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Abstract: Huang et al. [1] recently developed a toxin-dependent predator-prey model and analyzed
its global dynamics. Their results showed that environmental toxins may influence both predators and
prey and induce bistable situation, and intermediate toxin concentrations may affect predators dispro-
portionately through biomagnification. Environmental noises can change the dynamical behaviors of
the toxin-based predator-prey model. In this paper, by formulating a stochastically forced predator-prey
model with environmental toxins, we study the dynamical phenomenon of noise-induced transitions
from coexistence to prey-only extirpation in the bistable zone. Numerical simulations based on the
technique of stochastic sensitivity functions are provided for constructing the confidence ellipse and
estimating the threshold value of the noise intensity of state switching. Meanwhile, we construct the
confidence band and study the configurational arrangement of the stochastic cycle.

Keywords: predator-prey model; environmental toxins; stochastic sensitivity; noise-induced
transitions; confidence domain.

1. Introduction

With the rapid development of modern industries, the problem of industrial pollution caused by hu-
man activities becomes more and more severe. In aquatic ecosystems, the accumulation of toxic com-
pounds in living organisms has caused great harm to aquatic species and human health. To accurately
assess the risk of pollutants, over the past several decades, many mathematical toxicity-extrapolation
models have been formulated, including population models, ecosystem models and landscape models
[2, 3, 4, 5, 6].

Toxin-dependent IBM (individual-based models) and matrix population models are widely used
to evaluate the effects of toxic chemicals on individual organisms and population dynamics [4, 7].
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In Ref. [8], Huang et al. proposed a toxin-dependent aquatic population model by incorporating
the effects of toxin on growth and recruitment, and the authors further obtained threshold values of
toxin concentration in the environment to maintain populations and prevent extirpation. All above-
mentioned models are single-species models where populations are assumed to take up toxin only
from exposure to the environment. It is well known that the main source of toxins in high-level trophic
organisms is through ingestion of food. The higher-level animals in a food chain consume and store
more pollutants (normally called biomagnification) [9, 10]. Taking into account the cumulative effects
of toxic pollutants in organisms, Huang et al. [1] mechanistically extended the single-species toxin-
dependent model [8] to a predator-prey model with toxin effect as follows:

dx
dt

=
α1 max{0, 1 − α2u}x

1 + α3x
− (k1u + m1)x −

ξxy
η + x

,

dy
dt

=
β1ξxy max{0, 1 − β2v}

η + x
− (k2v + m2)y,

du
dt

= a1T − σ1u −
α1 max{0, 1 − α2u}

1 + α3x
u,

dv
dt

= a2T − σ2v +
ξx
η + x

u −
ξx
η + x

β1 max{0, 1 − β2v}v.

(1.1)

where x, y are the concentrations of the prey (small fish) and the predator (rainbow trout) with environ-
mental toxins, respectively; u, v are the concentrations of toxins in prey and rainbow trout, respectively;
α1, α2, α3 are maximum reproduction rate, effect of toxins on the growth and crowding effect of prey,
respectively; k1, k2 are effect of toxins on the mortality of prey and rainbow trout, respectively; m1,
m2 are natural mortality rate of prey and rainbow trout, respectively; ξ is per capita feeding rate; η is
half-saturation constant; β1, β2 are reproduction efficiency and effect of toxins on the reproduction of
rainbow trout, respectively; a1, a2 are uptake coefficient for prey and rainbow trout, respectively; σ1,
σ2 are depuration rate for prey and rainbow trout, respectively.

For convenience, the nondimensionalized model (1.1) was introduced by letting

x̃ = α3x, ỹ =
α3ξ

α1
y, ũ = α2u, ṽ = β2v, t̃ = α1t, k̃1 =

k1

α1α2
,

m̃1 =
m1

α1
, η̃ = α3η, β̃1 =

β1ξ

α1
, k̃2 =

k2

α1β2
, m̃2 =

m2

α1
,

T̃ =
α2a1T
σ1

, c̃ =
α2β2

a1α2
, σ̃2 =

σ2

σ1
, β̃2 =

β2ξ

α2σ1
, ε =

α1

σ1
.

Dropping the tildes for notational simplicity, the model (1.1) can be rewritten in its dimensionless form:

dx
dt

=

(max{0, 1 − u}
1 + x

− k1u − m1

)
x −

xy
η + x

,

dy
dt

=
β1xy max{0, 1 − v}

η + x
− (k2v + m2)y,

ε
du
dt

= T − u − ε
max{0, 1 − u}

1 + x
u,

ε
dv
dt

= cT − σ2v + (β2u − εβ1 max{0, 1 − v}v)
x

η + x
.

(1.2)
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In reality, the dynamics of the depuration due to metabolism of toxin have a much faster time scale
than the dynamics of population biomass growth. This means the uptake of toxin and depuration may
approach a quasi-equilibrium state on a fast time scale [1]. Therefore ε = α1/σ1 can be defined by a
small perturbation parameter. Model (1.2) is a high dimensional system, letting ε → 0 in (1.2), then

u = T, v =
cT
σ2

+
β2T
σ2

x
η + x

. (1.3)

In order to ensure the persistence of prey and predator, we assume that m1 < 1,T <

min{1, σ2/c},m2 < β1, substituting (1.3) into the first and second equations of (1.2), we obtain the
following two-dimensional predator-prey model with environmental toxins:

dx
dt

= f (x) − ϕ(x)y,

dy
dt

= g(x)y,
(1.4)

with

f (x) =

(1 − T
1 + x

− k1T − m1

)
x,

ϕ(x) =
x

η + x
,

g(x) = β1ϕ(x) max
{
0, 1 −

cT
σ2
−
β2T
σ2

ϕ(x)
}
−

k2cT
σ2
−

k2β2T
σ2

ϕ(x) − m2.

In [1], the authors pointed out that high toxin concentration in the environment is harmful to both
species, and may lead to extirpation of both species, while low toxin concentration produces counter-
intuitive results. What’more, the phenomena of bistability occur when appropriate parameter values
are taken.

Undoubtedly, environmental noises can change the qualitative behaviors of a deterministic model.
In order to better and more robustly understand the impact of toxins on the persistence of populations,
we assume that the noises only depend on the predation term, then we extend the deterministic model
(1.4) to incorporate the noises as the following stochastic differential equations:

dx = [ f (x) − ϕ(x)y]dt + δ1ϕ(x)ydB1,

dy = [g(x)y]dt + δ2ϕ(x)ydB2,
(1.5)

where B1(t) and B2(t) are standard one-dimensional independent Brownian motions, δ1 and δ2 are the
noise intensities. For the simplicity, in the remaining parts of this paper, we assume δ1 = δ2 = δ.

Our main goal of this paper is to study the phenomena of noise-induced transitions from coexistence
to prey-only extirpation. In fact, many deterministic models with noise-induced transitions have been
studied. The presence of coexisting attractors under random perturbations can generate new dynamic
regimes, which have no analogues in the deterministic case [11, 12]. In [13, 14], noise-induced per-
turbations change the coexistence state to extinction for a chemostat model. Perturbations effects of
limit cycles caused by noises were studied in [15, 16]. Nonlinear dynamical models also show new
phenomena, such as stochastic resonance [17, 18], noise-induced transitions [19], noise-induced order
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[20, 21], noise-induced chaos [22], and noise-induced complexity [23, 24, 25, 26, 27, 28, 29]. The
analysis of the noise effects on dynamical systems with multiple stable states attracts attention of many
researchers [22, 30]. Multistable systems exhibit complex dynamics with noise-induced hopping be-
tween coexisting attractors and their basins of attraction [31, 32, 33, 34]. The sensitivity analysis of
random forced oscillations is important for investigating these transitions. For constructive analytical
description of randomly forced equilibria and cycles of discrete-time systems, a new numerical method
based on the technique of stochastic sensitivity functions (SSF) has been proposed in [35].

The rest of this paper is organized as follows. In Section 2, we analyze qualitative changes in
stochastic dynamics using phase portraits. In Section 3, based on the technique of stochastic sensi-
tivity functions and the method of confidence domains, we explore the phenomenon of noise-induced
transitions from coexistence to prey-only extirpation, and construct the confidence ellipse and confi-
dence band for model (1.5). Finally, we summarize the paper by a brief conclusion in Section 4.

2. Attractors and stochastic phenomena in predator-prey model

In this paper, we take parameter values from [1]:

T = 0.2, k1 = 1,m1 = 0.1, β1 = 1, β2 = 4, c = 1.5, σ2 = 1, k2 = 0.2,m2 = 0.02

for model (1.5) with δ = 0 and a varying parameter η. For any η, the model has a extinction equi-
librium E0,1 = (0, 0), a prey-only equilibrium E0,2 = (1.6667, 0), and two coexistence equilibria
E1 = (0.2814η, 0.3244η + 0.0913), E2 = (0.8363η, 0.2491η + 0.1135) when we restrict toxin level
and the half-saturation constant such that both populations can coexist.

Fixing parameter η = 1, simple calculations show that the equilibrium E0,1 is unstable, E0,2 and
E1 are locally asymptotically stable, and E2 is a saddle point. Vector field of the deterministic model
is presented in Figure 1(a), here the red dashed-dotted line is the separatrix of two attraction basins.
For deterministic model, trajectories starting from the inside of the separatrix tend to the coexistence
equilibrium E1, and trajectories starting from the outside of the separatrix tend to the prey-only extir-
pation equilibrium E0,2, that is, depending on the initial population levels, either the prey excludes the
predator E0,2 or both species coexist at the interior equilibrium E1.

Consider dynamics of model (1.4) under random disturbances. In Figure 2 and 3, time series of x(t)
and y(t) (a) and random trajectories (b) are plotted. For small noise, the dynamics of the stochastic
model is quite regular: a stochastic trajectory with an initial point near the deterministic coexistence
equilibrium E1 will leave this attractor, but stay in its small neighborhood, see Figure 2 for δ = 0.1.
However, as the noise intensity increases, the stochastic dynamics of model (1.5) becomes irregular:
a stochastic trajectory exits the neighborhood of the coexistence equilibrium E1 and crosses the sep-
aratrix of two attraction basins and finally tends to the prey-only equilibrium E0,2, see Figure 3 for
δ = 0.2. This phenomenon of noise-induced transition implies that the coexistence of two species can
be destroyed by noise disturbances and the predator can be driven to extirpation.

For fixed η = 0.5, the coexistence equilibrium E1 of the deterministic model (1.4) becomes un-
stable. Meanwhile, the model has a unique stable limit cycle surrounding the equilibrium E1, where
both population levels fluctuate around a coexistence equilibrium, see Figure 1(b), in which the red
dash-dotted homoclinic orbit is the separatrix of two attraction basins. For the deterministic model,
trajectories starting from the inside of the homoclinic orbit tend to the limit cycle, and trajectories
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Figure 1. Vector field of model (1.5) with δ = 0 and the separatrix of two attraction basins
for (a) η = 1; (b)η = 0.5.
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Figure 2. Time series (a) and random trajectory (b) of stochastic model (1.5) for δ = 0.1
with the initial value (0.2814, 0.4156).
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Figure 3. Time series (a) and random trajectory (b) of stochastic model (1.5) for δ = 0.2
with the initial value (0.2814, 0.4156).

starting from the outside of the homoclinic orbit tend to the prey-only equilibrium E0,2. Similar to the
previous situation, in the stochastic case, the limit cycle generally disappears, but the trajectory stays
in a small neighborhood of the deterministic limit cycle for small noise, see Figure 4 for δ = 0.007.
As the noise intensity increases, the stochastic trajectory exits the neighborhood of the limit cycle and
tends to the prey-only equilibrium E0,2 (extirpation of the predator), see Figure 5 for δ = 0.012.
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Figure 4. Time series (a) and random trajectory (b) of the stochastic model (1.5) for δ =

0.007.

3. Analysis of noise-induced transitions via confidence domains

Noise-induced transitions between attraction basins of two equilibria or between attraction basins
of a limit cycle and an equilibrium occur for δ > 0. In this section, we want to use the knowledge
of SSF technique to theoretically analyze these noise-induced transitions with the aid of confidence
domains. We first construct the confidence ellipse for the stochastic model (1.5) with η = 1, and then
estimate the threshold value of noise intensity for noise-induced transition from coexistence to predator
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Figure 5. Time series (a) and random trajectory (b) of the stochastic model (1.5) for δ =

0.012.

extinction. Denote the deterministic coexistence equilibrium E1 = (x1, y1) and define

F =

(
f11 f12

f21 f22

)
,G =

(
g11 0
0 g22

)
, S = GGT ,

where

f11 = f ′(x) − yϕ′(x),
f12 = −ϕ(x),
f21 = g′(x)y,
f22 = g(x),

g11 = g22 =
xy
η + x

.

From (A.2) in [36], we know that the stochastic sensitivity matrix

W =

(
w11 w12

w21 w22

)
satisfies the following equations:

2 f11w11 + f12w12 + f12w21 = −g2
11,

f21w11 + ( f11 + f22)w12 + f12w22 = 0,
f21w11 + ( f11 + f22)w21 + f12w22 = 0,
f21w12 + f21w21 + 2 f22w22 = −g2

22.

Moreover, we know that the confidence ellipse equation from (A.3) in [36] is

〈(x − x1, y − y1)T ,W−1((x − x1, y − y1)T )〉 = 2δ2 ln
1

1 − P
,

where δ is the noise intensity and P is a fiducial probability. From the above, we obtain

W =

(
0.3540 −0.0872
−0.0872 0.1031

)
,W−1 =

(
3.5681 3.0172
3.0172 12.2489

)
,
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respectively. The confidence ellipse equation of E1 is

3.5681(x − 0.2814)2 + 6.0344(x − 0.2814)(y − 0.4156) + 12.2489(y − 0.4156)2

= 2δ2 ln
1

1 − P
.

For fixed fiducial probability P = 0.95, we change the noise intensity and observe how noise affects
the confidence ellipse. For δ = 0.12, random states of the stochastic model (1.5) and the correspond-
ing confidence ellipse are plotted in Figure 6(a). We can observe that random states are distributed
around the corresponding deterministic coexistence equilibrium, and they belong to the interior of the
confidence ellipse with probability 0.95.

Next, we take different noise intensities δ = 0.1, 0.18, and 0.3, resulting in the corresponding
confidence ellipses shown in Figure 6(b). Obviously, as the noise intensity increases, the confidence
ellipse begins to expand and pass through the separatrix, and finally it enters the attraction basin of the
predator extirpation equilibrium, that is, trajectories of the noised model with a high noise intensity can
leave the attraction basin of the coexistence equilibrium E1 and localize near the predator extirpation
equilibrium. The noise intensity corresponding to the intersection of the confidence ellipse and the
separatrix can be used as an estimation of the threshold value δ̃. Here δ̃ ≈ 0.18. The transition
escaping from the deterministic coexistence equilibrium E1 to the predator extirpation equilibrium E0,2

has a typical example shown in Figure 3 for δ = 0.2 > 0.18. In this case, the extirpation of the predator
is mainly caused by large noise.
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Figure 6. (a) Random states (cyan) and equilibrium E1 (black) of the stochastic model (1.5)
and confidence ellipse (blue) for δ = 0.12. (b) Separatrix (red), equilibrium E1 (black) and
confidence ellipses (blue) for δ = 0.16 (small), δ = 0.18 (middle), δ = 0.19 (large).

We now take η = 0.5. To find the configurational arrangement of the neighborhood of the deter-
ministic limit cycle for small noise, we construct the confidence band for the stochastic model (1.5),
and denote the deterministic limit cycle by Γ(x(t), y(t)), t ∈ [0,T ], where T is the period of the periodic
orbit. Let

F1(x, y) = f (x) − ϕ(x)y,
F2(x, y) = g(x)y,
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and define matrices F(t), G(t) and S (t) as follows:

F(t) =

(
f11(t) f12(t)
f21(t) f22(t)

)
,G(t) =

(
g11(t) 0

0 g22(t)

)
, S (t) = G(t)G(t)T ,

where

f11(t) = f ′(x) − yϕ′(x) |Γ,
f12(t) = −ϕ(x) |Γ,
f21(t) = g′(x)y |Γ,
f22(t) = g(x) |Γ,

g11(t) = g22(t) =
xy
η + x

|Γ .

From (A.4) in [36], we know that the stochastic sensitivity function µ(t) satisfies the following
boundary problem:

µ̇ = a(t)µ + b(t), µ(0) = µ(T ),

where
a(t) = 2 f11(t)p2

1(t) + 2( f12(t) + f21(t))p1(t)p2(t) + 2 f22(t)p2
2(t),

b(t) = g11(t)p2
1(t) + g22(t)p2

2(t).

Here,

p1(t) =
F2(x, y)√

F2
1(x, y) + F2

2(x, y)
|Γ,

p2(t) = −
F1(x, y)√

F2
1(x, y) + F2

2(x, y)
|Γ

are elements of a vector function p(t) = (p1(t), p2(t))T orthogonal to vector (F1(x, y),
F2(x, y))T |Γ. It follows from (A.5) in [36] that the boundaries Γ1,2(t) of the confidence band have the
following explicit parametrical form:

Γ1(t) = Γ(t) + δk
√

2µ(t)p(t),

Γ2(t) = Γ(t) − δk
√

2µ(t)p(t),

where the parameter k is connected with the fiducial probability P by the formula k = er f −1(P), in
which er f (x) = 2

√
π

∫ x

0
e−t2dt is the error function.

In Figure 7(a), the confidence band around a stable cycle Γ with P = 0.95 is plotted for δ = 0.01.
the rose line is the deterministic limit cycle, the blue points are the random states at different times
and the two green dash-dotted lines are the boundaries of the confidence band. Obviously, the random
states leave the deterministic limit cycle and form some distribution around it, and they belong to the
interior of the confidence band with probability 0.95.

Similar to confidence ellipse, we take noise intensities δ = 0.005, δ = 0.011, δ = 0.018, resulting
in the corresponding outer boundary (green lines) of confidence band shown in Figure 7(b). As the
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noise intensity increases, the outer boundary begins to expand and pass through the separatrix (red
dash-dotted line), and finally it enters the attraction basin of the predator extirpation equilibrium, that
is, trajectories of the noised model with a high noise intensity can leave the attraction basin of the limit
cycle Γ and localize near the predator extirpation equilibrium. The noise intensity corresponding to
the intersection of the confidence band and the separatrix can be used as an estimation of the threshold
value δ̃. Here δ̃ ≈ 0.011. The transition escaping from the deterministic limit cycle Γ to the predator
extirpation equilibrium E0,2 has a typical example shown in Figure 7 for δ = 0.012 > 0.011.
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Figure 7. (a) Random states (blue) of the stochastic model (1.5) around Γ (rose) and confi-
dence band (green) for δ = 0.01. (b) Separatrix (red), limit cycle (rose) and outer boundary
(green) of confidence band for δ = 0.005 (small), δ = 0.011 (middle), δ = 0.018 (large).

4. Conclusion

In this paper, we study noise-induced transitions from the zone of coexistence to the zone of preda-
tor extirpation for the stochastically forced predator-prey model with environmental toxins. The cor-
responding deterministic model has two stable attractors [1]: the boundary prey-only attractor E0,2

corresponds to the extirpation of predator, and the internal attractor (either the stable equilibrium E1

or the limit cycle Γ) corresponds to the coexistence of prey and predator. Two attraction basins are
separated by the separatrix, which is the stable manifold of the saddle point E2, that is, solutions start-
ing from one attraction basin eventually approach the corresponding attractor. However, when there
exists noise disturbance, the separatrix can be crossed by solutions due to large noise, and the solutions
in the attraction basin of the coexistence equilibrium/limit cycle can eventually approach the predator
extirpation equilibrium, see Figures 3 and 5.

In order to analyze the phenomenon of noise-induced transitions, the confidence ellipse of our
stochastic model is constructed by using the technique of SSF. We provide the general location of the
equilibrium and analyze the random states distribution of the stochastic model. For small noises, the
confidence ellipse completely belongs to the attraction basin of the coexistence equilibrium, and the
random trajectories will not leave the confidence ellipse with high probability. As the noise inten-
sity increases, the confidence ellipse starts to expand. After it crosses the separatrix of two attraction
domains, it will leave the attraction basin of the coexistence equilibrium. Consequently, random trajec-
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tories entering the confidence ellipse can leave the attraction basin of the coexistence equilibrium and
approach the predator extirpation equilibrium with high probability. In addition, we establish the confi-
dence band for the stochastic model (1.5), from which we provide the general location of the stochastic
limit cycle and analyze the distribution of random states around the deterministic limit cycle.

We have expounded how the confidence domain method is used to understand the qualitative
changes in stochastic dynamics and estimate a threshold value of noise intensity at which noise-induced
extirpation can occur with high probability. This method is applicable to nonsmooth predator-prey
models and more complex higher dimensional models in terrestrial ecosystems. Our results enrich the
study of asymptotic behaviors in predator-prey models and help better understand the predator-prey
dynamics in the stochastic perspective.
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