τ′(t))b(t) f (t − τ(t), φ(t − τ(t))).

For given φ ∈ Y+, the solution M(t) of the above equation exists on (0, τ̄]. In other words, we obtain
the value of ψ(θ) = M(θ) for θ ∈ [−τ(0), τ̄].

For any t ∈ (τ̄, 2τ̄], we have

−τ(0) ≤ τ̄ − τ(τ̄) ≤ t − τ(t) ≤ 2τ̄ − τ(2τ̄) ≤ 2τ̄ − τ̄ = τ̄,

which implies M(t−τ(t)) = ψ(t−τ(t)). Solving the following ordinary differential equation on t ∈ (τ̄, 2τ̄]
with M(τ̄) = ψ(τ̄):

dM
dt

= −dM(t)M + (1 − τ′(t))b(t) f (t − τ(t), ψ(t − τ(t))),

we then get the solution M(t) on (τ̄, 2τ̄]. Extending this procedure to (nτ̄, (n + 1)τ̄] for n = 2, 3, · · · .
Then one can derive that for any φ ∈ Y+, the solution M(t, φ) of (3.1) exists uniquely for all t ≥ 0. �

Remark 3.1. By the uniqueness of solutions in Lemmas 3.1 and 3.3, it follows that for any ϕ ∈ X+

and φ ∈ Y+ with ϕ(θ) = φ(θ),∀θ ∈ [−τ(0), 0], then u(t, ϕ) = M(t, φ),∀t ≥ 0, where u(t, ϕ) and M(t, φ)
are solutions of (3.1) satisfying u0 = ϕ and M0 = φ, respectively.

Define Q(t) as the solution map of (3.1) on the space Y , that is,

Q(t)φ = Mt(φ), t ≥ 0, φ ∈ Y,

where M(t, φ) is the unique solution of (3.1) with M0 = φ ∈ Y . By arguments similar to those in [8,
Lemma 3.5], we can show that Q(t) is a T -periodic semiflow on Y+ in the sense that (i) Q(0) = I; (ii)
Q(t + T ) = Q(t) ◦ Q(T ),∀t ≥ 0; (iii) Q(t)ϕ is continuous in (t, ϕ) ∈ [0,+∞) × Y+.

Lemma 3.4. The periodic semiflow Q(t) is eventually strongly monotone and strictly subhomogeneous.
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Proof. Noting that ∂2 f (t, v) > 0, a simple comparison argument on each interval (nτ̄, (n + 1)τ̄], n ∈ N,
implies that for each t > 0, Q(t) : Y+ → Y+ is monotone. Next we show that Q(t) is eventually strongly
monotone. In view of Lemma 3.1 and Remark 3.1, M(t) is bounded on [0,+∞), and hence, there is a
real number q > 0 such that Mt ∈ [0, q]Y for all t ≥ 0. Due to this fact, we can choose a large number
K > maxt∈[0,T ] dM(t) such that for each t ∈ R+, g(t, v) := −dM(t)v + Kv is increasing in v ∈ [0, q]. It then
follows that M(t) satisfies the following integral equation:

M(t) =e−KtM(0) +

∫ t

0
e−K(t−s)g(s,M(s))ds

+

∫ t

0
e−K(t−s)(1 − τ′(s))b(s) f (s − τ(s),M(s − τ(s)))ds, t ≥ 0.

(3.3)

Since m(t) := t − τ(t) is increasing in t ∈ R+, one sees that [−τ(0), 0] ⊂ m([0, τ̂]). Let φ > ψ, that is,
φ ≥ ψ but φ , ψ. Then there exists an η ∈ [−τ(0), 0] such that φ(η) > ψ(η). Therefore, we can deduce
from (3.3) that z(t, φ) > z(t, ψ) for all t > τ̂, and hence, zt(φ) > zt(ψ), t > τ̂ + τ(0). This shows that Q(t)
is strongly monotone whenever t > τ̂ + τ(0).

For any given φ � 0 in Y and λ ∈ (0, 1), denote x(t) = λM(t, φ) and y(t) = M(t, λφ). From the
proof in Lemma 3.3, we see that x(t), y(t) > 0 for t ≥ 0. Moreover, for all θ ∈ [−τ(0), 0], we have
x(θ) = λφ(θ) = y(θ). For t ∈ [0, τ̄], one immediately finds

−τ(0) ≤ t − τ(t) ≤ τ̄ − τ̄ = 0,

and hence, y(t − τ(t)) = x(t − τ(t)) = λφ(t − τ(t)). Then

dx
dt

= −dm(t)x + λ(1 − τ′(t))b(t) f (t − τ(t),M(t − τ(t)))

< −dm(t)x + (1 − τ′(t))b(t) f (t − τ(t), x(t − τ(t))) =: h(t, x), t ∈ [0, τ̄],

which implies
dx
dt
− h(t, x) < 0 =

dy
dt
− h(t, y), t ∈ [0, τ̄].

Note that x(0) = y(0). By [23, Theorem 4], we then obtain x(t) < y(t) for t ∈ (0, τ̄]. By similar
arguments for any interval (nτ̄, (n + 1)τ̄], n ∈ N+, we can get x(t) < y(t) for all t > 0, that is, M(t, λφ) >
λM(t, φ) for all t > 0. Therefore, Mt(λφ) � λMt(φ) for all t > τ(0), which indicates that for each
t > τ(0), Q(t) is strictly subhomogeneous. �

Theorem 3.5. The following statements are valid:

(i) If R0 ≤ 1, then zero solution is globally asymptotically stable for (3.1) in Y+.
(ii) If R0 > 1, then (3.1) admits a unique positive T-periodic solution M∗(t) which is globally asymp-

totically stable in Y+ \ {0}.

Proof. Choose an integer n0 such that n0T > τ̂+ τ(0). Then Qn0 := Q(n0T ) is a strongly monotone and
strictly subhomogeneous map on Y+. By [22, Theorem 2.3.4 and Lemma 2.2.1] as applied to Qn0 , we
have the following threshold type result:

(a) If r(DQn0(0)) ≤ 1, then zero solution is globally asymptotically stable for (3.1) in Y+.
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(b) If r(DQn0(0)) > 1, then (3.1) admits a unique positive n0T -periodic solution M∗(t) which is
globally asymptotically stable in Y+ \ {0}.

For any given t ≥ 0, let P(t) be the solution map of (3.2) on Y , that is, P(t)φ = vt(φ), where v(t, φ) is
the unique solution of (3.2) with v0 = φ ∈ Y . Then P := P(T ) is the Poincaré map associated with
(3.2). By the same arguments as in [8, Lemma 3.8], we get r(P̂) = r(P). This together with Lemma
3.2 yields sign(R0 − 1) = sign(r(P) − 1). Noting that r(DQn0(0)) = r(P(n0T )) = [r(P)]n0 , we see that

sign(r(DQn0(0)) − 1) = sign(r(P) − 1) = sign(R0 − 1).

It remains to prove that M∗(t) is also a T -periodic solution of (3.1). Let ψ∗ = M∗
0 ∈ Y and Q := Q(T ).

Then we have
Qn0(Qψ∗) = Q(Qn0ψ∗) = Q(ψ∗).

The uniqueness of the positive fixed point of Qn0 implies that Qψ∗ = ψ∗, and hence, M∗(t) = M(t, ψ∗)
is a T -periodic solution of (3.1). �

4. Dynamics of model (2.5) in terms of R0

In this part, we first establish the well-posedness of (2.5), and then with the help of Theorem 3.5, we
show that for model (2.5), R0 is also a threshold parameter which determines the uniform persistence
or extinction of the species.

Let X := C(Ω̄,R) be the Banach space of continuous functions from Ω̄ to R with the supremum
norm ‖ · ‖X, and let X+ := {ϕ ∈ X : ϕ(x) ≥ 0,∀x ∈ Ω̄}. It is easily seen that X+ is a closed cone of
X and X is a Banach lattice under the partial ordering induced by X+. Let C := C([−τ(0), 0],X) be
the Banach space of continuous functions from [−τ(0), 0] into X with the supremum norm ‖ · ‖ and let
C+ := C([−τ(0), 0],X+). Then C+ is a closed cone of C. As usual, we identify an element φ ∈ C as a
function from [−τ(0), 0] × Ω̄ into R defined by φ(θ, x) = φ(θ)(x).

Recall that τ̄ = mint∈[0,T ] τ(t). For any ϕ ∈ C+, we can solve (2.5) on (0, τ̄] × Ω̄ and then (τ̄, 2τ̄] × Ω̄,

etc. However, this will lead to an question: the smoothness of M(t, x) on (0,+∞) × Ω̄. So instead we
will use the following abstract approach.

Choose the phase space W := C([−τ̂, 0],X). The nonnegative cone of W is denoted by W+ := {φ ∈
W : φ(θ) ∈ X+,∀θ ∈ [−τ̂, 0]}. For any continuous function z(·) : [−τ̂, d) → X, where d > 0, we define
zt ∈ W, t ∈ [0, d), by zt(θ) = z(t + θ), θ ∈ [−τ̂, 0]. Let U(t, s) : X → X, t ≥ s, be the evolution operator
determined by the following reaction-diffusion equation{

∂w
∂t = DM(t)∆w − dM(t)w, t > 0, x ∈ Ω
∂w
∂ν

= 0, t > 0, x ∈ ∂Ω.

Since DM(t) and dM(t) are T -periodic in t, [24, Lemma 6.1] implies that U(t + T, s + T ) = U(t, s) for
(t, s) ∈ R2 with t ≥ s. Moreover, for (t, s) ∈ R2 with t > s, U(t, s) is compact and strongly positive.
Define F : [0,+∞) ×W+ → X by

F(t, φ) := (1 − τ′(t))b(t)
∫

Ω

Γ(a(t), ·, y) f (t − τ(t), φ(−τ(t), y))dy.
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Then (2.5) with the following initial condition

z(θ, x) = φ(θ, x), (θ, x) ∈ [−τ̂, 0] × Ω̄,

can be rewritten as an integral equation

z(t, ·, φ) = U(t, 0)φ(0, ·) +

∫ t

0
U(t, s)F(s, zs)ds, t ≥ 0, φ ∈ W+.

Such a solution is called a mild solution of (2.5).

Lemma 4.1. For any φ ∈ W+, (2.5) has a unique mild solution z(t, ·, φ) with z0 = φ and zt(·, ·, φ) ∈ W+

for all t > 0, and z(t, ·, φ) is a classic solution when t > τ̂.

Proof. Firstly, we show the local existence of the unique mild solution. It is obvious that F(t, φ) is
locally Lipschitz in φ. It suffices to show

lim
h→0+

dist(φ(0, ·) + hF(t, φ),X+) = 0, (t, φ) ∈ [0,+∞) ×W+. (4.1)

For any (t, φ) ∈ [0,+∞) ×W+ and h > 0, we have

φ(0, x) + hF(t, φ)(x)

= φ(0, x) + h(1 − τ′(t))b(t)
∫

Ω

Γ(a(t), ·, y) f (t − τ(t), φ(−τ(t), y))dy

≥ φ(0, x), t ≥ 0, x ∈ Ω̄.

The above inequality implies that (4.1) holds. Consequently, by [25, Corollary 4] with K = X+ and
S (t, s) = U(t, s), (2.5) has a unique non-continuable mild solution z(t, ·, φ) with z0 = φ and zt(·, ·, φ) ∈
W+ on [0, tφ), where tφ ≤ +∞. Moreover, by the analyticity of U(t, s), s, t ∈ R, t > s, z(t, ·, φ) is a
classical solution when t > τ̂.

Due to (H3), it is easy to see that for any q > 1, qL is an upper solution of (2.5). This implies that
solutions of (2.5) are uniformly bounded, and hence, tφ = +∞. �

Remark 4.1. Let M(t, ·, ϕ) be the solution of (2.5) with M0 = ϕ ∈ C+, where Mt is defined by
Mt(θ, x, ϕ) = M(t + θ, x, ϕ), (θ, x) ∈ [−τ(0), 0] × Ω̄. By the uniqueness of solutions, one deduces

z(t, ·, φ) = M(t, ·, ϕ), t ≥ 0,

provided that φ ∈ W+ and ϕ ∈ C+ satisfy φ(θ, ·) = ϕ(θ, ·),∀θ ∈ [−τ(0), 0]. Hence, according to Lemma
4.1, the regularity of z(t, ·, φ) implies that of M(t, ·, ϕ).

Following the procedure in [20], we can also define the basic reproduction ratio R̃0 for (2.5). Ob-
serve that the coefficients in (2.5) are independent of spatial variable x, and hence R̃0 = R0. Now we
are in a position to prove the global dynamics of (2.5) in terms of R0.

Theorem 4.2. The following results hold:

(i) If R0 ≤ 1, then zero solution is globally asymptotically stable for (2.5) in C+.
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(ii) If R0 > 1, then (2.5) admits a unique positive T-periodic solution M∗(t) which is globally asymp-
totically stable in C+ \ {0}.

Proof. Note that solutions of (3.1) are also solutions of (2.5) subject to Neumann boundary condition.
Thus, Theorem 3.5, together with the standard comparison argument, implies that the threshold result
holds true for (2.5). �

To finish this section, we remark that after this paper has been accepted for publication, we got
knowledge of Liu’s doctoral thesis [26] which studied the similar model by using different methods
from ours.

5. Discussion

Seasonal variations in temperature, rainfall and resource availability are the pervasive external en-
vironmental factors affecting the development, abundance and behaviour of single-species population.
In order to explore the effects of seasonality on the evolution of an age-structured species, we have
formulated a reaction-diffusion model with periodic delay by considering the maturation age as a sea-
sonal developmental rate. For the spatially homogeneous model (3.1), we have showed that the basic
reproduction ratio R0 acts as a threshold parameter in determining the global dynamics, that is, the zero
solution of (3.1) is globally asymptotically stable if R0 ≤ 1, and (3.1) has a globally asymptotically
stable positive periodic solution when R0 > 1. Here we remark that the introduction of periodic delay
brings challenges for our analysis. This is because (3.1) cannot generate a periodic semiflow on the
space X := C([−τ̂, 0],R), and hence the theory of monotone and subhomogeneous semiflows is not ap-
plied. For this reason, we have defined a new space Y := C([−τ(0), 0],R) and showed that the solution
semiflow is eventually strongly monotone and strictly subhomogeneous on this space. Furthermore,
we have extended the threshold type result for (3.1) to (2.5).

This paper is devoted to the mathematical analysis of the model and simulations have not been
carried out. However, the following simulations are interesting: (1) the long-term behavior of solutions
with respect to R0; (2) the influences of some key parameters in model (2.5) on R0; and (3) compare
the difference of R0 values between the use of τ(t) and its average [τ] :=

∫ T

0
τ(t)dt/T . One easily finds

that one key point in simulations is the numerical computation of R0, which can be realized by the
method developed in [27, Remark 3.2].

There are several questions for further study. For instance, the monotonicity condition in model
(2.5) is too restrictive. A natural question is what if this condition is not satisfied for (2.5)? Another
possible project, as mentioned in [10], how to formulate the model when time and spatial hetero-
geneities are taken into account and further how to analyze the dynamics in bounded or unbounded
domain. We leave these interesting yet challenging problems for future investigation.

Acknowledgments

We are very grateful to the anonymous referee for careful reading and helpful comments which
led to improvements of our original manuscript. This research was supported by the NSF of Shaanxi
Province of China (No. 2017JM1001) and the NSF of China (No. 11671315).

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2293–2304



2303

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

References
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