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Abstract: Remanufacturing is a practice of growing importance due to increasing environmental 

awareness and regulations. However, the stochastic natures inherent in the remanufacturing 

processes complicate its scheduling. This paper undertakes the challenge and presents a 

remanufacturing job shop scheduling approach by integrating alternative routing assignment and 

machine resource dispatching. A colored timed Petri net is introduced to model the dynamics of 

remanufacturing process, such as various process routings, uncertain operation times for cores, and 

machine resource conflicts. With the color attributes in Petri nets, two types of decision points, 

recovery routing selection and resource dispatching, are introduced and linked with places in CTPN 

model. With time attributes in Petri nets, the temporal aspect of recovery operations for cores as well 

as the evolution dynamics in cores’ operational stages is mathematically analyzed. A hybrid 

meta-heuristic algorithm embedded scheduling strategy over CTPN is proposed to search for the 

optimal recovery routings for worn cores and their recovery operation sequences on workstations, in 

minimizing the total production cost. The approach is demonstrated through the remanufacturing of 

used machine tool and its effectiveness is compared against another two cases: baseline case with 

fixed recovery process routings and case 2 using standard SA/MST. 
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1. Introduction 

Remanufacturing, as an industrial process of restoring discarded products/components back to 

their useful lives, is of growing importance due to the emerging pressure of legislation and increasing 

awareness of environmental conservation. As an ultimate form of recycling, remanufacturing 

maintains much of the value added from original material and reprocessing conservation, leading to 

lower production costs and improved profits [1]. A recent wall street journal revealed that large scale 

remanufacturing in the United States employs more than 500,000 people and contributes to 

approximately $100 billion of goods sold each year [2]. More successful industry applications can be 

seen in automobile remanufacturing, aerospace remanufacturing and electronic remanufacturing [3–5]. 

Compared to manufacturing, remanufacturing is more complicated in the way that (1) the 

supply of returned products is unpredictable in timing and quantities; (2) the quality and composition 

of returned products varies; and (3) the process routings are not necessarily fixed but rather adapt to 

the actual conditions of products/components [6]. Such characteristics have led many new 

methodologies to deal with various operation management issues in remanufacturing as summarized 

in the survey literature [7]. One of the challenges, which is the focus of this paper, is 

remanufacturing job shop scheduling. With the high level of uncertainty and resource limitation, it 

becomes extremely difficult to carry out various remanufacturing tasks for different products and still 

achieve maximal system performance. 

Guide and his colleagues are the first group of researchers that looked into the remanufacturing 

scheduling. Through simulation, they examined the performance of several static dispatching rules in 

a repair shop. They assumed the system has stochastic arrivals, exponentially distributed process 

times and probabilistic process routings [8]. Extended from this work, an analytical model was 

further developed to explore the impact of those rules on system performance in terms of weighted 

average sojourn time [9]. While the pursued simulation and model analysis provided insights to 

practicing managers in a repair shop, much of work is needed for complex job shop settings where 

various products/parts with uncertain remanufacturing routings compete for constrained resources. 

A second line of work has focused on economic lot scheduling with random returns. For 

instance, Tang and Teunter considered a hybrid system where (re)manufacturing operations of 

multiple products are performed on the same production line [10]. The work formulated the problem 

as a mixed integer linear program to determine the optimal cycle time and production starting times 

for (re)manufacturing. The research was further extended to relax the constraint of common cycle 

time and a single (re)manufacturing lot per item per cycle [11]. By dividing the returns into different 

quality grades, Sun et al. investigated a lot scheduling problem where the remanufacturing rate 

increases as the quality grade increases and holding costs for serviceable products are higher than 

returns [12]. The objective is to minimize the average total cost by optimizing the acquisition lot size 

and scheduling the remanufacturing sequence. However, the deterministic nature of the assumptions 

(i.e., constant demand and returns, and constant remanufacturing rate) made in those works failed to 

address the uncertainty inherent in remanufacturing. Moreover, the authors considered 

remanufacturing as a single-stage process. Given that refurbishing used products up to like-new 

condition tends to involve a sequence of recovery operations, such single-stage scheduling methods 

present practical limitation. 

A third line of researches have tackled the multi-stage and multi-product remanufacturing 

scheduling problem. For instance, Kim et al. considered a remanufacturing system with a single 
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disassembly workstation, parallel flow-shop-type reprocessing lines, and a single reassembly 

workstation [13]. A hybrid scheduling heuristic is proposed to determine the sequences of products 

to be disassembled, to be reprocessed at each reprocessing lines and to be reassembled. The authors, 

however, treated the problem deterministic and static. Luh et al. presented another work that 

considered a similar remanufacturing system but tried to address the underlying uncertainty [14]. The 

main novelty of the research is that it considered stochastic asset arrival time and part repair time to 

model the dynamics of rotable inventory for optimization. Nevertheless, the authors presumed that 

each asset goes through a fixed series of overhaul operations. Giglio et al. studied a production 

system which produces multi-class single-level products through both manufacturing of raw 

materials and remanufacturing of return products [15]. A mixed-integer programming formulation is 

proposed to obtain the optimal lot size and job shop schedules with minimum total cost. This work 

presented the same limitation that the recovery process routings of returns are deterministic. By 

considering the alternatives of remanufacturing process routes for worn cores, Zhang et al. proposed 

a simulation based genetic algorithm approach for remanufacturing process planning and scheduling, 

where the processing time of each alternative routes are assume to be known a priori [16]. 

Summarizing the findings of the above discussion, no study has comprehensively dealt with 

remanufacturing job shop scheduling in subjecting to alternative recovery operations, random 

operation times and limited resource conflicts. In a practical remanufacturing system, the quality of 

returned products/cores varies, ranging from slightly used with minor blemishes to significantly 

damaged and requiring extensive repair. Such differences in the condition of products/cores strongly 

affect the set of recovery operations necessary to bring them up to a quality standard. In addition, the 

time that each recovery operation takes varies as well with respect to different damages of the cores. 

Those stochastic natures in remanufacturing triggers the potential conflicts of limited machine 

resources to a noticeable extend. Such characteristics have led a number of studies to investigate the 

operation management issues in remanufacturing environment by using different modeling methods, 

i.e., through analytic model [8,9,11,12,17], through Mixed Integer Programming model [10,13,15,16], 

through Lagrangian Relaxation [14] and through Petri nets model [18,19]. While our previous work [17] 

and [20] investigated the remanufacturing processes of worn cores with uncertain failure conditions 

and proposed an analytical model to study such dynamics in recovery process routings through 

probabilistic measures, how to incorporate those dynamic measures into remanufacturing scheduling 

has yet to be undertaken. 

The colored timed Petri nets (CTPN) is an extension of ordinary Petri nets where the time and 

color are introduced to describe the logic structure and dynamic behavior of complex systems [21]. 

By taking advantage of both the well-formed formalism of CTPN and the robustness of Simulated 

Annealing (SA) for global optimization, the paper tackles this challenge and makes the following 

contributions. First, a colored timed Petri net is designed to explicitly model the dynamic of 

remanufacturing processes, such as various process routings, different uncertain operation times for 

cores, and real-time machine resource conflicts. With the color attributes in Petri nets, two types of 

decision points, recovery routing selection and resource dispatching, are introduced and embedded in 

places of CTPN model. With time attributes in Petri nets, the temporal aspect of recovery operations 

for cores as well as the evolution dynamics in cores’ operational stages is mathematically analyzed. 

Second, a hybrid meta-heuristic algorithm embedded scheduling strategy over CTPN is proposed to 

search for the optimal recovery routings for worn cores and their recovery operation sequences on 

workstations, in minimizing the total production cost.  
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The rest of the paper is organized as follows. Section 2 presents the CTPN model. Section 3 

describes the hybrid meta-heuristics based on SA and minimum slack time (MST) dispatching rule. 

A case study is conducted in Section 4, followed by the conclusion and future research in Section 5.  

2. A CTPN based remanufacturing process model 

2.1. Problem statement 

This paper considers a typical remanufacturing job shop where its clients drop their used 

products with an expectation to get them fully recovered within a fixed time frame. The 

remanufacturing processes are traditionally complicated including disassembly that disassembles a 

worn product into components/cores, cores’ recovery operations and assembly that assembles 

recovered cores back into the product. Figure 1 gives an organizational structure of the 

remanufacturing job shop. 
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Figure 1. Organizational structure of the remanufacturing facility. 
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Figure 2. The remanufacturing process routings of machine tool components. 
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In this case, each used product (e.g., the l
th

 used product) arrives at the job shop with an arrival 

time AT(l) and a due date Due(l). The used product is first disassembled into what so called “cores” 

that are disassembled subassemblies or components. The cores are then classified into “reusable”, 

“repairable”, and “disposal” through the inspection process as depicted in Figure 1. This paper 

focuses on the recovery activities only. The challenge arises when dealing with the repairable cores 

with different levels of damage that need to go through a set of recovery operations to restore their 

size and property. 

In a remanufacturing job shop, the quality of repairable cores commonly ranges from slightly 

used with minor blemishes to significantly damaged and requiring extensive recovery. Such quality 

variations strongly affect the set of recovery operations necessary to bring them up to a quality 

standard. As exemplified in Figure 2, there are several process routings for the remanufacturing of 

used machine tool cores of different types and various damage conditions. For instance, the lathe 

spindles can be inspected and classified into either “abrasion”, “corrosion”, or “micro-cracks”, on 

which a set of specific recovery operations are designated for their remanufacturing.  

With a wide variety of recovery technologies being applied into remanufacturing industry, some 

recovery process routings for cores with a certain type of damage can be alternative. For instance, if 

a spindle is detected with severe abrasion, two typical process routings would be “grinding → 

chromium electroplating” or “grinding → cold welding → fine grind” to regain the surface accuracy. 

Each alternative process routing consists of a set of predesigned recovery operations, with each 

operation being performed by a certain kind of machine equipment in a workstation, resulting in a 

specified recovery quality and unit processing cost [22,23]. As an upper level of process planning, 

different combinations of recovery process routings for cores would lead to much variation in 

remanufacturing cost and real-time machine workload in remanufacturing job shop.  

With the recovery routings determined in the upper level, the core then travels to and is 

processed by a set of recovery workstations sequentially according to the designed process flow. 

However, the recovery operation time for a particular core in a given workstation is not fixed but 

rather dependent on the actual condition of the core. While different routings might demand 

operation times on the same workstation, various cores would compete for constrained machine 

resource to be recovered. 

Our objective is to consider such variation for efficient resource utilization in fulfilling the 

demand with the minimum cost (i.e., operation cost and tardiness penalty). The remanufacturing job 

shop scheduling problem is strongly NP-hard due to: a) assignment decisions of reparable cores to 

recovery process routings and b) sequencing decisions of recovery operations of cores in each 

workstation. For that purpose, the paper makes the following assumptions: 

(1) Each workstation has only one machine and each machine can process at most one task at a 

time. 

(2) Each task is non-preemptive, requiring one and only one machine at a time. 

(3) The transportation time between buffers is negligible. 

(4) Penalty is charged if the system does not meet the due date of a product. 

2.2. Definition of CTPN 

The ordinary of Petri nets (PN) does not include time and color, which limits its capability to 

describe the logic structure and behavior of modeled systems, but not its evolution over time and 
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color [24,25]. In view of the specific characteristics of remanufacturing system to be modeled, this 

section introduces time and color attributes to a Petri net and proposes a CTPN. The model considers 

not only recovery process routings and stochastic operation times, but also integrates recovery 

routing assignments and efficient resource dispatching. 

Definition 1: A colored timed Petri net (CTPN) is defined as 7-tuple: CTPN= (P, T, I, O, M, U, C). 

(1) P = S  W, where the set of places in S represents buffers, the set of places in W stands for 

workstations. 

(2) T = T
a
  T

e
, where the finite set of transitions in T

a
 represent recovery operations, and the ones 

in T
e
 stand for transportation. 

(3) I: P×T→{0,1} is the input function that defines the set of ordered pairs (pi, tk), where I(pi, tk)=1, 

if pi is an input place for tk (i.e., pi ·tk), otherwise 0. 

(4) O: P×T→{0,1} is the output function that defines the set of ordered pairs (pi, tk), where O(pi, 

tk)=1, if pi is an output place for tk (i.e., pi ·tk·), otherwise 0. 

(5) M: P→{0,1,2,…} is a marking vector, where M(pi) represents the number of tokens in pi. 

(6) U: T
a
→ is a non-zero time function that assigns to each recovery operation t T

a
, while U: 

T
b
→ is a zero time function such that the transportation time between buffers is negligible. 

(7) C: P→ is a color function that assigns to each place p S W with a color set C(p). 

Figure 3 gives an example of the proposed CTPN that corresponds to recovery process routings 

for used machine tools in Figure 2. The description for the places and transitions in CTPN are given 

Table 1. For the modeling and optimization purpose, some basic notations are introduced. Table 2 

shows the index used in the CTPN model. Table 3 and Table 4 gives the model parameters and 

decision variables in the CTPN, respectively. 
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Figure 3. A CTPN for remanufacturing of machine tools in Figure 2. 
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Table 1. The description of places and transitions in CTPN. 

Places and transitions in CTPN Description 

s0 The output buffer of the inspection center 

si (i=1,2,...,12) The input buffer of each recovery workstation 

sz (z=13,14,15,16) The output buffer of each recovery workstation 

s17 The input buffer of the reassembly center 

wk (k=1,2,...,12) Workstation places 

ti,j (i,j =1,2,...,12, i≠j) Recovery operations 

t0,i, ti,z , ti,17 (i=1,2,...,12, z=13,14,15,16) Transportation transitions 

Table 2. The index used in CTPN. 

Index Description 

L= {1, 2, ..., L} index set of used products 

D= {1, 2, ..., D} index set of component types 

K= {1, 2, ..., K} index set of workstations 

H= {1, 2, ..., H} index set of recovery process routings 

Table 3. The parameters associated with the places and transitions in CTPN. 

Parameters Description 

ld the d
th

 core disassembled from the l
th 

product 

wk the k
th

 workstation that performs a specific recovery operation 

Rh the h
th

 recovery process routing designed for worn cores and is represented as a set of 

recovery operations 

pre(tij, Rh) the operational stages of recovery operation tij in Rh 

Last(Rh) the last recovery operation in Rh 

aldh a binary variable with a value 1 indicates the h
th

 routing for the core ld 

u(tij, ld) the time for a core ld to be processed in transition tij 

AT(si, ld) the arrival time of the core ld at buffer place si  

ST(wk, ld) the start time of the core ld being processed by wk 

Com(wk,ld) the completion time of the core ld processed by wk 

(ld) the makespan of the component ld 

(ld) the tardiness of the component ld 

)(l  the tardiness of the lth product 

Probld the probability of a core ld being selected for routing reassignment 
xh

ld

,  the difference of the total average waiting time between the h
th

 routing and the x
th

 one for the 

core ld 

WTk the average waiting time per core consumed in the k
th

 workstation 

h the total average waiting time per core consumed in the h
th

 routing 

xh

ldv ,
 

the probability of the x
th

 routing being selected to replace the current h
th

 routing for the core 

ld 

Slackxy slack time of a core xy in scheduling horizon 
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Table 4. The decision variables embedded in the places in CTPN 

Decision variables Description 

rldh a binary variable with a value 1 indicates that the hth process routing is assigned to a core 

ld 

Pri(wk,ld) the priority for the d
th

 component of the l
th 

used product to be processed by the k
th

 

workstation 

2.3. Modeling remanufacturing processes with CTPN 

(1) Modeling of recovery process routings 

As stated earlier, the recovery process routing for a particular core is not deterministic but rather 

contingent on its damage level. When a core goes through inspection center and enter in the buffer 

place s0, it will be assigned with a specified process routing (i.e., Rh), which is represented as a set of 

recovery operations that a core should go through sequentially for its recovery. 

For the cores with alternative process routings to be recovered, decisions should be made on 

which “reasonable” process routings to be assigned to them. In the proposed CTPN model, the buffer 

place s0 operates as a decision agent of choosing optimal recovery process routings for cores, by 

utilizing a hybrid scheduling algorithm elaborated in Section 3. 

When the process routings for cores are determined, cores of different types and stochastic 

damage conditions require going through various recovery operations. In the CTPN model of Figure 

3, different types of core tokens in s0 might go to transitions among t0,12, t0,5, t0,1, t0,3, t0,2, t0,6, t0,8, t0,11; 

tokens in s13 may either go to t13,3, t13,10 or t13,17; tokens in s16 might enters into either t16,17 or t16,5. In 

addition, cores of the same type and the same damage condition might go through different recovery 

processes. For example, when a spindle is detected with abrasion, its process routing can either be R1 

= { t03, t3,14, t14,9, t9,17} or R2 ={ t03, t3,14, t14,4, t4,15, t15,5, t5,17}. Then in Figure 3, a token in s14 

representing a spindle with abrasion might fire transition t14,9 or t14,4. 

Thus, to make sure where the tokens in a buffer place should go, a unique color is introduced 

and associated with buffer places to distinguish the cores going through different recovery 

operations. 

Definition 2: The color of a token ld in a buffer place si is defined as C(sj, ld) = cij if the token goes 

to tij after being released from si.  

Let M(si) denote the number of tokens in place si regardless of token color, and M(si, cij) the 

number of tokens in place si at M that have the color cij. Therefore, 
j

ijii csMsM ),()( . 

Based on Definition 2, the color attached to a token in a buffer place changes through transition 

firings. Such color evolution represents the complex operational stages of a core according to its 

recovery process routing. For instance, if the recovery process routing of the core ld is determined 

(i.e., rldh is known), its color evolution can then be derived as follows. 


















jpjiji

ldhhijhjp

ijldi

jpldj

tsts

rRtpreRtpre

csC

csC

,

1,1),(),(

),(

if,),(




      (1) 

(2) Modeling of shared resources 

In a remanufacturing job shop, various cores would compete for constrained resource to be 
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recovered. An input buffer is then designated for each workstation in our CTPN model to 

accommodate all the cores that are waiting for processing. When multiple tokens occur in the input 

buffer place sk of the kth workstation, decisions should be made on which core to be processed next 

as soon as the machine resource is ready. In the proposed CTPN model, each input buffer place si 

(i=1, 2, ...,12) is considered as a decision agent for resource dispatching and determines the operation 

sequences (priority) for the cores to be processed by the workstation. 

Definition 3: The priority for the core ld to be processed by the k
th

 workstation is defined as Pri(wk, 

ld). The priority is a decision variable for scheduling optimization. The smaller the value is, the 

higher priority for the core to be processed by workstation wk.  

Definition 4: A transition tij in the CTPN developed above is enabled at a marking M to process the 

core ld with a color cij, if and only if: 

ijiiji tscsM  ,1),(           (2) 

  ijijkk ttwwM ,1)(           (3) 

)),(min(),( xykldk wPriwPri    and yxcsC ijxyi ,,),(       (4) 

Definition 5: An enabled transition tij can fire in a marking M with respect to a color cij yielding a 

new marking M
’
 denoted as '),[( MctM ijij  : 

ijiijiiji tscsMcsM  ,1),(),('          (5) 

  ijijkkk ttwwMwM ),(')('          (6) 

Definition 6: When a transition tij is fired, the marking M
’
 would transfer to M

’’
 according to: 

ijiijiiji tscsMcsM  ),,('),(''          (7) 

  ijijkkk ttwwMwM ,1)(')(''         (8) 












1),(),(

,
if),(and1),('),(''

hijhjp

jpjijj
jpldjjpjjpj RtpreRtpre

tsts
csCcsMcsM     (9) 

According to the above transition enabling and firing rules, the system always dispatch an 

available workstation wk to the core with the highest priority (i.e., the lowest Pri(wk, ld) value) in the 

queue to maximize the system performance. 

(3) Modeling of recovery operation times 

When associating time with operation transitions, the CTPN model is able to describe the 

temporal aspect of recovery operations. 

Definition 7: The time needed for a token ld to be processed in transition tij is defined as u(tij, ld). 

The processing times required to perform a necessary recovery operation is highly variable 
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since the quality and composition of returned products/parts varies. It is reported that the processing 

time data obtained from a remanufacturing facility follows an exponential distribution in order to 

simulate the large range of possible values [8]. The amount of processing time for a remanufacturing 

operation is widely modeled as an exponential function of the wear associated with a part [19]. In 

this section, we models the recovery operation time as the sum of average operation time and 

extended time, where the latter is a exponential function of the quality condition of the core being 

processed. To that end, quality testing of a core is conducted before recovery, on which an inspection 

score, Score(ld)∈[0,1], is assigned to the core based. It is assumed that the better the quality, the 

higher the score and the shorter the operation time. So the relationship between the quality score and 

the processing time is modeled as follows. 

kkijk

k

ld
ldij wwtw

w

Score
tu  


 ),(

)(

))(ln(
),( 




       (10) 

where β(wk) is a control factor for workstation wk whose value is determined based on statistics of 

historical data, and λ(wk) is the average operation time of cores in wk. Whenever a component goes 

into a transition for processing, it must stay in transition tj for more than u(tj, ld) time units and then 

can be released into another buffer place. 

(4) Temporal aspect of recovery operations 

In the CTPN model, with the core tokens dynamically entering the buffer places, a set of 

transitions are then enabled and fired according to the enabling and firing rules. With the dynamic 

behavior of the CTPN, the remanufacturing operations are subject to the following constraints. 

Operation start time requirements: Recovery operations cannot be started until the core has 

arrived at the buffer sk of a corresponding workstation wk. When the core arrived in the buffer sk, it 

need waiting until all other cores with higher priorities are processed. 

  kkijijiijkldkijkldildk wwttswPriwPriwComsAwST ,,1),(),(},),(),,(Tmax{),(    (11) 

Processing completion time requirements: When a core goes into a workstation for processing, 

it must stay in a specific machine for more than u(ld, wk) time units and then can be released into the 

successor buffer. 

kkijldijldkldk wwttuwSTwCom   ),,(),(),(       (12) 

Arrival time constraints: When a core is finished processing by a workstation, it can be 

transported immediately into another buffer of the successor workstation by ignoring the 

transportation time. 

















vvijiji

hkhv

ldh

ldkldi

wwtts

RwRw
r

wComsA

,

1),(pre),(pre
1

),,(),(T 
     (13) 

Using Eqs 11, 12 and 13 recursively, the makespan and tardiness of the component ld, i.e., 

(ld) and )( ld , can be derived as shown in Eqs 14 and 15. The tardiness of the lth product is then 

calculated in Eq 16. 
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kkijijhldkld wwttRLastlATwCom   ,)(),(),()(       (14) 

)}()(,0max{)( lDueldld            (15) 

)(max)( ld
d

l             (16) 

3. CTPN-based hybrid meta-heuristics scheduler 

Generally speaking, there are two ways to solve a scheduling problem by PN. One is to 

construct their reachability graph. However, it suffers from the state explosion problem [26]. Since 

we considered two types of decision variables in the proposed CTPN, using reachability graph for 

scheduling optimization might not be efficient. The other is to introduce scheduling algorithms into a 

PN model, which is adopted in this paper. The embedding style is optionally through places or 

transitions in a PN. This work uses the former mechanism and adopts two types of decision places in 

the proposed CTPN model. The decisions of choosing optimal recovery process routings for cores 

are embedded in buffer place s0, while the input buffer place si (I = 1,2,...,12) makes decisions on 

dispatching machine resource in workstation to perform recovery operations for the cores that are 

waiting in queue. Considering the two types of scheduling decisions, a hybrid meta-heuristic 

algorithm using simulated annealing and minimum slack time rule is proposed and embedded in 

these decision places to search for global optimal process plans and schedules with a quick 

convergence speed. 

The scheduling objective is to minimize both operation cost and tardiness penalty as shown in 

Eq 17. There are two types of decision variables: (1) recovery process routing for a given core (i.e., 

rldh), and (2) operation sequences for a given core in a workstation (i.e., Pri(wk, ld)). 

Minimize: 
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where φ(wk) is unit operation cost of the k
th

 workstation and  is unit penalty cost for product. 

3.1. Simulated annealing for recovery process routing 

SA is a stochastic gradient method for global optimization that has been applied to a wide 

variety of sophisticated combinatorial problems [27–29]. While it conducts local searches, it is 

capable of exploring the solution space stochastically to prevent from being trapped in a local 

optimum. Starting from an initial solution g0, SA uses a certain mechanism to generate a 

neighborhood solution g' with an acceptance probability AP. 










otherwise

if
AP

),/exp(

0,1        (18) 
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where  = f(g’)－f(g0),  is called temperature, a global time-varying parameter, and f(g) the 

optimization objective function. In this paper, SA is used to determine the optimal process routings 

for cores. At each iteration when a neighbor solution is generated, MST to be elaborated in section 

3.2 is then applied to determine the operation sequences of the cores in each workstation. The 

parameter  is reduced by a factor  at each iteration and the chance of choosing an inferior solution 

decreases as well. The nested SA-MST search process continues until the stopping criterion is met.  

In this section, the CTPN model is integrated and embedded with SA algorithm and MST 

dispatching rules to obtain the optimal remanufacturing routings and schedules. At each iteration of 

SA algorithm, the feasible recovery routing is first generated by the Initial/Neighborhood Solution 

Generation process. Then the CTPN model is established based on the arrival time of parts, the 

predetermined recovery routings and the processing time of each operations. Whenever multiple 

parts arrived in a same buffer place in the CTPN, MST rules is used for resource dispatching. The 

CTPN model evolves to a final version until the resource conflicts in all the buffer places are tackled 

by the SMT. Finally, the operation cost and tardiness penalty of a SA solution at each iteration can 

be calculated according to the time aspects marked in the CTPN, and the next iteration of SA 

algorithm goes on until the stopping criterion is met. The flowchart of the CTPN-based hybrid 

meta-heuristics scheduler is shown in Figure 4.  

SA parameters initialization

Initial solution generation

Update the local optimum with a probability 

Start

Neighborhood process routing generation

End

Output the global optimal solutions   

Yes

Lower temperature

Maximum number of inner loop reached?
No

Yes

No

Remanufactuing resource dispatching based on CTPN

Maximum number of outer loop reached?

 Or maximum number of inefficient iterations  reached?

Yes
0

No

Update the local optimum 

and the global optimum  

 

Figure 4. The flowchart of CTPN-based hybrid meta-heuristics scheduler. 

(1) SA solution representation 

In this paper, a 3-dimension matrix R = [rldh]LD×H is proposed as representation of SA solutions. 

Each element rldh is a binary variable, one indicating the h
th

 recovery process routing is assigned to 
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the core ld and zero otherwise. Given that not all routings are feasible to a specific core, the viability 

of a randomly generated R is controlled via a logic AND operation in Eq 19: 

R= R  A = [rldh  aldh]         (19) 

where A = [aldh] is a L-by-D-by-H mask whose element aldh = 1 indicates the feasibility of the h
th

 

routing for the core ld. 

(2) Initial solution generation 

The choice of an initial solution is vital to the performance of the algorithm [30]. To that end, a 

cost function of a routing (i.e., the h
th

 routing) for a core ld is defined in Eq 20. The smaller the 

value of qldh, the greater chance the h
th

 routing is selected for the core, i.e., rldh = 1. 
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(3) Neighborhood solution generation 

Traditional SA randomly generates a neighborhood solution g’ from the current solution g by 

using a predefined move mechanism [31,32]. In this section, a multiple moves mechanism is used for 

neighborhood solution generation [33,34]. That is, for each current solution, randomly selects an 

element in the matrix R and uses one type of moves (i.e., -opt, {1, 2, …, H-h}) to exchange rldh 

with rld[h+] for a new neighborhood solution. 

To improve the convergence of SA, this work opts out the random selection process. Instead, at 

each annealing step, the proposed SA identifies cores with the potential to improve their routing 

assignment and to minimize their tardiness. To that end, (ld) is used to evaluate the urgency of 

routing reassignment for cores. The probability of a core being selected for routing reassignment is 

defined as follows. 


l d

ldldldprob )()(           (21) 

For any identified core, the selection of an alternative yet better routing is determined based on 

an efficiency index, xh

ld

, , which calculates the difference of the total average waiting time between 

the current process routing (i.e., the h
th

 routing) and the alternative one (i.e., x
th

 routing): 
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where WTk is the average waiting time per core consumed in the k
th

 workstation, h and x are the 

total average waiting time per core consumed in the h
th

 and x
th

 process routing, respectively, and Nk is 

the total number of cores being processed by workstation wk. When the core ld is switched from the 

current routing to the other one with a larger xh

ld

, , it is more likely to relieve resource conflict and 

accomplish the task with a greatly reduced tardiness. Therefore, the probability of the x
th

 routing 

being selected to replace the current h
th

 routing for the core is defined as  
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(4) Stopping criterion 

In this proposed algorithm, two thresholds are pre-defined: the maximum number of inefficient 

iterations where the global optimum is not updated Imax, and the maximum number of outer loop 

iterations olmax. Our SA will stop whenever either of the thresholds is reached. 

3.2. Remanufacturing resource dispatching based on CTPN 

With a SA solution, each core follows the derived process routing to be recovered step by step. 

When multiple cores enter a workstation and compete for the same machine resource, a secondary 

optimization is conducted to determine the operation sequences of cores to be processed by the 

workstation, aiming to minimize the total tardiness penalty. The dispatching rules have been widely 

used for operation sequence optimization to address job shop scheduling problems [35]. Minimum 

Slack Time (MST), as one of typical heuristic sequencing rules, is widely used for the scheduling 

problems. MST measures the “urgency” of a job by its slack time, which is defined as the difference 

between its due date and production time. That is, the shorter the slack time, the higher priority to be 

processed. In the case of MST dispatching rules, the jobs might be processed as soon as possible in 

order to be finished right before its due date. As a result, the tardiness of all the jobs can be 

minimized. Recently, MST rule have been widely used for operation sequence optimization and are 

embedded with some meta-heuristic approaches to address various scheduling problems [36,37]. In 

this section, MST is chosen for resource dispatching and is embedded with SA algorithm to search 

for the optimal schedules in minimizing both the operation cost and the penalty cost with related to 

tardiness.  

For a specific core, the slack time of its recovery operation can be calculated as the temporal 

difference between the due date, the current time, and the remaining operation times, as formulated 

in Eq 26. MST sequences jobs in the descending order of slack time. Whenever a workstation wk 

releases a component uv (Pri(wk, uv) = q > 0) and turns back into idle state, it will pick up a core 

ld with the least slack time (  slackld = min{slackxy}) from the waiting queue (xy，AT(si, 

xy)-Com(wk, ld) ≤ 0 ), and then immediately process it in the (q + 1)
th

 sequence, as shown in Eq 27. 
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The solution obtained by MST is a 3-dimension matrix G = [gldk]LDK, where gldk, a 

non-negative integer, represents the operation sequence of the core ld to be performed by 

workstation wk. gldk = 0 means that the core ld is not processed by wk. Once the matrix G is derived, 

Pri(wk,ld) in CTPN are determined and thereby the total cost can be calculated. 

With the recovery process routing R and operation sequence matrix G being derived through the 

proposed hybrid meta-heuristics, a set of transitions are then be enabled and fired as core tokens 

dynamically enter or release from the buffer places. 

4. Case study 

To fully understand the above concepts and algorithms, the remanufacturing of a batch of 

obsolete machine tools in an example system is used to demonstrate the remanufacturing scheduling. 

The workflows of cores in this remanufacturing shop and its corresponding CTPN are shown in Figs. 

2 and 3. In order to verify the efficiency of the proposed method, three cases are considered for 

simulation. In the baseline case, cores are recovered through a set of fixed process routings. An 

available workstation takes MST rule for resource dispatching. In the second case, the traditional SA 

uses a standard neighborhood generation method and is embodied with MST rule for routing 

assignment and resource dispatching. In the third case, the recovery routing for a core and the 

resource dispatching for a workstation are guided through the proposed SA/MST by using the 

proposed neighborhood solution generation method. 

All the algorithms are implemented in Matlab 2009. The simulation running duration is set to be 

30 days. Everyday’s work hours are 24 hours. Data of the first 3 days are thrown off as warm-up 

consideration. For the simulation, the input data is populated as follows. 

(1) Since that the machine resources in the floor shop are fixed and limited, the machine workloads 

and the intension of resource conflicts increases with the rise of arrival rate, and vice versa. In 

order to simulated a set of resource conflict scenarios, the random arrival of used machine tools 

follows a Poisson distribution with an arrival rate per hour  {5, 6, 7, 8, 9, 10, 11}. The 

designed arrival rate can limit the machine workloads (i.e., the average length of waiting queue 

on the machines ) in the floor shop within a satisfactory range [0.75, 3.6]. 

(2) The due date (in days) for each used machine tool is randomly generated by a uniform 

distribution, Due(l) ~ U[5, 10]. 

(3) Each core disassembled from used machine tools is inspected before its recovery and is 

assigned a quality score Score(ld) through an Exponential distribution, Score(ld) )~ Γ(1, τ) 

where τ [0.08, 0.10]. 

(4) The control factor and average operation time for each workstation is set to β(wk) = 0.2 and 

λ(wk) = 15. 

(5) The operation cost per hour in workstations 7 and 9 (i.e., chromium electroplating and laser 

cladding) is $100, while that in other workstations is $50. 

(6) The penalty cost per day per machine tool is set to be   {20, 60, 100} in dollars. 

(7) The parameters in SA are set to olmax = 5000, ilmax = 100, Imax = 30,  = 169340,  = 0.998. 

(8) Considering that the total number (L) of machine tools generated in each run of the simulation 

varies, our comparison focuses on normalized objective values. In particular, the comparison 

evaluates the total cost per product (tc), operation cost per product (pc), tardiness penalty per 

product (dc), and the average waiting time per core consumed in each workstation (wt). 
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Our first set of experiments evaluates how the three methods respond to system demand and 

various penalty cost rates. In each trial, we run the three methods independently. It should be noted 

that the baseline case only employs MST rule for resource scheduling, while the proposed SA/MST 

and the standard one run continuously until they meet the stopping criteria. As the arrival rate of used 

machine tools changes from 5 to 11, the average total cost tc is obtained and compared among the 

three methods. This process is repeated with different penalty cost rates (i.e.,  = 20, 60, and 100) as 

shown in Tables 5, 6, and 7, respectively. 

Table 5. Comparison of the algorithms performance under different arrival rate ( = 20). 

Arrival rate The average total cost per machine tool Improvement of the 

standard method 

over the baseline 

one  

tc1–tc2 

Improvement of the 

proposed method 

over the standard 

one  

tc2–tc3 

Baseline case 

tc1 

Standard 

SA/MST 

tc2 

Proposed 

SA/MST 

tc3 

=5 186.66 117.02 117.02 69.64 0 

=6 228.37 133.48 118.21 94.89 15.27 

=7 293.05 172.45 146.89 120.6 25.56 

=8 335.87 208.06 168.69 127.81 39.37 

=9 447.52 266.47 216.25 181.05 50.22 

=10 581.63 352.28 270.91 229.35 81.37 

=11 714.29 461.86 335.77 252.43 126.09 

Sample mean 398.20 244.52 196.25 153.68 48.27 

Sample standard 

deviation 

193.44 125.46 82.67 68.93 43.15 

Table 6. Comparison of the algorithms performance under different arrival rate ( = 60). 

Arrival rate The average total cost per machine tool Improvement of 

the standard 

method over the 

baseline one 

tc1–tc2 

Improvement of 

the proposed 

method over the 

standard one 

tc2–tc3 

Baseline case 

tc1 

Standard 

SA/MST 

tc2 

Proposed 

SA/MST 

tc3 

=5 215.76 117.83 117.83 97.93 0 

=6 327.61 160.31 140.12 167.3 20.19 

=7 455.9 226.47 185.02 229.43 41.45 

=8 658.09 342.57 273.22 315.52 69.35 

=9 891.23 515.96 406.38 375.27 109.58 

=10 1137.96 738.41 559.67 399.55 178.74 

=11 1530.54 986.65 775.72 543.89 210.93 

Sample mean 745.30 441.17 351.14 304.13 90.03 

Sample standard 

deviation 

472.28 324.23 244.76 151.99 80.25 
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Table 7. Comparison of the algorithms performance under different arrival rate ( = 100). 

Arrival rate The average total cost per machine tool Improvement of the 

standard method 

over the baseline 

one 

tc1–tc2 

Improvement of the 

proposed method 

over the standard 

one 

tc2–tc3 

Baseline case 

tc1 

Standard 

SA/MST 

tc2 

Proposed 

SA/MST 

tc3 

=5 270.84 117.32 117.32 153.52 0 

=6 463.08 224.8 186.58 238.28 38.22 

=7 687.42 416.46 275.13 270.96 141.33 

=8 1063.8 655.68 453.47 408.12 202.21 

=9 1495.67 957.36 706.49 538.31 250.87 

=10 1917.52 1231.56 918.76 685.96 312.8 

=11 2403.39 1483.89 1120.77 919.5 363.12 

Sample mean 1185.96 726.72 539.79 459.24 186.94 

Sample standard 

deviation 

789.17 517.36 385.07 273.81 135.61 

The performance of the standard SA/MST and the baseline one is first evaluated and compared 

by calculating the cost difference under different arrival rates, as shown in Figure 5. It is clear that 

the proposed SA/MST outperforms the baseline method in terms of generating less cost, particularly 

in reacting to the larger arrival rates. This is reasonable since that when a substantial amount of cores 

are fighting for limited resources for to be recovered, the standard SA/MST operates on routings 

reassignment of cores to reduce the ever intensified resource conflicts and thus minimize a relatively 

large amount of tardiness penalty to lower the total cost, while the baseline method is not capable of 

addressing so by fixing process routings of cores. The results in Figure 5 can be also interpreted as 

evidence that the hybrid SA/MST is promising for remanufacturing scheduling optimization. 

The differences of total cost per product obtained by the two hybrid methods are also calculated 

and plotted in Figure 6. The following remarks can be made regarding the performance of the 

proposed SA/MST over the standard one. 

(1) When the arrival rate is low (e.g.,  = 5), the system has sufficient enough resources to handle 

remanufacturing demand. Thus the benefit of our proposed SA/MST in comparison to the 

standard one is minor. As the system demand increases with the rising arrival rate, more and 

more used machine tools are fighting for the limited resource to be remanufactured. The 

proposed method then outperforms the standard method through a more targeted annealing 

process to properly reassign recovery routings of cores and resolve ever intensified resource 

conflict. Therefore, the advantage of the proposed method over the standard one becomes 

significant. 

(2) In a similar fashion, by comparing the corresponding row in Tables 5, 6 and 7, the relative 

improvement of the proposed method over the standard one becomes more and more significant 

with the increasing penalty cost. Using  = 8 as an example, the improvement increases from  

11% when  = 20, to 17% when  = 60, and to 30% when  = 100. 
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Figure 5. The improvement of the standard sa/mst over the baseline case. 

 

Figure 6. The improvement of the proposed SA/MST over the standard SA/MST. 

To further show the significant difference between the performances of the two hybrid 

algorithms, a sample mean, a sample standard deviation and confident interval estimation are 

introduced. A relative value σ = –(tc3–tc2) /tc2 is defined to characterize the improvement of the best 

solution obtained by the proposed SA/MST over the one obtained by the standard one. A 95% 

confidence interval of the improvement rate σ is conducted using the data in Tables 5–7. The 

approximate 100(1–α)% confidence interval for σ is defined as 
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where 


 is the sample mean of σ based on a sample of size n; SD is the sample standard deviation; 

)1(21  nt  is the 100(1–α)% percentage point of a t-distributed with n–1 degree of freedom. The   

95% confidence intervals for the improvement σ under three scenarios (i.e.,  = 20, 60 and 100) are 

given in Eqs 29, 30 and 31, respectively. It is obvious that the 95% confidence interval for σ lies 

completely above zero (i.e., 0
 ), which provides strong evidence that the proposed SA/MST is 

better than the standard one in terms of generating less total cost. 
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2455.00814.0 1 


         (29) 

3118.01042.0 2 


         (30) 

3911.01414.0 3 


         (31) 

The results in Tables 5–7 represents significant enhancement of the proposed methodology in 

terms of overall total cost per product, especially when the system is over utilized and its 

responsiveness to fluctuating market demand is important. 

Table 8. Comparison of the algorithm performance over time ( = 8 and  = 60). 

Computation time breaks Standard SA/MST Proposed SA/MST 

tc1 pc1 dc1 wt1 tc2 pc2 dc2 wt2 

After 0sec 399.25 112.16 287.09 76.80 399.25 112.16 287.09 76.80 

After 30sec 380.38 116.78 263.60 72.37 371.14 114.62 256.51 55.21 

After 60sec 393.70 113.71 279.99 61.76 341.42 118.56 222.86 48.34 

After 90sec 393.70 113.71 279.99 58.90 311.93 120.51 191.43 46.49 

After 120sec 386.11 115.62 270.49 58.75 292.79 121.75 171.04 44.54 

After 150sec 385.56 119.96 265.60 58.42 280.06 123.28 156.78 41.52 

After 180sec 384.17 121.18 262.99 57.90 274.14 124.64 149.51 41.47 

After 210sec 383.35 122.86 260.49 56.51 273.33 126.31 147.03 38.40 

After 240sec 378.22 124.65 252.57 54.73 273.22 132.79 140.42 35.67 

No time limits
*
 342.57 129.41 213.16 48.07 273.22 132.79 140.42 35.67 

*
 “No time limit” means the simulation keeps the algorithm running until it meets the stopping criteria elaborated above. 

In the second set of experiments, the performance of the two hybrid algorithms is further 

evaluated by calculating the normalized objective values achieved after pre-specified time breaks 

(Table 8), where the arrival rate and the penalty cost are set as  = 8 and  = 60. The following 

remarks can be made regarding algorithms’ performance. 

(1) As the computation time increases, both algorithms strive to search for a better scheduling 

solution that maintains a good trade-off between operation cost and tardiness penalty. It should 

be noted that both algorithms start at the same initial solution (i.e., zero time break). Since the 

initial solution is generated with the goal of minimizing operation cost only, it presents a 

relatively larger penalty cost. The annealing step in both methods then begins to rearrange 

routings for cores that ultimately balances the overall workload of workstations and thus 

reduces waiting time to lower the tardiness penalty. As shown in Table 8, at the 210-second 

time break, the optimal solutions generated by both methods have a bit larger pc and a quite 

smaller dc, resulting in a much lower total cost per product. 

(2) The proposed SA/MST method converges much rapidly than the standard one, providing a 

better solution within a given short time frame. This is intuitively understandable since the 

proposed SA/MST uses resource conflict and tardiness penalty to guide neighborhood solution 

generation while the random mechanism in the standard SA fails to address so, resulting in a 

relatively larger tardiness penalty. 
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All simulation output analysis verifies the effectiveness of the proposed hybrid SA/MST 

algorithm for the remanufacturing scheduling. 

5. Conclusion 

Remanufacturing systems are faced with a greater degree of uncertainty and complexity than 

traditional manufacturing systems, leading to the need for planning and control systems designed to 

deal with the added uncertainty and complexity. Although many new methodologies have been led 

up to deal with various operation management issues in remanufacturing environments, no study has 

comprehensively dealt with remanufacturing job shop scheduling in subjecting to alternative 

recovery operations, random operation times and limited resource conflicts. A CTPN is introduced to 

model the dynamics of remanufacturing process, such as various process routings, uncertain 

operations times and resource conflicts. With time and color attributes in PN, two types of decision 

variables are linked with places in CTPN and the evolution of system dynamics in recovery 

operations are mathematically analyzed. With the support of the computation model via CTPN, a 

hybrid meta-heuristic using SA and MST rule is proposed and embedded with CTPN to sample large 

search space efficiently and search for a good scheduling solution in minimizing total production 

cost. The performance of the proposed SA/MST algorithm is compared against another two cases: 

baseline case with fixed recovery process routings and case 2 using standard SA/MST. The 

comparison results provide strong evidence that the proposed scheduling method is of significant 

importance in achieving minimum production cost especially when the system is overloaded and its 

responsiveness to shared resource conflicts is important. 

Our research can be also extended in several directions. For instance, the integration of 

alternative recovery routing selection and resource dispatching is a NP-hard problem. Therefore, it is 

worth of investigation to take the structure advantage of CTPN for a more efficient optimization 

heuristics. Another challenge is to take into consideration of unexpected system disruptions (i.e., 

random machine breakdown) in remanufacturing scheduling. The future work also includes further 

validation of our methodology using more factory data. 
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