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Abstract: Calculation of final size of an epidemic model offers a useful estimation for the impact
of an epidemic. Despite its usefulness, the majority of practical applications focuses on the classical
Kermack McKendrick model for final size calculation. Estimation of final size for different types of
epidemics such as vector-transmitted infection is a forthcoming target. In this paper, we derive an
explicit form of a final size equation for a vector-transmitted epidemic model. Numerical calculation
of a final size equation revealed the existence of a threshold curve which separates a region into two
distinct bistable sub-regions if infection induced death is present. In other words, an epidemic outcome
can be qualitatively different depending on the initial state of an epidemic.

Keywords: vector-transmitted infection; epidemic model; final size equation; basic reproduction
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1. Introduction

Threatening vector-transmitted epidemics such as Malaria, Zika virus infection and Dengue infec-
tion are mediated by mosquitoes. Demand for practical intervention to prevent vector-transmitted in-
fectious disease has been increasing in non-tropical countries where an increase of incidences has been
reported possibly due to elevated global transportation and global warming. Quantitative indicator for
epidemics is indispensable for estimating the impact of epidemics.

Mathematical models of vector-transmitted infectious disease have been applied not only to
understand qualitative behavior but also to define quantitative indicators of an epidemic process
[1, 2, 3, 4, 5, 6, 7, 8]. The number of sub-population experiencing infection during an epidemic
process, referred to as final size, is a useful indicator to estimate the impact of epidemics. The final
size of a susceptible population can be numerically computed for the classical Kermack McKendrick
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equation [9, 10, 11, 12] (see Appendix 4 for a brief description and derivation). In a practical setting,
final size calculation has been used to estimate possible damage quantitatively and to prepare possible
prevention.

Despite the usefulness of final size calculation, application of final size calculation is limited to
a specific class of epidemic models such as the classical Kermack McKendrick model. Although
some extensions to increase the usability of final size calculation have been proposed, the majority of
practical applications focus only on the classical Kermack McKendrick model. To our best knowledge,
however, final size equations for vector transmission epidemic models have not been reported.

In this paper, we consider a vector-transmitted epidemic model and derive a final size equation. For
comparison, we derive final size equations for several epidemic models. Our focus includes epidemic
models with mass-action type/standard incidence transmission rate or vector transmission. The organi-
zation of the present paper is as follows. In the next section, we propose a vector-transmitted epidemic
model with standard incidence rate. For the main model, quasi-steady state approximation is applied to
obtain a simpler model, enabling further mathematical analysis and derivation of a final size equation.
One of significant findings is the presence of a threshold curve which determines the existence of two
bistable distinct final sizes when infection induced death exists.

2. Model formulation

We consider the following system of differential equations:

dS
dt

= −β1
S
N

W,

dI
dt

= β1
S
N

W − γI,

dR
dt

= γI,

dV
dt

= g − β2
I
N

V − µV,

dW
dt

= β2
I
N

V − µW,

(2.1)

where variables in the human compartments S , I and R represent the number of susceptible, infective
and recovered individuals, respectively. Note that the total population N = S + I + R satisfies dN

dt =

0: the population is closed. Parameters in the human compartment β1 and γ denote transmission
coefficient from infective mosquito to susceptible human, and recovery rate. Similarly, variables V
and W represent the number of susceptible and infective mosquitoes. Parameters g, β2 and µ denote
constant reproduction rate, transmission coefficient from infective human to susceptible mosquito, and
death rate of mosquitoes, respectively. In model (2.1), infection from mosquitoes to humans is given
by β1

S
N W. Similarly, infection from humans to mosquitoes is given by β2

I
N V . Let d denote the average

death rate of humans and ε := d
µ
. Hereafter we assume that the death rate of mosquitoes is higher than

that of humans, that is, ε = d
µ
� 1. This assumption leads to apply a quasi-steady state approximation

(QSSA) to model (2.1). QSSA is a convenient approximation which is widely used to reduce the
dimension of a dynamical system when a variable representing fast dynamics is included. By QSSA,
variables representing fast dynamics can be ignored from the main system (a concrete example can be

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2219–2232



2221

found in [13]). In our case, the fourth and fifth equations of (2.1) are rewritten as

dV
dt

=
dW
dt
' 0. (2.2)

By solving the fourth equation with respect to V(t),

V(t) '
g

β2
I(t)
N + µ

.

Futhermore, by substituting this into the fifth equation,

β2
I(t)
N

g

β2
I(t)
N + µ

− µW(t) ' 0.

Hence we obtain that

W(t) '
β2gI(t)

µ2N + β2µI(t)
. (2.3)

By substituting (2.3) into the first and second equations of (2.1), we obtain that

dS
dt

= −β1
S
N

β2gI
µ2N + β2µI

,

dI
dt

= β1
S
N

β2gI
µ2N + β2µI

− γI,

dR
dt

= γI,

(2.4)

where the force of infection is β1
β2gI

µ2N+β2µI . Model (2.4) can be interpreted as a vector transmission
epidemic model with a nonlinear incidence rate. In the subsequent section, we consider two cases
whether infectives can recover or not (i.e., die). Model (2.4) corresponds to a vector-transmitted epi-
demic model with recovery. Hereafter, we refer to model (2.4) as recovery model. Dynamics of model
(2.4) with β1 = β2 = 0.01, g = 1000, µ = 1

30 and γ = 0.2 is summarized in the caption of Figure 1.

3. Comparison of final size equations

3.1. Recovery model

In this subsection, we derive the final size equation for recovery model (2.4). It follows from the
first and second equations of (2.4) that

dS
dt

+
dI
dt

= −γI. (3.1)

By solving the first equation of (2.4) with respect to I, we obtain that

I = −
µ2N2 dS

dt

β1β2gS + β2µN dS
dt

. (3.2)
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Figure 1. Dynamics of recovery model (2.4). Blue, red and green solid lines represent
susceptible, infective, and recovered individuals, respectively. Left panel: S (0) = 199, I(0) =

1, R(0) = 0. S always decreases while I increases temporally and finally converges to 0.
Right panel (log-scale): S (0) = 499, I(0) = 1, R(0) = 0. S and I monotonically decrease.

Then (3.1) is rewritten as

dS
dt

+
dI
dt

= γ
µ2N2 dS

dt

β1β2gS + β2µN dS
dt

=
γµN
β2

d
dt ln S

β1g
µN + d

dt ln S

=
γµN
β2

1 − 1

1 −
(
−
µN
β1g

d
dt ln S

) ,
where

0 ≤ −
µN
β1g

d
dt

ln S = β2
I

µN + β2I
<
β2I
β2I

= 1. (3.3)

Hence
∣∣∣∣− µN

β1g
d
dt ln S

∣∣∣∣ < 1. By applying a power series expansion, we obtain that

1 −
1

1 −
(
−
µN
β1g

d
dt ln S

) = 1 −
∞∑

n=0

(
−
µN
β1g

d
dt

ln S
)n

= 1 −
1 − µN

β1g
d
dt

ln S +

(
µN
β1g

d
dt

ln S
)2

−

(
µN
β1g

d
dt

ln S
)3

+ · · ·


=

µN
β1g

d
dt

ln S −
(
µN
β1g

d
dt

ln S
)2

+

(
µN
β1g

d
dt

ln S
)3

− · · ·

=

∞∑
n=1

(−1)n+1
(
µN
β1g

d
dt

ln S
)n

.
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Hence
dS
dt

+
dI
dt

=
γµN
β2

∞∑
n=1

(−1)n+1
(
µN
β1g

d
dt

ln S
)n

. (3.4)

By integrating both sides of (3.4) from 0 to ∞ with respect to t, we obtain the following final size
equation:

S (∞) = N +
γµN
β2

∫ ∞

0

∞∑
n=1

(−1)n+1
(
µN
β1g

d
dt

ln S
)n

dt, (3.5)

where S (0) + I(0) = N. Note that I(∞) must satisfy I(∞) = 0. In fact, R(t) → ∞ as t → ∞ when
I(∞) > 0, which contradicts to S (t) + I(t) + R(t) = N (constant).

We show that the final size equation for the classical Kermack McKendrick equation can be obtained
as a first order approximation of (3.5) for sufficiently large N. In fact, if N is large, then

∞∑
n=1

(−1)n+1
(
µN
β1g

d
dt

ln S
)n

'
µN
β1g

d
dt

ln S .

Then final size equation (3.5) is reduced to

S (∞) ' N +
γµ2N2

β1β2g
ln

S (∞)
S (0)

= N +
N
R0

ln
S (∞)
S (0)

. (3.6)

Note that this corresponds to the final size equation for the classical Kermack McKendrick model (see
Appendix 4 for details). First order approximation can be a good estimate for a particular set of pa-
rameters. Even for small total population size such as N = 200, Figure 2 shows a good correspondence
between numerical solutions of (3.6) obtained by the Newton method and numerical simulation results
of recovery model (2.4) for sufficiently large time.

Figure 2. Comparison between numerical computation of (3.6) and simulation of recovery
model (2.4). The horizontal axis represents the total population number N while the vertical
axis represents final size S (∞).
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3.2. Non-recovery model

In this subsection, we consider a situation that no recovered individuals exist. In other words, we
assume that dR

dt = 0 and R(0) = 0 in recovery model (2.4). Then we obtain the following system of
differential equations: 

dS
dt

= −β1
S

S + I
β2gI

µ2(S + I) + β2µI
,

dI
dt

= β1
S

S + I
β2gI

µ2(S + I) + β2µI
− γI,

dR
dt

= 0,R(0) = 0.

(3.7)

For model (3.7), parameter γ can be interpreted as infection induced death rate. Hereafter model (3.7)
is referred to as non-recovery model. Since dS

dt + dI
dt + dR

dt = −γI and R(t) = 0 (t ≥ 0), the total population
S (t) + I(t) + R(t) = S (t) + I(t) = N depends on time and is monotonically decreasing with respect to
time.

The first equation of (3.7) is reduced to the following quadratic equation with respect to I:

(µ2 + β2µ)
dS
dt

I2 +

(
(2µ2 + β2µ)

dS
dt

+ β1β2g
)

S I + µ2S 2 dS
dt

= 0. (3.8)

Define c0, c1 and c2 by 

c0 = (µ2 + β2µ)
dS
dt
,

c1 = (2µ2 + β2µ)
dS
dt

S + β1β2gS ,

c2 = µ2S 2 dS
dt
.

(3.9)

Since dS/dt < 0, c0 < 0 and c2 < 0. Furthermore we can show that c1 > 0. In fact, for any S , I > 0,

dS
dt

= −β1
S

S + I
β2gI

µ2(S + I) + β2µI
> −

β1β2g
2µ2 + β2µ

.

This implies that there exists a possibility for (3.8) to have two positive roots if and only if c2
1 −

4c0c2 > 0. Let us denote a positive root of (3.8) by I+(S (t), dS (t)/dt). By integrating both sides of the
first equation of (3.7) from 0 to∞ with respect to t, we obtain the final size equation for model (3.7):

S (∞) = S (0) − β1

∫ ∞

0

S
S + I+(dS/dt, S )

β2gI+(dS/dt, S )
µ2(S + I+(dS/dt, S )) + β2µI+(dS/dt, S )

dt. (3.10)

Two panels of Figure 3 show numerical simulation results for non-recovery model (3.7) with
β1 = β2 = 0.01, g = 1000, µ = 1

30 , γ = 0.2. Interestingly, the final size differs between two pan-
els. More specifically, S (∞) = 0 on the left panel while S (∞) > 0 on the right panel. By implementing
several numerical simulations, we also find that there exists a threshold curve which separates a whole
region into two sub-regions. In one region, all trajectories of model (3.7) converge to a trivial equi-
librium point at which S (∞) = 0, while each trajectory in another sub-region converges to a different
point on the S -axis at which infectives disappears (see two panels of Figure 4). Although analytical
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Figure 3. Dynamics of non-recovery model (3.7). Left panel: S (0) = 600, I(0) = 150,
R(0) = 0. S always decreases, but I exhibits a temporal peak, and finally both S and I
converge to 0. Right panel: S (0) = 800, I(0) = 150, R(0) = 0. S and I monotonically
decrease, but a fraction of S remains while I converges to 0.

Figure 4. Left panel: trajectories (solid black lines) of non-recovery model (3.7) on S I-
plane. The blue line represents I−nullcline dI

dt = 0. Right panel: Attractive and transient
sub-regions. Any trajectories starting from regions A and E remain staying (attractive) while
trajectories starting from the other regions B, C & D leave within a finite time (transient).
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characterization for the existence of the threshold curve has not been obtained, hereafter we perform
extensive numerical simulations to draw and to figure out the property of a threshold curve.

Let us define S̄ by

S̄ =
β1β2g
γµ2 . (3.11)

Then we show that the basic reproduction number defined for an equilibrium of non-recovery model
(3.7) corresponds to 1 if S (0) = S̄ . In fact, it follows from the second equation of model (3.7) that for
I(0) ≈ 0,

dI
dt

=

(
β1

S (0)
S (0)

β2g
µ2S (0)

− γ

)
I.

Infectives can increase at the initial phase if

β1β2g
µ2S (0)

− γ > 0⇔ S (0) <
β1β2g
γµ2 .

Therefore the basic reproduction number is given by

R0 =
β1β2g
γµ2S (0)

.

The threshold curve, denoted by I = f (S ), is defined as a curve satisfying 0 = f (S̄ ). In other words,
the intersection of the threshold curve and S -axis is point (S̄ , 0). For convenience, we define S̃ with
which I-nullcline takes its maximum value:

S̃ :=
−2β1gµ(β2 + µ) + β1g(β2 + 2µ)

√
µ(β2 + µ)

β2γµ2 . (3.12)

Let L1 (or L2) denote a boundary which defines the interface of A ∪ B and C ∪ D (or D and E),
respectively (see L1 and L2 in Figure 4):

L1 :=
{
(S , I) ∈ R2

+|S = S̃
}
,

L2 :=
{
(S , I) ∈ R2

+|I = f (S )
}
.

(3.13)

Sub-regions A-E are defined by L1, L2 or the inner and outer of I-nullcline as follows:

A :=
{

(S , I) ∈ R2
+|I > 0, β1

S
S + I

β2g
µ2(S + I) + β2µI

− γ ≤ 0, 0 < S ≤ S̃
}
,

B :=
{

(S , I) ∈ R2
+|I > 0, β1

S
S + I

β2g
µ2(S + I) + β2µI

− γ > 0, 0 < S ≤ S̃
}
,

C :=
{

(S , I) ∈ R2
+|I > 0, β1

S
S + I

β2g
µ2(S + I) + β2µI

− γ > 0, S > S̃
}
,

D :=
{

(S , I) ∈ R2
+|I > 0, β1

S
S + I

β2g
µ2(S + I) + β2µI

− γ ≤ 0, S > S̃ , I > f (S )
}
,

E :=
{
(S , I) ∈ R2

+|I > 0, I < f (S )
}
.

(3.14)

To prove that solutions converge to S (∞) > 0 or 0 depending on the initial values, we classify R2
+

into five regions (see the right panel of Figure 4). We introduce the following propositions:
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Proposition 1. dS
dt < 0 for any t < ∞.

Proposition 2. Any trajectories cross I-nullcline horizontally along S -axis if and only if initial condi-
tion is taken in region B, C or D.

Proposition 3. Threshold curve I = f (S ) entirely separates region E and the others.

By Propositions 1-3, we obtain the following observations. If (S (0), I(0)) ∈ A, then any trajectories
remain to stay in A, and tend to trivial equilibrium (0, 0). If (S (0), I(0)) ∈ B, then any trajectories
cross the left part of I-nullcline within a finite time, and finally enter A. Similarly, if (S (0), I(0)) ∈ C,
then any trajectories cross L1 within a finite time, and finally enter B. If (S (0), I(0)) ∈ D, then any
trajectories enter either C or A without crossing L2. Finally, if (S (0), I(0)) ∈ E, then any trajectories
remain in E, and tend to a non-trivial equilibrium point

(
β1β2g
γµ2 + c, 0

)
, where c > 0 is a constant and

depends on (S (0), I(0)).

3.2.1. Explicit final size for less fatal infection model

Although the final size equation for non-recovery model (3.7) is obtained as (3.10), it is difficult to
calculate a final size. Here we impose a feasible assumption for non-recovery model (3.7), and derive
an explicit final size for the simpler model. More precisely, we assume that infection induced death
rate γ is small: γ � 1. Then for sufficiently large t, S (t) + I(t) ' N. This leads to the following
approximation:

β2gI
µ2(S + I) + β2µI

'
(g/µ)I

(µ/β2)N + I
. (3.15)

Whenever I(t) is small enough, we apply a linear approximation to (3.15).

(g/µ)I
(µ/β2)N + I

'
gβ2

µ2N
I. (3.16)

Define β by β := β1β2g
µ2N . Then non-recovery model (3.7) is reduced to

dS
dt

= −β
S

S + I
I,

dI
dt

= β
S

S + I
I − γI,

dR
dt

= 0,R(0) = 0.

(3.17)

Let us refer to model (3.17) as less fatal infection model. Note that model (3.17) has been studied
in [6] in a different context. Two panels in Figure 5 show numerical simulation results. The basic
reproduction number defined for less fatal infection model (3.17) is R0 =

β

γ
, which corresponds to

the classical Kermack McKendrick model (see Appendix 4 for details). Furthermore, I−nullcline is a
straight line which has slope β

γ
− 1 through the origin. In other words, R0 > 1 if and only if the slope

is positive (see Figure 6). From the first and second equations of (3.17),

dS
dt

+
dI
dt

= −γI =
γ(S + I)

β

1
S

dS
dt
. (3.18)
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Figure 5. Dynamics of less fatal infection model (3.17). Left panel: S (0) = 99, I(0) = 1,
R(0) = 0, β = 0.2, and γ = 0.1. S always decreases while I temporally increases, and finally
both S and I converge to 0. Right panel: S (0) = 99, I(0) = 1, R(0) = 0, β = 0.1, and γ = 0.2.
S converges to some positive value S (∞) > 0, while I converges to 0.

Figure 6. Trajectories of less fatal infection model (3.17) on S I plane: Black curves represent
trajectories, and the blue line represents I−nullcline. Left panel: β > γ ⇔ R0 > 1. Right
panel: β < γ ⇔ R0 < 1.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2219–2232



2229

By dividing both sides of (3.18) by S + I, we obtain that

dS
dt + dI

dt

S + I
=
γ

β

d
dt

ln S ⇔
d
dt

ln (S + I) =
γ

β

d
dt

ln S . (3.19)

By integrating both sides of (3.19) from 0 to∞ with respect to t, we have

ln
S (∞) + I(∞)
S (0) + I(0)

=
γ

β
ln

S (∞)
S (0)

⇔ ln
S (∞) + I(∞)
S (0) + I(0)

= ln
(
S (∞)
S (0)

) γ
β

.

Note that an equilibrium state of (3.17) is given by the solution of the following system of equations:
0 = −β

S (∞)
S (∞) + I(∞)

I(∞),

0 = β
S (∞)

S (∞) + I(∞)
I(∞) − γI(∞),

0 = 0.

(3.20)

Hereafter we show that I(∞) = 0 by contradiction. Suppose that I(∞) > 0. By dividing both sides of
the second equation of (3.20) by I(∞),

0 = β
S (∞)

S (∞) + I(∞)
− γ ⇔ 0 = βS (∞) − γ(S (∞) + I(∞)).

It follows from the first equation of (3.20) that γ = 0, which contradicts to the assumption γ > 0. Thus,
I(∞) = 0. Then we obtain that

S (∞)
S (0) + I(0)

=

(
S (∞)
S (0)

) γ
β

⇔ S (∞)1− γβ =
S (0) + I(0)

S (0)
γ
β

for S (∞) > 0. In summary, the explicit form of final size S (∞) is given as follows:

S (∞) =

S (0) + I(0)

S (0)
γ
β

 1
1− γβ

. (3.21)

We also show that (3.21) can hold only if β < γ. In fact, if β ≥ γ, then

S (∞) =

S (0) + I(0)

S (0)
γ
β

 1
1− γβ

< S (0)⇔ S (0) + I(0) < S (0),

which is a contradiction. Since β < γ,

S (∞) =

S (0) + I(0)

S (0)
γ
β

 1
1− γβ

< S (0)⇔ S (0) + I(0) > S (0).

Hence we have S (0) + I(0)

S (0)
γ
β

 1
1− γβ

= S (∞) > 0⇔ β < γ.
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Moreover, by taking contraposition,
S (∞) = 0⇔ β ≥ γ.

In conclusion, the explicit form of the final size S (∞) is given by

S (∞) =


0 if R0 ≥ 1,(

S (0)+I(0)

S (0)
γ
β

) 1
1− γβ if R0 < 1.

(3.22)

This indicates that both susceptible and infective individuals vanish if R0 ≥ 1. By contrast, if R0 < 1,
only a fraction of individuals vanishes (see Figure 6). Note that this result is consistent with numerical
computation results in subsection 3.2.

4. Conclusion

In this paper, we formulate a vector-transmitted epidemic model which describes interactions
among susceptible/infected human individuals and susceptible/infected mosquitoes. By assuming a
fast turnover rate of mosquito life-cycle, quasi-steady state approximation was applied to model (2.1)
to obtain a simpler model. Explicit forms of final size equations were obtained for different epidemic
models. We derived important indicators which characterize epidemics for each epidemic models as
summarized in Table 1. Numerical computation of final size for non-recovery model (3.7) exhibits
a qualitatively distinct threshold phenomenon which is not observed for the classical Kermack McK-
endrick model: there exists a threshold curve which separates the whole region into two sub-regions.
Interestingly, final sizes differ between these two sub-regions. In other words, the initial number of
infectious individuals may be crucial for the epidemic outcome of vector-transmitted infection if infec-
tion induced death occurs.

Table 1. A summary of important indicators for different epidemic models.

KM model Recovery model Non-recovery model Less fatal infection model
I-nullcline S =

γN
β

I =
β1g
γµN S − µN

β2
β1

S
S +I

β2g
µ2(S +I)+β2µI − γ = 0 I =

β

γ
S − 1

R0
β

γ

β1β2g
γµ2N

β1β2g
γµ2S (0)

β

γ

Final size (4.2) (3.5) (3.10) (3.18)
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Appendix

Size equation for the classical Kermack McKendrick model

The classical Kermack and McKendrick model is given by

dS
dt

= −β
S
N

I,

dI
dt

= β
S
N

I − γI,

dR
dt

= γI.

(4.1)
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Definition for variables and parameters of model (4.1) are written in Section 2. Note that the total
population N = S + I + R satisfies dN

dt = 0. The basic reproduction number for model (4.1) is given by

R0 =
β

γ
.

Note that
β > γ ⇔ R0 =

β

γ
> 1.

Moreover, the final size equation for model (4.1) is given by

S (∞) = N +
γN
β

ln
S (∞)
S (0)

= N +
N
R0

ln
S (∞)
S (0)

, (4.2)

where S (0) + I(0) = N. Figure 7 shows several trajectories with different initial conditions. Note that
S (∞) > 0. In other words, there exists no trajectory which converges to a trivial equilibrium point
(S (∞), I(∞)) = (0, 0).

Figure 7. The behavior of solutions of the classical Kermack McKendrick model (4.1) on S I
plane: Black lines represent trajectories, and a green line represents S + I = N, and a blue
line represents I−nullcline: dI

dt = 0.
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