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Abstract: ECG anomaly detection is a necessary approach to detect disease Electrocardiogra-
phy(ECG) signals before the detail diagnosis process in medical field to gauge the health of the human
heart. Nowadays, there are many anomaly detection methods for ECG detection including supervised
learning and unsupervised learning. For supervised learning, it requires the knowledge of expert and
different types of Arrhythmia data for training. However, since the anomalies are less and unknown
in many cases which are difficult to distinguish and be labeled, unsupervised methods are more suit-
able to detect the ECG anomalies. Furthermore, the existing unsupervised learning studies do not take
ECG shape into account where different diseases have different shapes. In this paper, a novel simple
trend aggregate approximation method is proposed, the relative binary trend representation are used to
record the shape feature in original time series and to detect the anomaly heart signals by similarity
comparison. We use the ECG dataset in UCR Time Series Classification Archive to obtain ECG time
series data and the experiment results are assessed by means of sensitivity, specificity, false alarm rate
measures which is robust and promising with high accuracy.

Keywords: similarity measurement; trend distance, electrocardiography; anomaly detection; binary
String

1. Introduction

Anomaly detection is to find different patterns in data which are not due to random deviations and
it is widely used in fields in network intrusion detection [1, 2, 3], fraud detection [4, 5, 6], data leakage
prevention (DLP) [7], disaster warning [8, 9, 10] and so on. Especially in medical field [11, 12, 13],
anomaly detection for ECG stream has been used to detect any time periods of unusual beats, which
is a necessary approach and standard to detect disease ECG signals before diagnosis process. Besides,
there are many types of abnormal ECG signal according to AAMI, and the patients without expert
knowledge are more concerned about whether the ECG is anomaly or not. Therefore, ECG anomaly
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detection has increasingly become a popular task among researchers and practitioners. Observing and
analyzing these ECG changes is the basis for correctly diagnosing abnormal heart rate [14] in ECG
sequences. A typical ECG wave of a normal heartbeat consists of a P wave, a QRS complex and a
T wave, as shown in Figurel. From the perspective of analyzing the ECG data, the QRS complex
contains the most important feature information, with the highest deflection and the shortest duration,
which can provide a lot information for heart detection.
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Figure 1. ECG segment by MIT-BIH 100 with two R waves.

ECG anomaly detection are divided into supervised and unsupervised methods. As for supervised
learning, the existing methods [15, 16, 17] always use normal data to train the model, whereas, the ac-
curacy is extremely depended on the precision of the features extraction and needs a lot of prior knowl-
edge and labels. Compared to the supervised method, unsupervised anomaly detection [18, 19, 20, 21]
is more suitable to ECG detection for considering only the internal structure of the data set. The work
PLR-DTW [22] uses piecewise linear representation to keep important information of an ECG signal
segment while using dynamic time warping to calculate the similarity measure between two signal seg-
ments. PLR transforms time sereis to a continuous, end-to-end line segment to approximate the original
sequence, while DTW calculates the similarity between two time series by extending and shortening
the time series. However, at coarser scales, details are lost in noise with PLR. Huorong Ren at al. [23]
use piecewise aggregate pattern representations (PAPR) based on PAA, and this method divides the
original ECG into several regions with equal probability and counts statistics including number, mean,
variance in each region to form a matrix. HOTSAX [24] finds the distance of non-self matches to its
nearest neighbor and the drawback are obvious that it involves an additional parameter and needs to be
set carefully. As for particular ECG feature, J.L.. Rodriguez-Sotelo at al. [25] preprocess and segment
the ECG based on calculation of QRS complex to find the abnormal Holter Recordings which is strict
to the state of feature selection. Takuya at al. [26] propose a “mother signal” which is the average of
normal subsequences of one period length to speed up the process of anomaly detection.

The representation of time series is of great interest which determines whether there is missing in-
formation before the anomaly detection, and various approaches for ECG anomaly representation have
been proposed. To address the aggregate approximation, PAA [27] divides the original time series with
equal-size sliding window and counts the mean of each segment. However, this method is sensitive to
the length of sliding window. If window size is larger, this sequence will be roughly regarded as mean
value and all fluctuations in this sequence will be smoothed out. In order to figure out this problem,
Burcu Kulahcioglu at al. [28] examines the suitability of symbolic PAA analysis with minimum and
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maximum values to periodic signals. However, it is easy to be affected by noise. Symbolic Aggregate
Approximation(SAX), proposed by Lin and Keogh [29], is a method to symbolize the time series effi-
ciently and accurately. However it also has some disadvantages such as the dimensionality reduction,
which may miss important patterns in some data sets. Battuguldur [30] propose ESAX, which uses
additional symbols with two points max and min to improve representation preciseness. Youqiang Sun
at al. [31] improved the SAX representation by using the difference between starting /ending points
and average of each segment, which proposed an approach SAX_TD. However, even if SAX_TD con-
sidered the values at the beginning and the end of each subsequence to represent the trend, if the length
of each segment is very long, as for ECG datasets, it is possible that their values at both ends are always
similar, then adding these information is useless.

As can be seen from the method mentioned above, existing methods may distort the ECG morphol-
ogy after suppression, which the important limitation is that all above these methods ignore the shape
and fluctuation of the ECG signals. As we can see in the Figure 2, normal and anomaly ECG data have
apparently different shape in square A and square B when time series are divided into subsequence.
And in square C, we can see that once the series is replaced by the mean value, many small fluctuations
in ECG data will be flattened. What’s more, according to piecewise aggregate, their aggregation value
are similar while the trend is apparently opposite. To address this problems, in this paper, we present
an unsupervised methods to detect the anomaly ECG signals via symbol trend approximation. This
method does not require prior knowledge of anomalies to work and the accuracy is high. We segment
the ECG time series with sliding windows and transform the subsequence shape into binary string ac-
cording to relative mean value, which will be compared the trend similarity to find out the anomalies.

Lead Abnormal M’[\

Lead Normal

_______________

Figure 2. An example of single-lead normal and anomaly ECG data, the part circled by the
red frame is the different shape in normal lead and abnormal lead while the mean value in
these segment are the same. Some fluctuation in the two subsequences lead corresponding to
the black dashed line(c) are smoothes out either.

The remainder of the paper is organized as follows: Section 2 provides the related work of unsu-
pervised methods of anomaly detection in ECG. Section 3 presents our proposed method and explains
the trend representation. Section 4 presents the experimental results of anomaly detection on MIT-BIH
data sets. Finally, section 5 concludes the paper.
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2. Model and method

In this section, we first provide a trend representation and then present the similarity calculation
method and anomaly detection method. As we reviewed above, the shape of ECG beats within the
same class are generally similar to each other along time axis, however, the shape are quite dissimilar
between different classes. Therefore, if the shape of beat is different with higher anomaly score, the
beat can be suspect as anomaly. To achieve higher performance, we use the symbolization of the trend
to represent the shape of beat in our methods, which can quickly locate anomalies.

2.1. The trend representation

Given the time series Q = {q1, ..., ¢,}, Z-normalization as Equation(2.1) can remove the unit limit of
the data and convert it to a dimensionless pure value, so the indicators of subsequent trend units, which
will be describe in detail later, can be weighted. What’s more, z-normalized time series values follows
a normal distribution, which is easy to use the look-up table method to determine the linear coordinates
under the normal curve and to divide the region under the Gaussian curve. In Equation(2.1) the u and
o are the statistics of entire sequence. Then it will be reduced into equal-size segments by sliding
window without overlapping, and the mean value of ith segment will be calculated as Equation(2.2):

r_4qi—H

q; = ——, whereien 2.1
(0B
w %j
a=" Z gi (2.2)
=L (j-1)+1

where w represents as the length of segment(w < n). And the new time series will be presented as
0 = {G1> G- Gu)-

The trend of each segment is based on binary string, which can roughly but efficiently reflect the
relative trend change to mean value in each segment. We can use binary string B = {0, 1}" to represent
the trend relative to the mean and the bits are defined as follows:

1, g;>g

in Equation(2.3), each raw data point segment is represented as I when the raw data is greater than the
mean value of ith segment, otherwise, if the raw data is less than the mean, it is represented as 0.

We do not use the absolute trend distance because the mean of the entire time series can not record
the fluctuations below the mean and above the mean. Once the time series does not fluctuate above
and below the baseline of the mean, this addition will have no effect. If we record the relative trend of
each segment, although the benchmark of mean value in segment is not the same in one time series,
in # number of time series, their corresponding segments Q ; and C ;j are comparable. In our method, if
the two segments are similar segments, then their bit strings are the same, on the other side, if the two
segments are not similar, even if their mean values are the same, their fluctuations above and below the
mean can be recorded different.

For the average of each segment, the breakpoint is the ordering of the numbered regions under
the N(0, 1) Gaussian curve, which can be represented as B = (8,53,, - ,B.-1), where 5;_; < 5; and

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2154-2167



2158

Bo = —c0, B, = co. The conversion of the vector of PAA coefficients C into the string C implemented
is as follows, and a lookup table that contains the breakpoints is shown in Table 1.

¢ i=alphax j, iif, ¢ «i€p;_1,B;) (2.4)

Table 1. Lookup table of breakpoints from 2 to 8.

5 2 3 4 5 6 7 8
B 000 -043 -0.67 -0.84 -097 -1.07 -1.15

B - 043 000 -025 -043 -0.57 -0.67
B - - 067 025 000 -0.18 -0.32
B - - - 084 043 0.8 0.00
Bs - - - - 097 057 032
Be - - - - - 107 067
B - - - - - - 115

2.2. Distance Measure

As we review above, the PAA distance function Dist and the SAX distance function MINDIST
are defined as the follows. We still use Euclidean distance in distance metrics instead of dynamic time
warps [32] or others. DTW can distort the data set to match the nearest neighbors, which is a better
method for unequal sequences, but in larger data sets, we can directly match the series with Euclidean

distance.
Dist(Q, P) = \/g ;(ﬁi —qi)? (2.5)

MINDIST(Q,C) = \/g J Z(disz(q 0,8 % 1)) (2.6)
i=1

The trend distance of the binary string between two series is defined as follows, and the length of
time series is n and it is divided into w segment.

bitDist(Q, C) = \/g \/Z count(be; ® by) 2.7)
i=1

where b,;, b, are the binary string of corresponding segment of two series, and the function count is
used to sum up the number of 1 in the binary string. Finally, we can define the BIT Dist measure
function based on trend distance and SAX as follows.

TSAX(Q,C) = MINDIST(QO,C) + \/ %count(Bc ® By) (2.8)

where B¢ and By are the complete series as Be = {by, b,...,b,}. From Equation(2.8), it can be seen
that the effect of trend distance on the overall distance is weighted by w/n, which n is fixed. The
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larger of w, the greater the proportion of trend distance and the longer length of one segment. Once
the subsequence is very long, the trend among this segment will change into a parallel line with no
trend change, therefore, the increase of trend distance helps distinguish between the similarity of two
subsequence. On the contrary, the smaller of w, the smaller proportion of trend distance. Because
if the length of subsequence is small, even contains only two time points, their trend is similar to
linear, which will not lose trend information a lot. Algorithm 1 summarizes the procedure in form of
pseudo-code.

Algorithm 1 TSAX: Anomaly detection with TSAX

Require: ECG series T =1y, ...t,
number of segment w

Ensure: anomaly score: the top k;, anomalies in ECG

1: T:=Z-norm(T) // Normalize the time series

2: fori=0towdo

3:  mean < Tmean(t;) // segment the time seires into equal length
symbol;=lookupTable(mean)
//Transform the time series into binary string
for jinz do

if j > mean then

bit=1
else

10: bit=0
11: end if
12: bitstring « bit
13:  end for
14 binary string < bitstring // Combine all segments
15: end for
16: distbit=compareBit(t;, t;;1)
17: distsax+=compareSax(symbol;, symbol;, )
18: distK=SortDistance(distsax)
19: score=KNN(distK)
20: return score

© e N Un ok

3. Analytical Results

In this section, we demonstrate the effectiveness of our method over real data. The performance is
evaluated in different aspects. Experiments are conducted to analyze the performance of our proposed
algorithms in comparison to classical unsupervised methods in SAX [29], SAX _TD [31] and ESAX
[30] on ECG dataset. All above methods are used to calculate the similarity and anomaly score among
dataset and we use KNN to find the most likely anomalies. We set the k = 3. The experiments are
conducted on a 2.5GHz processor with 16GB physical memory, running Window 10.
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3.1. Experimental setup
3.1.1. Data set

In this section, we use our method to evaluate the data sets downloaded from PhysioBank [33]. The
BIDMC Dataset ’chf07” is a 20-hour long ECG which have been independently classified into five
types. In order to detect the anomalies, we simply divide the multi-class into two class, and the default
physionet annotations are converted into AAMI recommended categories as showing in Table3, and
different class has different shape as shown in Figure 3, therefore, the trend method is useful in these
data sets. We simply combine the Normal beat and one of other abnormal beats together, and we name
them with the representations such as "N+1”,”N+S”, etc.

M = = )

Figure 3. The shape of BIDMC Dataset chQ7. Different shapes of ECG segment in five class.
The last one is unknown beat so their shapes are different.

Table 2. AAMI recommended beat of five classes and number of ECG in MIT-BIH.

No. Classes representation Number
1 Normal beat N 2919
2 R-on-T Premature Ventricular Contraction r 1767
3 Supraventricular ectopic beat S 194
4 Premature Ventricular Contraction A% 96
5 Unknown beat Q 24

3.1.2. Comparison methods and Metrics

As base lines, we use several anomaly detection techniques such as SAX [29], SAX_TD [31],
ESAX [30]. We compare the baselines with the proposed method TSAX. SAX_TD uses the deviation
numerical value between the starting/ending point and mean value as the trend information. ESAX
uses the maximum and minimum values based on sax, but symbolizes both values along the way as
SAX. To demonstrate the detection ability of the proposed method, True positive (TP), false positive
(FP), true negative (TN) and false negative (FN) are defined in Table 3.

Table 3. Definition of statistical values.

Annotated Anomaly Annotated Normal
Detected Anomaly TP FP
Detected Normal FN TN

The algorithm is evaluated based on 5 measurements: sensitivity, false alarm rate, specificity, posi-
tive predictive value (PPV) and root of mean square error (RMSE).
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Sensitivity describes the proportion of all positive cases identified in all positive cases. False alarm
rate describes the case where the negative case is identified as a positive case as a percentage of all
negative cases. Specificity describes the proportion of negative cases identified in all negative cases.
Positive Predictive Value (PPV) is the part of the anomalies that can be correctly identified in all
anomalies. Root of mean square error(RMSE) represents for the sample standard deviation of the
difference between the predicted value and the observed value.They can be calculated as follows

Sensitivity = TP/(TP + FN) 3.1
False alarm rate = FP/(FP + TN) (3.2)
S pecificity = TN/(TN + FP) (3.3)
PPV =TP/(TP + FP) (3.4

RMSE = ‘/w (3.5)

According to the above results, since the length of original time series is 140, we set the window
length w = 16 and symbol number @ = 3 through these experiments, and each experiment is used
by ten-fold cross-validation. To verify the accuracy of different type of mixture ECG signals, we test
the four metrics with 5 different combinations. The first four combinations are the combination of a
normal class and one of each anomaly class, the last one mixes 5 classes together for comparison. The
first four results are shown in Table 4 and indicates that our method can detect different anomalies
with low error rate for first three combination due to the shapes in their own class are similar. For
the last combination(N+Q), the result is not ideal because of the beat is unknown and also the shape
is hard to distinguish. Figure 4 shows the performance of the algorithm on different data sets more
intuitively, although the SAX_TD has little higher accuracy than our method, our method performs
better in mixture data N+Q that it recognizes the different shape better than others generally.

3.2. Accuracy Comparison

Table 4. Metrics comparison with one anomaly class with normal class by using our pro-

posed method.

Data set Anomaly Ratio Sensitivity Specific PPV  Flase Alarm Rate RMSE
N+r 37.71% 0.987 0977 0991 0.023 0.010
N+S 6.23% 0.812 0.625 0.978 0.375 0.013
N+V 3.18% 0.902 0.804 0.984 0.196 0.013
N+Q 0.82% 0.624 0.250  0.830 0.750 0.007

As for the five mixture dataset, we compare the four metrics with other methods. and the result is
shown in Table 5. As we can see from the Figure 5, our method of TSAX achieves higher accuracy,
specificity and sensitivity while lower false alarm rate than other methods. The advantages of our
algorithm are better reflected in the mixed data set, because the mixed data set has many different
shapes, so it is more sensitive to the shape.
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Figure 4. Four metrics comparison among one anomaly class with normal class by four

methods.

Table 5. The metrics for five mixture data set by using four methods, and the best results are

highlighted in bold.
Method PPV  sensitivity specificity false alarm rate
TSAX  0.9879  0.9847 0.9731 0.0269
SAX 0.8364  0.8385 0.8212 0.1788
ESAX 0.8156  0.8146 0.7785 0.2215
SAX_TD 0.9800 0.9740 0.9607 0.0393
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Figure 5. The comparison of four metrics with four methods, the above three are the higher
value the better, and the false alarm rate is the lower value the better. The first column is

TSAX.
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3.3. Error Rate Comparisons

Figure 6 shows the anomaly detection results obtained for this data set when considering the TSAX
method with other methods, the parameters of sliding window size is w = 4 and the breakpoint is
B = 3. Compare with the ground truth figure below, the above four figures in red parts are detected
as anomalies and the blue part are normal. As we can see, error classification of our algorithm is
significantly less than others and the false alarm rate are less either.

5
TSAX 0 ’ ‘
s
0 20000 40000 60000 80000 100000 120000 140000 160000
5
ESAX 04 l ‘
s
0 20000 40000 60000 80000 100000 120000 140000 160000
.
SAX_TD 01 ’ | ‘
s
0 20000 40000 60000 80000 100000 120000 140000 160000
5
)
0 20000 40000 60000 80000 100000 120000 140000 160000
5
TRUE ol ‘
LABELS
.
0 20000 40000 60000 80000 100000 120000 140000 160000

Time

Figure 6. An example of a subsequence of ECG. The above plots are the time series detected
by TSAX, SAX_TD, ESAX and SAX, and the below plot is the time series with true anomaly.
The subsequence in red are anomalies and the blue subsequence is normal.

One of the advantages of SAX is the novel symbol dimensionality reduction, and the dimensionality
reduction ratio is calculated by sliding window size w. In order to verify the effect of the parameter
sliding window size w on the accuracy of four methods, we choose to set the breakpoint 8 = 3 according
to [34], which is suitable for most of datasets. We change the window size range from (3,64) to test its
impact on RMSE and the result are shown in Table 6. It can be figured that with the increasing of the
length of window, the optimal window size is different in different ways. With the w becomes larger,
the TSAX performs the better which indicates that even if this time slice is very long, we can still use
the shape to judge the anomalies by our method. And other methods perform not so good when the
when the sliding window size gets longer. Therefore, the results show that our methods are more robust
than others and the trend representation works.
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Table 6. The RMSE result with different window size from 3 to 64. The best win_size is

highlight in bold.
Method 3 4 5 6 7 8 16 24 32 64
TSAX  0.0236 0.0220 0.0206 0.0168 0.0168 0.0162 0.0134 0.0144 0.0130 0.0128
SAX  0.0860 0.1012 0.0874 0.1490 0.1302 0.1374 0.1758 0.4158 0.1964 0.2096
ESAX  0.0648 0.0628 0.0604 0.0718 0.0804 0.0906 0.1550 0.2938 0.1984 0.2112
SAX_TD 0.0116 0.0124 0.0100 0.0116 0.0110 0.0130 0.0116 0.0126 0.0132 0.0214

3.4. Computation Time

As for computation performance, our method can be compared the computation time with other
methods. In the Figure 7 we can see that the time cost decrease when the window size increasing in all
methods. While it takes a lot of time in the process of symbolization, and ESAX cost the most because
it needs to convert to symbol more than others and with the sliding window size becomes larger, the
time cost decline fast. And other two method TSAX and SAX_TD are similar to SAX. Although
the time cost of our TSAX method is little higher than SAX, these times have greatly improved the
accuracy, so the time spent is worthwhile.

3500
3000
2500

2000

TIME

1500
1000
500

3 4 5 6 7 16 32 64
WIN_SIZE

TSAX SAX_TD ESAX SAX

Figure 7. The computation time cost of the methods with different sliding window size, the
vertical axis represented as time and the horizontal axis represented for win_size.

4. Discussion and Conclusion

We have shown that our proposed method can achieve higher accuracy with more trend information.
This proves that different types of RCG signals do have different shapes which can be detected by
our proposed algorithm. In this paper, we propose a trend symbolized method (TSAX) to detect the
anomaly heart signals, which use binary string to record the relative trend change of a time series.
The relative trend represented by this binary string can distinguish the shape characteristics well. And
the similarity distance is base on SAX distance as the final distance measure. We have evaluate the
the proposed method using the MIT-BIH datasets, and the result shows that even if the computation
time is little bit higher than SAX, it reaches higher accuracy about 98.7% than other methods. In our

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2154-2167



2165

future work, we want to divide the original time series with change point to get the adaptive length
segments and further improve the efficiency of the algorithm. Dividing time series of different lengths
can more accurately measure the ECG anomaly while challenges also exits. In the experiment part,
more extensive experiments shall be carried out near future.
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