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Abstract: In 2010, Anderson, Craciun, and Kurtz showed that if a deterministically modeled reaction
network is complex balanced, then the associated stochastic model admits a stationary distribution that
is a product of Poissons [1]. That work spurred a number of followup analyses. In 2015, Anderson,
Craciun, Gopalkrishnan, and Wiuf considered a particular scaling limit of the stationary distribution
detailed in [1], and proved it is a well known Lyapunov function [2]. In 2016, Cappelletti and Wiuf
showed the converse of the main result in [1]: if a reaction network with stochastic mass action kinetics
admits a stationary distribution that is a product of Poissons, then the deterministic model is complex
balanced [3]. In 2017, Anderson, Koyama, Cappelletti, and Kurtz showed that the mass action models
considered in [1] are non-explosive (so the stationary distribution characterizes the limiting behavior).
In this paper, we generalize each of the three followup results detailed above to the case when the
stochastic model has a particular form of non-mass action kinetics.

Keywords: reaction networks; continuous-time Markov chains; stationary distribution; Lyapunnov
functions; explosivity; non-mass action kinetics

1. Introduction

In this paper we prove the existence of a stationary distribution and the non-explosivity of
stochastically modeled reaction networks with a specific form of non-mass action kinetics (see (3.2)),
and generalize two results related to reaction networks with mass action kinetics to the non-mass
action setting.

In [1], it was shown that if a deterministically modeled reaction network (with deterministic mass
action kinetics) is complex balanced with complex balanced equilibrium c ∈ Rm

≥0, then the associated
stochastic model (with stochastic mass action kinetics and the same choice of rate constants) admits
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the stationary distribution

π(x) =

m∏
i=1

e−ci
cxi

i

xi!
. (1.1)

It was also shown in [1] that if the intensity functions of the stochastic model are not of mass action,
but of the form

λk(x) = κk

m∏
i=1

θi(xi)θi(xi − 1) · · · θi(xi − yki + 1)

where θi : Z→ R≥0 and θi(0) = 0, then the stochastic model admits the stationary measure

π(x) =

m∏
i=1

cxi
i

θi(1) · · · θi(xi)
(1.2)

where c is the complex balanced equilibrium of the associated deterministic mass action model with
rate constants {κk}. Related work characterizing stationary distributions for stochastic models with
non-mass action kinetics can be found in [4]. Later, we will show that π in (1.2) is summable under
some mild growth conditions on θi, thus it can be normalized to provide a stationary distribution.

The main result in [1] related to mass action models (i.e. the characterization of the stationary
distribution for complex balanced models given in (1.1)) has been the starting point for a number of
research endeavors. In particular,

1. The main result of [5] gives a condition for a stochastically modeled reaction network to be non-
explosive. Applying this result for complex balanced networks, whose stationary distributions are
given by (1.1), it can be concluded that for any initial distribution, complex balanced stochastic
mass-action systems are non-explosive.

2. The converse of the main result of [1] related to mass action models was proven in [3]. That is, it
was shown that if (1.1) is the stationary distribution of a stochastically modeled reaction network
with mass action kinetics, then the associated deterministic model with mass action kinetics is
complex balanced.

3. In [2], it was shown that a particular scaling limit of the stationary distribution (1.1) is a well
known Lyapunov function. This result has been useful in the study of large deviations related to
stochastic models of chemical systems [6, 7].

In this paper we generalize the three results above to the case of stochastically modeled reaction
networks with non-mass action kinetics.

The outline of the remainder of the paper is as follows. In Section 2, we review the relevant
definitions and mathematical models for chemical reaction networks. In Section 3, we state the
previous results on reaction networks that were briefly described above. Finally, in Section 4 we
provide our main results, which provide the existence of a stationary distribution and the
non-explosivity of stochastically modeled reaction networks with non-mass action kinetics and
generalize the previous findings on mass action systems to the non-mass action settings.
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2. Chemical reaction networks

2.1. Reaction networks and key definitions

We consider a set of m species {S 1, S 2, .., S m} undergoing a finite number of reaction types
enumerated by k ∈ {1, . . . ,K}. For the kth reaction type we denote by yk and y′k ∈ Z

m
≥0 the vectors

representing the number of molecules of each species consumed and created in one instance of the
reaction. For example, the reaction S 1 + S 2 → 2S 2 has yk = (1, 1) and y′k = (0, 2), if the system has 2
species. The vectors yk and y′k are called complexes of the system. yk is called the source complex and
y′k is called the product complex. A complex can be both a source complex and a product complex.

Definition 2.1. Let S = {S 1, ..., S m}, C = ∪k{yk, y′k}, and R = ∪k{yk → y′k} be the sets of species,
complexes and reactions respectively. The triple {S,C,R} is called a reaction network.

To each reaction network {S,C,R}, there is a unique directed graph constructed as follows. The
nodes of the graph are the complexes. A directed edge is placed from yk to y′k if and only if there is a
reaction yk → y′k. Each connected component is called a linkage class of the graph. We denote by ` the
number of linkage class.

Definition 2.2. A reaction network {S,C,R} is called weakly reversible if the associated directed graph
is strongly connected.

Definition 2.3. The linear subspace S = spank{y
′
k − yk} generated by all reaction vectors is called the

stoichiometric subspace of the network. For c ∈ Rm
≥0 we say c + S = {x ∈ Rm|x = c + s for some s ∈ S }

is a stoichiometric compatibility class, (c + S ) ∩ Rm
≥0 is a non-negative stoichiometric compatibility

class, and (c + S ) ∩ Rm
>0 is a positive stoichiometric compatibility class. Denote dim(S ) = s.

Finally, we provide the definition of the deficiency of a reaction network [15].

Definition 2.4. The deficiency of a chemical reaction network {S,C,R} is δ = |C|−`−s, where |C| is the
number of complexes, ` is the number of linkage classes, and s is the dimension of the stoichiometric
subspace of the network.

2.2. Dynamical system models

2.2.1. Stochastic model

The most common stochastic model for a reaction network {S,C,R} treats the system as a
continuous time Markov chain whose state at time t, X(t) ∈ Zm

≥0, is a vector giving the number of
molecules of each species present with each reaction modeled as a possible transition for the chain.
The model for the kth reaction is determined by the source and product complexes of the reaction, and
a function λk of the state that gives the transition intensity, or rate, at which the reaction occurs. In the
biological and chemical literature, transition intensities are referred to as propensities.

Given that the kth reaction happens at time t, the state is updated by the addition of the reaction
vector y′k − yk,

X(t) = X(t−) + y′k − yk.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2118–2140.
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A common choice for the intensity functions λk is to assume the system satisfies the stochastic version
of mass action kinetics. In this case, the functions have the form

λk(x) = κk

m∏
i=1

xi!
(xi − yki)!

1{xi≥yki} (2.1)

where κk > 0 is called the rate constant. Under the assumption of mass action kinetics and a non-
negative initial condition, it follows that the dynamics of the system is confined to the particular non-
negative stoichiometric compatibility class determined by the initial value X(0), namely X(t) ∈ (X(0) +

S ) ∩ Rm
≥0.

Simple book-keeping implies that X(t) satisfies

X(t) = X(0) +
∑

k

Rk(t)(y′k − yk),

where Rk(t) gives the number of times reaction k has occurred by time t. Kurtz showed that X can be
represented as the solution to the stochastic equation

X(t) = X(0) +
∑

k

Yk

(∫ t

0
λk(X(s))ds

)
(y′k − yk), (2.2)

where the Yk are independent unit-rate Poisson process [8].
Another way to characterize the models of interest is via Kolmogorov’s forward equation, termed

the chemical master equation in the biology and chemistry literature, which describes how the
distribution of the process changes in time. Letting pµ(x, t) give the probability that X(t) = x assuming
an initial distribution of µ, the forward equation is

d
dt

pµ(x, t) =
∑

k

λk(x − (y′k − yk))pµ(x − (y′k − yk), t) −
∑

k

λk(x)pµ(x, t).

Constant solutions to the forward equation, i.e. those satisfying∑
k

π(x − y′k + yk)λk(x − y′k + yk) = π(x)
∑

k

λk(x)

are stationary measures for the process, and if they are summable they can be normalized to give a
stationary distribution. Assuming the associated stochastic model is non-explosive, stationary
distributions characterize the long-time behavior of the stochastically modeled system.

Finding stationary distributions is in general a difficult task. However, as discussed in the
Introduction and in later sections, an explicit form for π(x) can be found when the associated
deterministic mass action model has a complex balance equilibrium.

2.2.2. Deterministic model

Under an appropriate scaling limit (the classical scaling detailed in Section 3.2.1) the continuous
time Markov chain model of the previous section becomes

x(t) = x(0) +
∑

k

(∫ t

0
fk(x(s))ds

)
(y′k − yk) (2.3)
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where
fk(x) = κkxyk (2.4)

where κk > 0 is the rate constant, and where for two vectors u, v ∈ Rm
≥0 we denote uv =

∏
i uvi

i with the
convention 00 = 1. Later, we will also utilize the notation uv for the vector whose ith component is
uivi.

We say that the deterministic system (2.3) has deterministic mass action kinetics if the rate functions
fk have the form (2.4). The system 2.3 is equivalent to the system of ODEs

ẋ =
∑

k

κkxyk(y′k − yk). (2.5)

The trajectory with initial condition x0 is confined to the non-negative stoichiometric compatibility
class (x0 + S ) ∩ Rm

≥0.
Some mass action systems have complex balanced equilibria [13,25], which has been shown to play

an important role in many biological mechanisms [9–12]. An equilibrium point c is said to be complex
balanced if for all z ∈ C, we have ∑

k: y′k=z

κkcyk =
∑

k: yk=z

κkcyk (2.6)

where the sum on the left is over reactions for which z is the product complex and the sum on the right
is over reactions for which z is the source complex.

In [13] it was shown that if there exists a complex balanced equilibrium c ∈ Rm
≥0 then

1. There is one, and only one, positive equilibrium point in each positive stoichiometric
compatibility class.

2. Each such equilibrium point is complex balanced.
3. Each such complex balanced equilibrium point is locally asymptotically stable relative to its

stoichiometric compatibility class.

In [24], a proof is presented showing global stability relative to the stoichiometric compatibility class.
Because of the above, we say that a system is complex balanced if it admits a complex balanced
equilibrium.

The condition of a reaction network being complex balanced can be checked more conveniently by
using a classical result [14]. See also [15, 16].

Theorem 2.1. If the reaction system is weakly reversible and has a deficiency of zero, then for any
choice of rate constants {κk} the deterministically modeled system with mass action kinetics is complex
balanced.

3. Previous results

3.1. Product-form stationary distribution

As mentioned in the previous section, complex balanced systems deserve special attention, and thus
characterizations of complex balanced systems are of interest. The following Theorem in [1] provides
an explicit form for the stationary distribution of complex balanced systems.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2118–2140.
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Theorem 3.1. Let {S,R,C} be a reaction network. Suppose that when modeled deterministically with
mass action kinetics and rate constants {κk} the system is complex balanced with a complex balanced
equilibrium c ∈ Rm

≥0. Then the stochastically modeled system with intensities (2.1), with the same rate
constants {κk}, admits the stationary distribution

π(x) =

m∏
i=1

cxi
i

xi!
e−ci , x ∈ Zm

≥0. (3.1)

See also [5], which shows that these systems are non-explosive, implying π yields the limiting
distributions of the process.

In the case when the stochastic model does not have mass action kinetics, [1] also provides an
extended result. In particular, [1] considers generalized intensity functions as mentioned in several
past papers [17, 18],

λk(x) = κk

m∏
i=1

θi(xi) · · · θi(xi − yki + 1), (3.2)

where κk are positive rate constants, θi : Z → R≥0, and θi(x) = 0 if x ≤ 0. The functions θi should
be thought of as the ”rate of association” of the ith species [17]. For a system with intensity functions
(3.2), the product form stationary distribution is quite similar to the one in Theorem 3.1.

Theorem 3.2. Let {S,R,C} be a reaction network. Suppose that when modeled deterministically with
mass action kinetics and rate constants {κk} the system is complex balanced with a complex balanced
equilibrium c ∈ Rm

≥0. Then the stochastically modeled system with general intensity functions (3.2),
with the same rate constants {κk}, admits the stationary measure

π(x) =

m∏
i=1

cxi
i

θi(1) · · · θi(xi)
, x ∈ Zm

≥0. (3.3)

In Section 4, we will show that π in (3.3) is summable under some mild growth condition on θi, and
thus it can be normalized to a stationary distribution.

The result in Theorem 3.1 is a cornerstone for later research in both application and theory. It
has been used in various studies in applied and computational biology such as tumor growth and
invasion [19], phosphorylation systems [9], studies of the chemical master equation [26], etc. It is also
the background for many theoretical developments in the field of chemical reaction networks [2, 3].
Interestingly, it has been proven that the converse is also true.

Theorem 3.3 ( [3]). Let {S,R,C} be a reaction network and consider the stochastically modeled
system with rate constants {κk} and mass action kinetics (2.1). Suppose that for some c ∈ Rm

≥0 the
stationary distribution for the stochastic model is (3.1). Then c is a complex balanced equilibrium for
the associated deterministic model with mass action kinetics and rate constants {κk}.

3.2. Non-equilibrium potential and Lyapunov functions

Another interesting result comes from the scaling behavior of the stationary distribution for complex
balanced system. We first provide a key definition.

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2118–2140.
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Definition 3.1. Let π be a probability distribution on a countable set Γ such that π(x) > 0 for all x ∈ Γ.
The non-equilibrium potential of the distribution π is the function φπ : Γ→ R, defined by

φπ(x) = − ln(π(x)).

In [2] it was shown that under an appropriate scaling, the limit of the non-equilibrium potential of
the stationary distribution of a complex balanced system converges to a certain well-known Lyapunov
function.

Definition 3.2. Let E ⊂ Rm
≥0 be an open subset of Rm

≥0 and let f : Rm
≥0 → R. A functionV : E → R is

called a Lyapunov function for the system ẋ = f (x) at x0 ∈ E if x0 is an equilibrium point for f , that is
f (x0) = 0, and

1. V(x) > 0 for all x , x0, x ∈ E andV(x0) = 0.
2. ∇V(x) · f (x) ≤ 0, for all x ∈ E, with equality if and only if x = x0, where ∇V denotes the gradient

ofV.

In particular, the non-equilibrium potential of the stationary distribution in (3.1) converges to the
usual Lyapunov function of Chemical Reaction Network Theory

V(x) =
∑

i

xi(ln(xi) − ln(ci) − 1) + ci. (3.4)

The next section discusses the scaling in which the convergence happens. It is called the classical
scaling in the literature.

3.2.1. The classical scaling

Here we present a brief introduction to the classical scaling. For more detailed discussions, see
[20–22].

Let |yk| =
∑

i yki and let V be the volume of the system times Avogadro’s number. Suppose {κk} are
the rate constants for the stochastic model. We defined the scaled rate constants as follows

κV
k =

κk

V |yk |−1 (3.5)

and denote the scaled intensity function for the stochastic model by

λV
k (x) =

κk

V |yk |−1

m∏
i=1

xi!
(xi − yki)!

. (3.6)

Note that if x ∈ Zm
≥0 gives the counts of the different species, then x̃ := V−1x gives the concentrations

in moles per unit volume. Then, by standard arguments

λV
k (x) ≈ Vκk

m∏
i=1

x̃yki
i = Vλk(x̃)

where the final equality defines λk and justifies the definition of deterministic mass action kinetics.
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Denote the stochastic process determining the counts by XV(t), then normalizing the original process

XV by V and defining X̄V :=
XV

V
gives us

X̄V(t) ≈ X̄V(0) +
∑

k

1
V

Yk

(
V

∫ t

0
λk(X̄V(s))ds

)
(y′k − yk),

where we are utilizing the representation (2.2). Since the law of large numbers for the Poisson process
implies V−1Y(Vu) ≈ u, we may conclude that a good approximation to the process X̄V is the function
x = x(t) defined as the solution to the ODE

ẋ =
∑

k

κkxyk(y′k − yk),

which is exactly (2.5).
A corollary of Theorem 3.1 gives us the stationary distribution for the classically scaled system.

Theorem 3.4. Let {S,R,C} be a reaction network. Suppose that when modeled deterministically with
mass action kinetics and rate constants {κk} the system is complex balanced with a complex balanced
equilibrium c ∈ Rm

≥0. For V > 0, let {κV
k } satisfy (3.5). Then the stochastically modeled system on Zd

≥0
with rate constants {κV

k } and intensity functions (3.6) admits the stationary distribution

πV(x) =

m∏
i=1

(Vci)xi

xi!
e−Vci , x ∈ Zm

≥0. (3.7)

An immediate implication of Theorem 3.4 is that a stationary distribution for the scaled model X̄V

is
π̃V(x̃V) = πV(V x̃V), f or x̃V ∈

1
V
Zd
≥0. (3.8)

3.2.2. Convergence of the non-equilibrium potential

The main finding in [2] is concerned with the scaling limit of the stationary distribution π̃V of (3.8).

Theorem 3.5. Let {S ,C,R} be a reaction network and let {κk} be a choice of rate constants. Suppose
that, modeled deterministically, the system is complex balanced. For V > 0, let {κV

k } be related to {κk}

via (3.5). Fix a sequence of points x̃V ∈ 1
VZ

d
≥0 for which limV→∞ x̃V = x̃ ∈ Rd

>0. Further let c be the
unique complex balanced equilibrium within the positive stoichiometric compatibility class of x̃.

Let πV be given by (3.7) and let π̃V be as in (3.8), then

lim
V→∞

[
−

1
V

ln(π̃V(x̃V))
]

= V(x̃),

whereV is the Lyapunov function for the ODE model satisfying (3.4).

4. Main results for networks with general kinetics

In this section, we first show that for stochastically modeled reaction networks with non-mass action
kinetics defined via (3.2) whose associated mass action system is complex balanced, the stationary
measure (3.3) can be normalized to yield a stationary distribution. We further show that these stochastic
models are non-explosive. We then extend Theorems 3.3 and 3.5 from Section 3 to the non-mass action
case.
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4.1. Existence of a stationary distribution and non-explosivity of non-mass action systems

We begin with a theorem proving that the stochastic models considered in Theorem 3.2 are positive
recurrent when only mild growth conditions are placed on the functions θi.

Theorem 4.1. Let {S ,C,R} be a reaction network with rate constants {κk}. Suppose that when modeled
deterministically, the associated mass action system is complex balanced with equilibrium c ∈ Rm

>0.
Suppose that θi and λk satisfy the conditions in and around (3.2). Moreover, suppose that for each i we
have limx→∞ θi(x) = ∞. Then,

1. the measure π given in (3.3) is summable over Zm
≥0, and a stationary distribution exists for the

stochastically modeled process, and moreover
2. the stochastically modeled process is non-explosive.

Proof. We first show that π is summable over Zm
≥0. We have

∑
x∈Zm

≥0

π(x) =
∑
x∈Zm

≥0

m∏
i=1

cxi
i

θi(1) · · · θi(xi)
=

m∏
i=1

 ∑
xi∈Z≥0

cxi
i

θi(1) · · · θi(xi)


so long as each sum in the final expression is finite. Thus it is sufficient to prove that

∑
x∈Z≥0

cx
i

θi(1) · · · θi(x)
is finite for each i. By the ratio test

lim
x→∞

cx+1
i

θi(1) · · · θi(x + 1)
·

(
cx

i

θi(1) · · · θi(x)

)−1

= lim
x→∞

ci

θi(x + 1)
= 0 < 1

where the last equality is due to the assumption that limx→∞ θi(x) = ∞. Hence the sum is convergent.
We turn to showing that the process is non-explosive. From [5], to show that the process is non-

explosive, it is sufficient to show ∑
x∈Zm

≥0

π(x)
∑

k

λk(x)

 < ∞.
From (4.10) and (4.12), we need to show

∑
x∈Zm

≥0

 m∏
i=1

cxi
i

θi(1) · · · θi(xi)

∑
k

m∏
i=1

θi(xi) · · · θi(xi − yki + 1)

 < ∞.
Let si = maxk{yki}, where the max is over all source complexes, and let R be the number of reactions.
Let ni > si be such that θi(xi) > 1, · · · , θi(xi − si + 1) > 1 for all xi > ni. Then

∑
x∈Zm

≥0;xi>ni

m∏
i=1

cxi
i

θi(1) · · · θi(xi)

∑
k

m∏
i=1

θi(xi) · · · θi(xi − yki + 1)

<
∑

x∈Zm
≥0;xi>ni

m∏
i=1

cxi
i

θi(1) · · · θi(xi)
R

m∏
i=1

θi(xi) · · · θi(xi − si + 1)

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2118–2140.
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=
∑

x∈Zm
≥0;xi>ni

m∏
i=1

Rcxi
i

θi(1) · · · θi(xi − si)

< C
∑

x∈Zm
≥0;xi>ni

m∏
i=1

cxi−si
i

θi(1) · · · θi(xi − si)
< ∞

where C = R maxm
i=1{c

si
i }, and the last inequality follows from part 1. Thus the process is non-explosive.

�

4.2. Generalization of Theorem 3.3

We are set to provide the next theorem of the current paper, which is the converse statement of
Theorem 3.2 and generalizes Theorem 3.3 from [3]. In the theorem below, we assume limx→∞ θi(x) =

∞ for each i. In Corollary 1, we generalize the result to allow limx→∞ θi(x) ∈ {0,∞} for each i.

Theorem 4.2. Let {S,R,C} be a reaction network and consider the stochastically modeled system with
rate constants {κk} and intensity functions (3.2). Suppose that limx→∞ θi(x) = ∞ for each i = 1, . . . ,m
and that for some c ∈ Rm

≥0 a stationary measure for the stochastic model satisfies (3.3). Then c is a
complex balanced equilibrium for the associated deterministic model with mass action kinetics and
rate constants {κk}.

Proof. By assumption, we have that π satisfies∑
k

π(x + yk − y′k)λk(x + yk − y′k) = π(x)
∑

k

λk(x).

Plugging (3.2) and (3.3) into this equation yields∑
k

cx+yk−y′k∏m
i=1[θi(1) · · · θi(xi + yki − y′ki)]

κk

m∏
i=1

θi(xi + yki − y′ki) · · · θi(xi − y′ki + 1)

=
cx∏m

i=1[θi(1) · · · θi(xi)]

∑
i=1

κk

m∏
i=1

θi(xi) · · · θi(xi − yki + 1).

Canceling and moving terms when necessary, we have∑
k

cyk−y′kκk

m∏
i=1

θi(xi) · · · θi(xi − y′ki + 1) =
∑

k

κk

m∏
i=1

θi(xi) · · · θi(xi − yki + 1).

Enumerating the reaction on the right by their product complexes, and the reactions on the left by their
source complexes, the equation above becomes∑

z∈C

m∏
i=1

θi(xi) · · · θi(xi − zi + 1)
∑

k:y′k=z

cyk−y′kκk =
∑
z∈C

m∏
i=1

θi(xi) · · · θi(xi − zi + 1)
∑

k:yk=z

κk.

Since the above holds for all x ∈ Zm
≥0, the two sides are equal as functions. Hence, if the functions in

the set  m∏
i=1

θi(xi) · · · θi(xi − zi + 1)


z∈C

(4.1)
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are linearly independent, then we must have∑
k:y′k=z

cyk−y′kκk =
∑

k:yk=z

κk,

which is the condition for the associated mass action system to be complex balanced.
Thus it remains to show that the functions in the set (4.1) are linearly independent. We will prove

that the functions are linearly independent by induction on the number of species, and begin with the
base case m = 1, which we provide as a lemma.

Lemma 4.1. When m = 1 (i.e. the system has only one species) the functions in the set (4.1) are linearly
independent.

Proof of Lemma 4.1. Let C = {z1, . . . , zn} ordered so that zi < zi+1 for each i = 1, . . . , n − 1. Suppose,
in order to find a contradiction, the functions in the set (4.1) are linearly dependent. Then there exist
α1, · · · , αr ∈ R with r ≤ n and αr , 0, such that

α1θ(x) · · · θ(x − z1 + 1) + · · · + αrθ(x) · · · θ(x − zr + 1) = 0, for all x ∈ R. (4.2)

Let M =
|α1|

|αr|
+ · · · +

|αr−1|

|αr|
. Since θ(x) → ∞, as x → ∞, we can find an N > 0 such that ∀x > N, we

have θ(x − zr + 1) > M and θ(x), . . . , θ(x − zr + 1) ≥ 1. In this case,

|αrθ(x) · · · θ(x − zr + 1)| > M|αr|θ(x) · · · θ(x − zr + 2)

=

(
|α1|

|αr|
+ · · · +

|αr−1|

|αr|

)
|αr|θ(x) · · · θ(x − zr + 2)

= |α1|θ(x) · · · θ(x − zr + 2) + · · · + |αr−1|θ(x) · · · θ(x − zr + 2)
≥ |α1|θ(x) · · · θ(x − z1 + 1) + · · · + |αr−1|θ(x) · · · θ(x − zr−1 + 1).

This contradicts (4.2). Therefore, (4.1) must be linearly independent. �

We turn to the inductive step. Thus, we now assume that functions of the form (4.1) for distinct
complexes z are linearly independent when there are m − 1 species. We must show that this implies
linear independence when there are m species.

Enumerate the complexes as C = {z1, z2, . . . , zn}. Suppose that there are α1, . . . , αn for which

α1

m∏
i=1

θi(xi) · · · θi(xi − z1
i + 1) + . . . + αn

m∏
i=1

θi(xi) · · · θi(xi − zn
i + 1) = 0, for all x ∈ Rm. (4.3)

We will show that each αi = 0.
First note that we can not have z1

i = z2
i = . . . = zn

i for each i = 1, . . . ,m, for otherwise all the
complexes are the same. Thus, and without loss of generality, we assume that not all of the zk

1 are
equal. In particular, we will assume that z1

1, . . . , z
n
1 consists of p distinct values with 2 ≤ p ≤ n. We will

also assume that the complexes are ordered so that the first r1 terms of zk
1 are the same, the second r2

terms are the same, etc. That is,

z1
1 = . . . = zr1

1 , zr1+1
1 = . . . = zr1+r2

1 , . . . , zn−rp+1
1 = . . . = zn

1. (4.4)
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We now consider the left hand side of (4.3) as a function of x1 alone. For j = 1, . . . , p, we define

f j(x1) = θ1(x1) · · · θ1(x1 − zr1+...+r j

1 + 1).

By Lemma 4.1, the functions f j, for j = 1, . . . , p, are linearly independent. Combining similar terms
in (4.3) we have

f1(x1)[α1

m∏
i=2

θi(xi) · · · θi(xi − z1
i + 1) + . . . + αr1

m∏
i=2

θi(xi) · · · θi(xi − zr1
i + 1)]+ (4.5)

f2(x1)[αr1+1

m∏
i=2

θi(xi) · · · θi(xi − zr1+1
i + 1) + . . . + αr2

m∏
i=2

θi(xi) · · · θi(xi − zr1+r2
i + 1)]+

...

+ fp(x1)[αn−rp+1

m∏
i=2

θi(xi) · · · θi(xi − zn−rp+1
i + 1) + . . . + αn

m∏
i=2

θi(xi) · · · θi(xi − zn
i + 1)] = 0.

From the independence of the f j, it must be the case that each bracketed term above is zero.
Without loss of generality, we just consider the first bracketed term in (4.5):

α1

m∏
i=2

θi(xi) · · · θi(xi − z1
i + 1) + . . . + αr1

m∏
i=2

θi(xi) · · · θi(xi − zr1
i + 1), (4.6)

which we know is equal to zero. The goal now is to apply our inductive hypothesis to conclude that
each of α1, . . . , αr1 is equal to zero.

For each of k = 1, . . . , r1, we let z̃k = (zk
2, . . . , z

k
m). Then each term in the sum (4.6) is a function

on Rm−1 of the general form (4.1) with new complexes z̃k ∈ Rm−1. To use the inductive hypothesis, we
must argue that the z̃k are distinct. Consider, for example, the first two terms: z̃1 and z̃2. By (4.4), we
know that z1

1 = z2
1; that is, the coefficient of species 1 for the two complexes are the same. If we also had

z̃1 = z̃2, then all the coefficients of the species would be the same for the two complexes, contradicting
the fact that they are distinct complexes (i.e. z1 , z2). Hence, it must be that z̃1 , z̃2. Thus, by the
inductive hypothesis, all the terms of the sum (4.6) are linearly independent, and α1 = · · · = αr1 = 0.
Repeating this argument for the other bracketed terms completes the proof.

We have proven the independence of (4.1) in all cases, which completes the proof of the theorem.
�

The following relaxes the condition in Theorem 4.2 that the limit of the functions θi must be infinity.

Corollary 1. Let {S,R,C} be a reaction network and consider the stochastically modeled system with
rate constants {κk} and intensity functions (3.2). Suppose that limx→∞ θi(x) ∈ {0,∞} for each i =

1, . . . ,m and that for some c ∈ Rm
≥0 a stationary measure for the stochastic model satisfies (3.3).

Suppose further that θi(x) > 0 for x large enough. Then c is a complex balanced equilibrium for the
associated deterministic model with mass action kinetics and rate constants {κk}.

Proof. Without loss of generality, assume limx→∞ θi(x) = 0 for i ≤ ` and limx→∞ θi(x) = ∞ for i ≥ `+1.
The proof is the same as that of Theorem 4.2 in that we must prove the linear independence of the
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functions in (4.1). Let

α1

m∏
i=1

θi(xi) · · · θi(xi − z1
i + 1) + . . . + αn

m∏
i=1

θi(xi) · · · θi(xi − zn
i + 1) = 0. (4.7)

For x large enough that θi(x) > 0, let φi(x) =
1

θi(x)
for each i ≤ `. Then we have limx→∞ φi(x) = ∞.

Now (4.7) becomes

α1
∏m

i=`+1 θi(xi) · · · θi(xi − z1
i + 1)∏`

i=1 φi(xi) · · · φi(xi − z1
i + 1)

+ . . . +
αn

∏m
i=`+1 θi(xi) · · · θi(xi − zn

i + 1)∏`
i=1 φi(xi) · · · φi(xi − zn

i + 1)
= 0. (4.8)

Let wk = max1≤ j≤n{z
j
k}. Then from (4.8) we have

α1

∏̀
i=1

φi(xi − z1
i ) · · · φi(xi − wi)

m∏
i=`+1

θi(xi) · · · θi(xi − z1
i + 1)+

. . . + αn

∏̀
i=1

φi(xi − zn
i ) · · · φi(xi − wi)

m∏
i=`+1

θi(xi) · · · θi(xi − zn
i + 1) = 0.

This is similar to the set-up of Theorem 4.2 (since each φi(x) → ∞, as x → ∞) and we can conclude
α1 = . . . = αn = 0 and complete the proof. �

4.3. Generalization of Theorem 3.5

This section is concerned with the convergence of the non-equilibrium potential of the stationary
distribution of systems with general kinetics, under some appropriate scaling. In particular, we would
like to have a similar result as Theorem 3.5 for the case of general kinetics. One difficulty that arises
is that the classical scaling is not, in general, appropriate for our purposes. This is illustrated by the
example below.

Example 1. Consider the reaction network with one species A and reactions given by

∅� A

with the intensity function given by (3.2), where the rate constants are κ∅→A = κA→∅ = 1 and θ(x) = x2.
Consider the process under the classical scaling. We obtain a stationary distribution for the scaled
model X̃V from Theorem 3.4 and (3.8):

π̃V(x̃V) = πV(V x̃V) =
1
M

(Vc)V x̃V

θ(1) · · · θ(V x̃V)
=

1
M

(Vc)V x̃V

((V x̃V)!)2 , x̃V ∈
1
V
Z≥0.

We consider the limiting behavior of the non-equilibrium potential −
1
V

ln(π̃V(x̃V)), as V → ∞. Using
Stirling’s approximation,

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2118–2140.



2131

−
1
V

ln(π̃V(x̃V)) = −
1
V

ln
 1

M
(Vc)V x̃V

((V x̃V)!)2


= −

1
V

(− ln M + V x̃V ln V + V x̃V ln c − 2 ln((V x̃V)!))

≈ −
1
V

(− ln M + V x̃V ln V + V x̃V ln c − 2V x̃V ln V x̃V + 2V x̃V)

= −
1
V

(− ln M + V x̃V ln c − 2V x̃V ln x̃V − V x̃V ln V + 2V x̃V).

We need to estimate M when V → ∞. From Lemma A.1 in the Appendix, we have

ln M = ln
∑
x∈Z≥0

(Vc)x

(x!)2 ≈ 2(Vc)1/2 + a ln(Vc) + b,

for some constants a, b ∈ R. Thus

−
1
V

ln(π̃V(x̃V)) ≈ −
1
V

(−2(Vc)1/2 − a ln(Vc) − b + V x̃V ln c − 2V x̃V ln x̃V − V x̃V ln V + 2V x̃V)

= 2
c1/2

V1/2 +
a ln(Vc)

V
+

b
V
− x̃V ln c + 2x̃V ln x̃V + x̃V ln V − 2x̃V .

Clearly, lim
V→∞
−

1
V

ln(π̃V(x̃V)) = ∞, and we do not have convergence of the non-equilibrium potential
under the classical scaling. �

With the above example in mind, we provide an alternative scaling.

4.3.1. The modified scaling

Define |yk| =
∑

i yki and let V be a scaling parameter. For each reaction yk → y′k let κk be a positive
parameter. We now define the rate constant for yk → y′k as

κV
k =

κk

Vd·yk−1 (4.9)

where the parameter d is a vector to be chosen (they will depend upon the limiting values limx→∞ θi(x)).
Note that the classical scaling is the case when d = (1, 1, . . . , 1). Then we define the scaled intensity
function

λV
k (x) =

κk

Vd·yk−1

m∏
i=1

θi(xi) · · · θi(xi − yki + 1), (4.10)

where, as usual, θi : Z→ R≥0, and θi(x) = 0 if x ≤ 0.

Theorem 4.3. Let {S ,C,R} be a reaction network with rate constants {κk}. Suppose that when modeled
deterministically, the associated mass action system is complex balance with equilibrium c ∈ Rm

>0. For
some V, let {κV

k } be related to the {κk} via (4.9). Then the stochastically modeled system with scaled
intensity function (4.10) has stationary measure

πV
∗ (x) =

m∏
i=1

(Vdici)xi

θi(1) · · · θi(xi)
, where x ∈ Zm

≥0. (4.11)
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If (4.11) is summable, then a normalizing constant M can be found so that

πV(x) =
1
M

m∏
i=1

(Vdici)xi

θi(1) · · · θi(xi)
, where x ∈ Zm

≥0, (4.12)

is a stationary distribution.

Proof. The proof is similar to that of Theorem 3.1, as found in [1], except care must be taken to ensure
that the terms associated with the scaling parameter V cancel appropriately. �

Let XV be the process associated with the intensities (4.10) and let X̃V = V−1XV be the scaled
process. By Theorem 4.3, we have that for xV ∈ 1

VZ
m
≥0

π̃V
∗ (x̃V) = πV

∗ (V x̃V), (4.13)

is a stationary measure for the scaled process. If (4.13) is summable, which is ensured by Theorem 4.1
so long as θi(x)→ ∞ as x→ ∞, then

π̃V(x̃V) = πV(V x̃V), (4.14)

is a stationary distribution. In the next section, we consider the the limiting behavior of − 1
V ln(π̃V(x̃V))

as V → ∞ for a class of θi.

4.3.2. Limiting behavior of − 1
V ln(π̃V(x̃V))

We make the following assumption on the functions θi.

Assumption 1. We assume that (i) θi : Z→ R≥0, (ii) θi(x) = 0 if x ≤ 0, and (iii) there exists d, A ∈ Rm
>0

such that limxi→∞

θi(xi)

xdi
i

= Ai for each i.

Roughly speaking, this class of functions act like power functions when x is large. We will utilize
functions satisfying Assumption 1 to build intensity functions as in (4.10). We will show that if the
deterministic mass action system is complex balanced, then the limiting behavior of the scaled
non-equilibrium potential of the stochastically modeled system with intensities (4.10) is a Lyapunov
function for the ODE system

ẋ =
∑

k

κk(Axd)yk(y′k − yk), for x ∈ Rm
≥0. (4.15)

where we recall that Axd is the vector with ith component Aix
di
i . This result therefore generalizes

Theorem 3.5 (which is Theorem 8 in [2]).

Lemma 4.2. Let {S ,C,R} be a reaction network with rate constants {κk}. Suppose that when modeled
deterministically, the associated mass action system is complex balanced with equilibrium c ∈ Rm

>0.
Let d, A ∈ Rm

>0. Then the system (4.15) is complex balanced with equilibrium vector c̃ satisfying

c̃i =

(
ci

Ai

)1/di

.
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Proof. The proof consists of verifying that for each z ∈ C,∑
k:yk=z

κk(Ac̃d)yk =
∑

k:y′k=z

κk(Ac̃d)yk ,

where the sum on the left consists of those reactions with source complex z and the sum on the right
consists of those with product complex z. This is immediate from the definition of c̃. �

We now turn to the scaled models, and prove that the properly scaled non-equilibrium potential
converges to a Lyapunov function for the ODE system (4.15).

Theorem 4.4. Let {S ,C,R} be a reaction network with rate constants {κk}. Suppose that when modeled
deterministically, the associated mass action system is complex balanced with equilibrium c ∈ Rm

>0.
Fix d, A ∈ Rm

>0 and let θi be a choice of functions satisfying Assumption 1. For V > 0 and the
d > 0 already selected, let {κV

k } be related to {κk} as in (4.9) and let the intensity functions for the
stochastically modeled system be (4.10). Let π̃V be the stationary distribution for the scaled process
guaranteed to exist by Theorems 4.3 and 4.1 and given by (4.12).

Fix a sequence of points x̃V ∈ 1
VZ

m
≥0 for which limV→∞ x̃V = x̃ ∈ Zm

>0. Then

lim
V→∞

[
−

1
V

ln(π̃V(x̃V))
]

= V(x̃) =

m∑
i=1

[x̃i(di ln(x̃i) − ln(ci) − di + ln(Ai))] +

m∑
i=1

di(ci/Ai)1/di , (4.16)

where V is defined by the final equality, and moreover V is a Lyapunov function for the ODE system
(4.15).

Note that by taking d = (1, .., 1) and A = (1, .., 1), the limit of the θi in Assumption 1 is simply mass
action kinetics. Hence, the main result in [2] is contained within the above theorem.

Proof. Using (4.12) and (4.14) we have

−
1
V

ln(π̃V(x̃V)) = −
1
V

ln
( 1

M

m∏
i=1

(Vdici)V x̃V
i

θi(1) · · · θi(V x̃V
i )

)
= −

1
V

(
− ln M +

m∑
i=1

V x̃V
i ln(Vdici) −

m∑
i=1

ln(θi(1) · · · θi(V x̃V
i ))

)
= −

1
V

(
− ln M +

m∑
i=1

VdixV
i ln(V) +

m∑
i=1

V x̃V
i ln(ci) −

m∑
i=1

ln(θi(1) · · · θi(V x̃V
i ))

)
= −

1
V

(
− ln M +

m∑
i=1

Vdi x̃V
i ln(V) +

m∑
i=1

V x̃V
i ln(ci) −

m∑
i=1

ln((V x̃V
i !)di)

+

m∑
i=1

ln((V x̃V
i !)di) −

m∑
i=1

ln(θi(1) · · · θi(V x̃V
i ))

)
.

We analyze the limiting behavior of the different pieces of the last expression.
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1. We begin with the first term

1
V

ln M =
1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 θi(1) · · · θi(xi)

)
,

where M is defined using (4.12). In Lemma A.2 in the appendix we show that as V → ∞

1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 θi(1) · · · θi(xi)

)
∼

1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 Axi

i (xi!)di

)
=

1
V

ln
( ∑

x∈Zm

(VdcA−1)x∏m
i=1(xi!)di

)
, (4.17)

where by aV ∼ bV , as V → ∞, we mean limV→∞(aV − bV) = 0. We may then apply Lemma A.1 to
(4.17) to conclude there are constants a, b such that

1
V

ln
( ∑

x∈Zm

(VdcA−1)x∏m
i=1(xi!)di

)
∼

1
V

m∑
i=1

(di(VdiciA−1
i )1/di + a ln(VdiciA−1

i ) + b).

Taking the limit V → ∞, we see that only the first term remains, which yields

lim
V→∞

1
V

ln M =

m∑
i=1

di(ci/Ai)1/di .

2. We use Stirling’s approximation with the middle terms

−
1
V

( m∑
i=1

(Vdi x̃V
i ln(V) + V x̃V

i ln(ci)) −
m∑

i=1

ln((V x̃V
i !)di)

)
∼ −

1
V

( m∑
i=1

Vdi x̃V
i ln(V) + V x̃V

i ln(ci) −
m∑

i=1

di((V x̃V
i ) ln(V x̃V

i ) − V x̃V
i )

)
= −

1
V

( m∑
i=1

V x̃V
i ln(ci) −

m∑
i=1

di(V x̃V
i ) ln(x̃V

i ) +

m∑
i=1

diV x̃V
i

)
=

m∑
i=1

di x̃V
i ln(x̃V

i ) −
m∑

i=1

x̃V
i ln(ci) −

m∑
i=1

di x̃V
i .

Taking the limit V → ∞, and noting that x̃V → x̃, we have

lim
V→∞
−

1
V

( m∑
i=1

(Vdi x̃V
i ln(V) + V x̃V

i ln(ci)) −
m∑

i=1

ln((V x̃V
i !)di)

)
=

m∑
i=1

di x̃i ln(x̃i) −
m∑

i=1

x̃i ln(ci) −
m∑

i=1

di x̃i.

3. We turn to the final term. By using an argument similar to (4.17), there is a constant C > 0 for
which
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−

m∑
i=1

1
V

[ln((V x̃V
i !)di) − ln(θi(1) · · · θi(V x̃V

i ))] = −
1
V

ln
( (V x̃V!)d∏m

i=1 θi(1) · · · θi(V x̃V
i )

)
∼ −

1
V

ln
( C
(A)V x̃V

)
(4.18)

= −
1
V

ln C −
m∑

i=1

V x̃V
i ln(Ai)

 .
Taking the limit V → ∞, and noting that x̃V → x̃, we have

lim
V→∞
−

m∑
i=1

1
V

[ln((V x̃V
i !)di) − ln(θi(1) · · · θi(V x̃V

i ))] =

m∑
i=1

x̃i ln(Ai).

Combining the three parts, we conclude (4.16) holds. The fact that the limit is a Lyapunov function is
proven in Lemma 4.3 below. �

Lemma 4.3. The function given by (4.16),

V(x) =

m∑
i=1

[xi(di ln(xi) − ln(ci) − di + ln(Ai)) + di(ci/Ai)1/di], x ∈ Zm
≥0,

is a Lyapunov function for the system (4.15).

Proof. We have

∇V(x) = (d1 ln(x1) − ln(c1) + ln(A1), . . . , dm ln(xm) − ln(cm) + ln(Am)).

Let f be the right-hand side of (4.15) and recall that c is a complex balanced equilibrium of the mass
action model. We have

∇V(x) · f (x) =
∑

k

κk(Axd)yk

(
ln(xd) − ln

( c
A

))
· (y′k − yk)

=
∑

k

κkcyk
(Axd)yk

cyk

ln (
Axd

c

)y′k
− ln

(
Axd

c

)yk


≤
∑

k

κkcyk

(Axd

c

)y′k
−

(
Axd

c

)yk


=
∑

k

(Axd)y′kκkcyk−y′k − (Axd)ykκk

=
∑
z∈C

 ∑
k:y′k=z

(Axd)y′kκkcyk−y′k −
∑

k:yk=z

(Axd)ykκk


=

∑
z∈C

(Axd)z

 ∑
k:y′k=z

κkcyk−y′k −
∑

k:yk=z

κk

 = 0,

where we used the inequality a(ln b− ln a) ≤ b−a and the last equation holds because c is the complex
balanced equilibrium for the mass-action system. �
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A. Appendix: Required Lemmas

Lemma A.1. Here we need to provide an asymptotic estimate as C → ∞ of the form

ln
∑
x∈Zm

≥0

Cx

(x!)d ∼
∑

m

(diC
1/di
i + a ln Ci + b)

where a, b are constants that do not depend on C.

Proof. When m = 1, by Stirling estimation (and ignoring the factor of
√

2π), we have

(x!)d ∼

(√
x

xx

ex

)d

=
√

xd
(xd)xd

exddxd x(d−1)/2 ∼ Γ(xd + 1)
x(d−1)/2

dxd ∼
Γ(xd + 1 + (d − 1)/2)

dxd ,

where the last estimation is due to the fact that lim
n→∞

Γ(n + α)
nαΓ(n)

= 1.
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Thus ∑
x∈Z

Cx

(x!)d ∼
∑
x∈Z

(Cdd)x

Γ(xd + (d + 1)/2)
. (A.1)

The asymptotic behavior of the right hand side in (A.1) can be found in Example 2.3.1 of [23]. In
particular, its asymptotic character is exponential since we are considering C having real values only∑

x∈Z

(Cdd)x

Γ(xd + (d + 1)/2)
∼

1
d

(Cdd)(1−d)/2de(Cdd)1/d
= cC(1−d)/2dedC1/d

where c is some constant depending on d. Thus, taking log we have

ln
(∑

x∈Z

Cx

(x!)d

)
∼ dC1/d + a ln C + b

where a, b are some constants depending on d.

When m > 1, we have

ln
( ∑

x∈Zm

Cx

(x!)d

)
= ln

(∏
m

∑
x∈Z

Cxi
i

(xi!)di

)
∼

∑
m

(diC
1/di
i + a ln Ci + b),

where we have applied the m = 1 case in the final step. �

In the following lemma, for sequences aV and bV we write aV ∼ bV , as V → ∞, for

lim
V→∞

(aV − bV) = 0.

Lemma A.2. Let θi satisfy Assumption 1. Then for a fixed c ∈ Zm
>0,

1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 θi(1) · · · θi(xi)

)
∼

1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 Axi

i (xi!)di

)
=

1
V

ln
( ∑

x∈Zm

(VdcA−1)x∏m
i=1(xi!)di

)
,

as V → ∞.

Proof. Let first consider the case when m = 1.

Let α > 0. From Assumption 1 we have limx→∞
θ(x)
xd = Ai. Therefore, there exists an N > 0 such

that if x > N, then

A − αA <
θ(x)
xd < A + αA

which is equivalent to

1 − α <
θ(x)
Axd < 1 + α. (A.2)
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Consider

1
V

ln
(∑

x∈Z

(Vdc)x

θ(1) · · · θ(x)

)
−

1
V

ln
(∑

x∈Z

(Vdc)x

Ax(x!)d

)

=
1
V

ln
(∑

x≤N
(Vdc)x

θ(1)···θ(x) +
∑

x>N
(Vdc)x

θ(1)···θ(x)∑
x∈Z

(Vdc)x

Ax(x!)d

)
=

1
V

ln
(R + S

T

)

where

R =
∑
x≤N

(Vdc)x

θ(1) · · · θ(x)
= O(VdN)

T =
∑
x∈Z

(Vdc)x

Ax(x!)d = O(ed(Vdc/A)1/d
) = O(edV(c/A)1/d

),

where the sum in R is over all x ∈ Z≥0 and the estimation of T is again based on Lemma A.1.
We have

S =
∑
x>N

(Vdc)x

θ(1) · · · θ(x)

=
∑
x>N

(Vdc)x

Ax(x!)d

Ax(x!)d

θ(1) · · · θ(x)

=
AN(N!)d

θ(1) · · · θ(N)

∑
x>N

(Vdc)x

Ax(x!)d

A(N + 1)di · · · A(x)d

θ(N + 1) · · · θ(x)

= cN

∑
x>N

(Vdc)x

Ax(x!)d

A(N + 1)d · · · A(x)d

θ(N + 1) · · · θ(x)
.

Using (A.2), we have

cN

∑
x>N

(Vdc)x

Ax(x!)d

1
(1 + α)x−N < S < cN

∑
x>N

(Vdc)x

Ax(x!)d

1
(1 − α)x−N .

Thus

cN

∑
x>N

(Vdc(1 + α)−1)x

Ax(x!)d < S < cN

∑
x>N

(Vdc(1 − α)−1)x

Ax(x!)d

where LHS = O(edV(c/A(1+α))1/d
) and RHS = O(edV(c/A(1−α))1/d

) similar to how we estimated T . This,
together with the fact R � S for V large enough, gives us

1
V

ln
(
aN

edV(c/A)1/d

edV(c/A(1+α))1/d

)
<

1
V

ln
(R + S

T

)
<

1
V

ln
(
bN

edV(c/A)1/d

edV(c/A(1−α))1/d

)
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where aN , bN are some constants depending on N. Thus

ln aN

V
+ d((c/A)1/d − (c/A(1 + α))1/d) <

1
V

ln
(R + S

T

)
<

ln bN

V
+ d((c/A)1/d − (c/A(1 − α))1/d).

Now for an ε > 0, pick α such that

max{|d((c/A)1/d − (c/A(1 + α))1/d)|, |d((c/A)1/d − (c/A(1 − α))1/d)|} <
ε

2
.

Then we pick V large enough so that

max{|aN/V
∣∣∣, |bN/V |} <

ε

2
,

then ∣∣∣∣∣ 1
V

ln
(R + S

T

)∣∣∣∣∣ < ε

2
+
ε

2
= ε.

Thus
1
V

ln
(R + S

T

)
→ 0 as V → ∞ and we have finished the case m = 1.

For m > 1, we have

1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 θi(1) · · · θi(xi)

)
=

1
V

ln
( m∏

i=1

∑
xi∈Z

(Vdici
i )xi

θi(1) · · · θi(xi)

)
=

1
V

m∑
i=1

ln
(∑

xi∈Z

(Vdici
i )xi

θi(1) · · · θi(xi)

)
∼

1
V

m∑
i=1

ln
(∑

xi∈Z

(Vdici
i )x

Axi
i (xi!)di

)
=

1
V

ln
( m∏

i=1

∑
xi∈Z

(Vdici
i )x

Axi
i (xi!)di

)
=

1
V

ln
( ∑

x∈Zm

(Vdc)x∏m
i=1 Axi

i (xi!)di

)
.

Note that here the asymptotic analysis still holds after finite addition, since the asymptotic relation we
prove for the case m = 1 is slightly stronger than the usual definition of asymptotic. �
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