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Abstract: In nanomedicine, an increasing interest has been allotted to local administration of drugs. 

For this to be efficient, some of the most important issues are to control or improve the drug release 

from scaffolds porting the medication and the drug uptake through the cell membranes. Next to in 

vitro experiments, models can provide for important information. Theories and models that account 

for the size of the scaffolds and cell membranes, as well as the relaxation time of drug molecules, are 

necessary in order to contribute to a better understanding. As microscopic models are not easy to 

implement in real-life applications, we propose a model, based on new developments in Extended 

Non-Equilibrium Thermodynamics, to analyse drug diffusion through cell membranes and drug 

release from scaffolds. Our model, although treating nano- and microscopic phenomena, gives well-

defined macroscopic results that can readily be applied and compared to experiments, giving it high 

accessibility. It appears that non-local effects should be reduced in order to enhance medication 

permeation, whether it be through scaffold release or through a cell membrane. This can be done by 

controlling the size of the medication and its relaxation time, e.g. by surface functionalization. The 

latter is shown by introducing a slip factor, which confirms that a higher slip at the scaffold pore 

walls leads to an increase in the medication delivery.   
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1. Introduction  

Nanomedicine knows an increasing interest due to its estimated importance in efficient 

medication delivery [1]. Crucial medical topics deal with its application in several fields, such as 

overcoming the blood-brain barrier [2], anti-diabetic medication [3] and uptake in endothelial cells [4]. 

Nanomedicine deals with the novel chemical, physical or biological properties of medication at 

nanometric scale, as well as the application of nanotechnology aiming at making a medical diagnosis, 

treating or preventing the cause of illness. Therefore, nanomedicines have the ability, due to their 

particular size or surface functionality, to demonstrate physicochemical and/or biological properties 

that make them interesting for medication delivery, controlled medication release and/or improved 

medication transport through biological barriers, such as cell membranes, which would otherwise be 

much more difficult [5]. One of the key parameters for successful medication delivery is controlling or 

improving the permeation of medication through the destined place (e.g. vascular system, cell) in the 

human body [6–8]. When speaking about cell permeation and the body uptake efficiency of drugs into 

the body that it entails, many works take the apparent cell permeability,     , through monolayers of 

human epithelial cells as a widely accepted standard [9–11]. Values of      (often presented in 

medicine as a volumetric flux per unity of area) of such cells are also often used for the estimation of 

the blood-brain barrier [12,13]. It is useful to understand the apparent cell permeation as a series of 

parallel and serial resistances (from layer to another). This vision is based on the concept of 

solubility diffusion [14]. The permeability is seen here, therefore, not as an imposed force, but is 

rather passive in a way that only spontaneous diffusion governs the permeation process. This 

diffusion process is determined by a concentration gradient. The concentration gradient is classically 

described by Fick’s law or, in case of sizes (within the membranes separating the monolayers) at 

nanoscale, by a more general evolution equation, describing the extended diffusion law, as will be 

discussed later. Active transport, as could be caused by transporter proteins, is not considered here. 

Although, in reality, chemicals/drugs could be transported by proteins (and thus have an effect on 

    ), it is not taken into account here. It is well admitted that generally three pathways are possible 

through a cellular monolayer, i.e. in between the cells (the paracellular way), through the cell 

(considered here) and along the membrane solely (the lateral way) [15,16]. In this case, parallel 

resistances of the three pathways would apply. Here, we only consider the pathway through the cell. 

Following the pH partition hypothesis [17], it can be assumed that only the neutral form of the drug 

chemicals can pass the membrane resistances. Therefore, chemicals that are ionized should undergo 

an acid-base reaction in between the water layer and the membrane before they are able to pass the 

membrane as a neutral species. According to the aforementioned pH partition hypothesis, such a 

reaction can be considered to occur instantaneously, meaning that no kinetic hinderness (and 

therefore no additional resistance) needs to be considered.    

It is often suggested that the diffusion through membranes are of non-Fickian nature. We 

propose that this is either because of non-local effects (the size of the membranes are of the same 

order of magnitude as the drug molecules or not much bigger) or because the relaxation time 

becomes important. As controlling and enhancing drug delivery is an important issue in the field of 

nanomedicine, next to in vitro experiments, modelling is crucial to understand the underlying 

mechanisms. In nanomedicine, the inertia of the diffusing particles is relevant in addition to the small 

size of the channels through which the medication passes, being in some cases of the same order of 

magnitude as the mean free path of the particles. Furthermore, purely microscopic models are often 
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difficult to implement directly to real-life applications. Therefore, further progress in this field can be 

enhanced by models that are easily applicable, whilst keeping a qualitative efficient and 

understandable way to link to experiments in a multi-disciplinary way. Therefore, we propose here a 

model based on thermodynamic principles, where we extend them by incorporating effects, in a 

rigourous way, that account for the relaxation and size of the drug molecules with respect to the 

channels through which they diffuse. With the purpose to demonstrate the applicability of our new 

theory, we treat two cases: drug diffusion through a cell membrane and drug release out of a scaffold. 

For the first case, let us imagine the existence of two compartments of well-mixed water that are 

separated by a barrier, i.e. a membrane: the first containing the drug molecules as the donor and the 

second represents the inner cell or the receptor. The purpose is to follow the evolution of the mass 

fraction profile through the membrane at the beginning of the diffusion process, where we assume 

that the drug molecules (in that beginning process) concentration is that high that the mass fraction at 

the inlet of the membrane is constant. For the second case, we discuss drug release out of a scaffold 

and follow the concentration profile to assess the rapidity of the drug release. To account for the 

importance of the relaxation time of the drug molecules and the non-local effects, we propose the 

formulation of mass transport using Extended Non-Equilibrium Thermodynamics [18,19], whose 

main characteristic is to upgrade the flux and higher order fluxes to the rank of independent variables.  

2. Extended equation for the mass flux through a cell membrane 

At micro and nanoscales, mass transport is mostly influenced by non-local effects and 

relaxation times. The classical Fick law 

 

       ,             (1) 

 

relating the mass flux vector   to the mass fraction gradient   , with   and   denoting the density 

and mass diffusion coefficient, respectively, is not applicable at short diffusional time (with respect 

to the relaxation time, i.e. large relaxation times) and small spatial scales. In order to account for 

large relaxation times, Fick’s law can be generalized by a Cattaneo-like equation (in analogy to the 

one used for heat transport [20]) under the form  

 

             ,           (2) 

 

where    designates the relaxation time of the mass flux and    the partial time derivative. To 

account furthermore for non-local effects, Extended Non-Equilibrium Thermodynamics (see for 

underlying developments in previous work [18]) proposes a further generalization 

 

                   ,          (3) 

 

It is convenient to reformulate (3) in dimensionless form. Therefore, the mass flux   is rescaled 

with 
  

 
, the space coordinate with a characteristic length   (standing also for the membrane 

thickness), the time   with the characteristic diffusion time    
  

 
. Introducing the Knudsen number 
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, a dimensional number   

  

  
 and using the same notation for the non-dimensional 

quantities, Eq (3) becomes   

 

                           (4) 

 

It should be noted here that by choosing    as time scale, one implies that any change in   means a 

change in the relaxation time, which evokes non-local effects. This motivates proposing an 

adaptation for the expression for  . Indeed, kinetically speaking, one may define a relation   
 

 

  

  
, 

in analogy to the thermal conductivity [1]. Using the definition of    and   , one finds a relation 

  
 

 
   . However, in suspensions, these kinetic considerations are not always valid and 

differences could occur. Acknowledging that some partial proportionality is admitted between   and 

the    number (the relaxation time and the mean free path are related in that they both can cause 

non-local effects), this motivates to define rather      
 

 
   . Note that using this definition does 

not change anything for the analysis to be performed (indeed, in principle, any number could be 

chosen for   in the framework of a dimensionless analysis conditioned by correct interpretation of 

the results). Moreover,     is a factor that accounts for the observation that in nanofluids the 

relaxation time is not necessarily fully proportional to the    number. This factor also allows 

investigating separately the effects of the relaxation time and the mean free path on drug diffusion. 

We can see clearly differences between (3) and the conventional constitutional Fick’s law for 

mass diffusion (1), but also some similarities. When we deal with systems where the characteristic 

size is found to be much larger than the mean free path of the molecules  , Eq (3) reduces to the 

Cattaneo-like equation (2). This would also correspond to neglect any higher order of mass fluxes. 

Now, when the changes in the mass flux occur in a time span that is much larger than the relaxation 

time, we obtain Fick’s law. Let us stress that the latter issue depends on the physicochemical relation 

the medication molecule can have with the carrier fluid or the host environment. Other well-known 

methods that are used for solving models that deal with nanoscale systems are the phonon-

Boltzmann equation, Monte Carlo simulations and Molecular Dynamics. The Monte Carlo 

simulations and Molecular Dynamics method are numerical methods that generally do not require 

higher order variables, but instead demand high computing times, whilst being less flexible for 

modelling various scales at a time, although some efforts have been performed concerning multi-

scale molecular dynamics [21]. Nonetheless, the flexibility in scale remains less than the present 

approach. The phonon-Boltzmann equation also demands high computational time for solving a 

model. The aforementioned aspects are generally less of a problem when it comes to the model that 

is proposed in this work. It should be noted that the present development could be extended by 

introducing non-linear mass fluxes or higher-order (higher than the second order) fluxes. However, 

implementing such an extension, albeit theoretically not an impossible task (see [18]), would 

introduce numerical difficulties and higher computing time, which is an absent aspect of the present 

approach. Furthermore, it would also loose the ability to propose analytical solutions for some 

particular cases, offering a pedagogical presentation allowing easier interpretations. Non-linear 

contributions of the mass flux (at first and higher orders) could be interesting to consider when the 
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length scale becomes much smaller than the mean free path of the molecules. For the purposes of 

nanomedicine applications, this would in many cases lead to unnecessary complications. Indeed, for 

many cases a linear mass flux limited to second-order mass fluxes (which leads to the term     in (3)) 

is sufficient. In comparison, it already appeared to be sufficient for heat transport applications [22] 

and for predicting nanoflow properties [23].  

3. Nanomedicine: non-local diffusion 

3.1. Membrane permeation 

From typical clinical observations that lead to data in the literature, it appears that one of the 

most important issues to be studied for improving drug delivery are through enhancing the 

permeability. In porous media, the concentration gradient can be negligible with respect to the flux, 

which is often the case for nanoporous flow that is pressure-driven by some external pressure. There 

are some cases in the human body that are comparable from a conceptual point of view, such as 

oxygen and carbon dioxide transfer from the lungs to the veins within the alveoles. Nonetheless, 

porous flow within cell membrane pores presents often the difference that, due to the absence of 

externally imposed pressure, the concentration gradient can be quite important with respect to the 

flux. In case of passive permeability, one speaks often of diffusional processes. As the diffusion 

process through the membrane is often the limiting pathway, the flux across the membrane will 

undergo non-local effects. Flux variation in the perpendicular direction to the flux across the 

membrane can be neglected, assuming a well-dispersed medication solution at the entrance of the 

whole membrane. One would then use (3) to describe such a process, reduced to a one-dimensional 

equation, replacing the   operator by the derivative   . However, the concentration gradient is not 

simply a gradient of the concentrations from both sides of the membrane, since concentration jumps 

can exist at the entry or exit of those membranes due to lipid bilayer interaction or wettability effects. 

The gradient that counts is the one within the membrane. Therefore, it is important to consider the 

fact that flux by diffusion across a membrane (even if it were uniform) depends on the solubility. As 

there are different solubilities at both sides of the membrane and within the membrane as well, we 

can define partition coefficients     and      for the entry and exit of the membrane, respectively: 

 

    
      

   
             (5) 

     
       

    
            (6) 

 

where        and         are the concentrations within the membrane from the entry and exit sides, 

respectively. Also,     and      stand for the same concentrations, but at the medium sides (outside 

the membrane), respectively. It is more convenient to write (5) and (6) in mass fractions,  , where 

the subscripts mean the same thing as for the concentrations. Assuming           , we have 

 

  
             

             
            (7) 
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           (8) 

 

where   is to be determined experimentally as a material property. We can readily see that for a 

higher partition coefficient, the concentration gradient within the membrane is then larger than on the 

outer sides of the membrane, which results into a higher membrane solubility and thus a higher 

permeation. To model the whole process, next to the one-dimensional version of Eq (3), the mass 

fraction evolution is given by the classical species balance equation, which in dimensionless form 

gives 

 

                     (9) 

 

Since the thickness of a cell membrane is much smaller than its size in the other directions, we 

consider a one-dimensional model through the membrane with thickness  , assuming that in all 

directions other than across the membrane the variables remain constant. The entrance of the 

membrane (at the drug donor side) is denoted by the dimensionless coordinate     and the exit (at 

the drug receptor side) by    . The transport of the drug molecules through a cell membrane will 

then be modeled by the one-dimensional versions of Eqs. (4) and (9) 

 

                 
            (10) 

                     (11) 

 

Here, we omitted the subscript    for the membrane and will do so in the following. The drug 

at the donor side of, but outside, the membrane is given by    . The inner-side drug mass fraction of 

the membrane at     is then, via the partition theory, given by  

 

       
    

    –     
            (12) 

 

At the cell-side of the membrane,    , we assume a continuity of fluxes so that 

 

  
  

  
     

    

  
            (13) 

 

where the subscript    denotes the inner cell. Assuming that the inner cell is an unstirred well-mixed 

environment, the drug uptake can be considered to occur under a constant rising concentration. 

Therefore, the gradient is nearly zero, so that we can say that 
    

  
  . This allows to state 

approximately that at     

 

   

  
 
   

               (14) 
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The initial mass fraction within the membrane is given by 

 
                     (15) 

3.2. Medication delivery through a scaffold 

A supplementary interest is the continuous delivery of drugs out of a scaffold. In this case, a 

scaffold, containing the drugs, is introduced into the area of interest (the manner in which this is 

done is not the point of discussion here). This scaffold is a porous structure, where we are interested 

to provide a tool for analysing the diffusional flow through this medium. One side of the scaffold 

contains the drugs, maintained at a certain concentration or mass fraction,    . The other side is 

where the drugs enter the area of interest, where we assume that the uptake is immediate so that the 

mass fraction is zero there, i.e.     . Let us approximate such a scaffold as cylindrical pores. 

Contrary to the previous subsection, the dimension of the flux direction (axial direction of the pores) 

is larger than the radius of such a cylinder (radial direction of the pores). In that case, we can say 

(and also motivated by previous work in porous systems [23]) that the flux in the axial direction of 

the pores (the direction of drug release) will be approximately constant. However, the flux will be 

variable over the radial direction of the flux. Indeed, due to the small pore size with respect to the 

axial dimension of the pores, the wall effects will influence the flux and a flux profile exists in the 

radial direction. As for the mass fraction gradient (being a slow variable), its radial gradient is 

negligible with respect to the axial one (influenced by the drug release). As such, Eq (4) gives in 

dimensionless form (using 
  

 
,   and   as scaling for the mass flux, the radial spatial coordinate and 

the axial spatial coordinate, respectively, where   is the pore radius and   the length of the pore) 

 

    
  

  
    

  

 

 

  
  

  

  
 ,          (16) 

 

with     
 

 
 ,   the radial spatial coordinate,   the axial spatial coordinate in the pores and   

 

 
. 

Assuming maximum flux in the middle of the pore (   ), i.e.  
  

  
 
   

  , and first-order slip 

(defining    
  

 
, where    stands for the slip length, related to the wall material) at the wall (   ), 

i.e. 

 

      
  

  
 
   

,             (17) 

 

the flux can be found as a function of  . Taking subsequently an average value over a cross-section 

of the cylinder gives the following mass flux  
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         (18) 

 

with   the Bessel-I function. It should be noted that Eq (18) depends on how slip is observed and 

how the mass flux is defined. Other effects can influence the mass flux, but here it is the purpose to 

show how physical models can be used in the field of nanomedicine. Such an effective flux (taking 

into account the material of the scaffold (via the slip factor) and non-local effects via the Knudsen 

number) is now filled in the dimensionless (time scale is taken as 
  

 
) species balance in the flow 

direction 

 

     
 

 
               (19) 

 

The evolution of the mass fraction is then described as 

 

    
   

      
         

 

  
 

       
 

  
         

 

  
 
          (20) 

 

The boundary condition on one side of the scaffold is given by  

 

   

  
 
   

                (21) 

 

at    , which stands for assuming that the drug only goes on one direction and  

 
          

              (22) 

 

at    , which allows for a drug uptake relaxation time of the same order of magnitude as the 

characteristic diffusion time (which is reasonable, considering that transport in cells is mainly of 

diffusive character), describing the mass fraction going from    to   (complete drug uptake). This 

depends of course of the system in question and the area in the body. Nevertheless, studying the 

effect of non-locality and slip factor on drug uptake, the choice of a relaxation time is not of 

importance here and does not influence our analysis. Eq (22) also shows the initial condition by 

evaluating it at    . 

3.3. Numerical method 

The model is solved using a semi-implicit difference method for the spatial discretization and 

the forward Euler method for the temporal discretization for each time step  . At the beginning of the 

simulation, the initial conditions are imposed. At a certain time  , the equations for the mass flux and 

mass fractions are written in matrix form      , where   is a matrix of dimension       
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      (  being the number of nodes in the discretized spatial domain and two nodes being 

dedicated to the boundary conditions, the bulk equations are thus discretized on       nodes) 

containing the coefficients in the equations for the mass fractions and mass fluxes at time    ,   a 

vector of dimension       containing the unknown mass fraction and mass flux values at the 

spatial nodes at time     and   a vector of dimension       containing the known mass fraction 

and mass flulx values at time  . Due to the spatial gradients in the bulk equations, the values at nodes 

  and     depend on the boundary values at nodes   and  , respectively. The vector   is calculated 

as       . The boundary condition for at the membrane entrance is imposed and held at that 

value at each time step. The boundary condition at the exit of the membrane at time     is then 

obtained through the bulk values at time    . This procedure is repeated until the relative errors of 

the bulk and boundary values of both the mass fraction and mass flux between the previous and 

present loop become smaller than     . The obtained values at time     are stocked in the output 

matrix and used as the known values for the next time step    .  

4. Results and discussion 

4.1. Membrane diffusion 

We use our model, given by Eqs. (10)–(12), (14)–(15), and solve it by means of a semi-

implicite finite difference algorithm, explained in section 4.1. We take        ,      and     

(we neglect the effect of the partition coefficient for the moment). The results are presented in 

Figures 1–5. Figures 1–3 show the evolution of the mass fraction across the membrane for    

numbers       ,      and      , respectively. The different    numbers stand for 

different sizes of the membrane with respect to the molecular mean free path of the drug molecules 

in the fluid present in the membrane (which can be taken as a watery solution). Furthermore, for each 

   number different     values are used:        ,       and       . 

 

 

   

Figure 1. Mass fraction evolution across the membrane layer for different values of     

for       . 
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Figure 2. Mass fraction evolution across the membrane layer for different values of     

for     . 

   

Figure 3. Mass fraction evolution across the membrane layer for different values of     

for      .  

We can see that for a given    number a higher     number (higher relaxation time with respect 

to a fixed diffusion characteristic time), the evolution of the mass flux is significantly slower, with a 

large gradient at the membrane entrance. This implies that the mass flux is very high at the 

membrane entrance but very low at the membrane exit. This effect is precisely referred to as non-

locality. It is important here that by choosing the diffusion characteristic time as the scale time, any 

change in     implies a change in the relaxation time. This means that one compares systems with 

different relaxation times, which illustrates the effect of medication diffusion as a function of 

different medication-carrier fluid systems. A higher    number has the same non-local effect, albeit 

on the geometrical level (for the same system). This latter effect is not so clearly visible in Figures 

1–3, but can be more appreciated looking to the evolution of the mass fraction at the membrane exit 

    in Figure 4. 

 

   

Figure 4. Mass fraction as a function of time at     for different values of     and 

       (left),   (middle) and    (right). 
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Effectively, Figure 4 shows that a higher    number, for all     values, results into a lower 

mass fraction, which is representative for a lower drug diffusion/solubility in the membrane. The 

non-local effect at high    numbers is responsible for a non-Fickian mass fraction profile, which is 

indicated by a mass fraction at the exit of the membrane that is less than the initial mass fraction at 

steady state (this in comparison with Fickian behaviour, where for a zero-flux boundary condition, the 

profile should become flat). This means that for drugs that have large relaxation times or mean free paths, 

the drug uptake could be troublesome. It is interesting to note that the values shown in Figure 4 are 

exactly at the membrane exit, but that a mass fraction jump exists just before that exit. Not being well 

discernible in Figures 1–3, a zoom of some of those curves has been plotted in Figure 5. 

 

  

Figure 5. A zoom around     for several     values for      (left) and for several 

   values for       (right) at      .  

This mass fraction jump can be seen clearly in Figure 5 and stems from the non-local behaviour 

from both the mass flux time derivative (   ) and mass flux diffusion term (   ). Now, if the 

partition coefficient was not at unity, we would have not only a jump due to a non-locality at the 

membrane side of the interface, but also at the cell side, due the partition coefficient. Figure 6 shows 

the influence of the partition coefficient on the mass fraction evolution.  

 

  

Figure 6. Mass fraction across the membrane at     for          (left) and as 

function of time at     for          (right). 

0.90 0.92 0.94 0.96 0.98 1.00
0.001

0.005

0.010

0.050

0.100

0.500

1

c

Kn 10

Kn 1

Kn 0.1

0.90 0.92 0.94 0.96 0.98 1.00
10 4

0.001

0.010

0.100

1

c

Kn 10

Kn 1

Kn 0.1

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

c

100
10
1
0.1
0.01

0.00 0.05 0.10 0.15 0.20 0.25 0.30
10 4

0.001

0.010

0.100

1

c

100
10
1
0.1
0.01

           

        



1960 

 

Mathematical Biosciences and Engineering                                                      Volume 16, Issue 4, 1949–1965. 

It can be seen that a higher partition coefficient results into a higher mass fraction and a higher 

drug uptake (higher mass fraction at the membrane exit). Since a zero-flux boundary condition 

(standing for a quick drug diffusion in the cell and not for a wall-like boundary, as is discussed under 

Eq (13)) is maintained at the membrane exit, the partition coefficient does not affect the mass 

fraction here. However, it does effect the quantitative value of the mass fraction just outside the 

membrane (in the cell). The higher the partition coefficient, the lower the mass fraction will be here. 

Also, as Figure 6 seems to show, a higher partition coefficient does not exhibit a different behaviour 

of the mass fraction at the membrane exit. That is, a higher partition coefficient gives a higher mass 

fraction of the drug at the membrane entrance, which translates itself into a higher mass fraction at 

the membrane exit. Nonetheless, this increase is cancelled by the partition coefficient itself at the 

membrane exit. This motivates using drugs that have a higher partition coefficient at the membrane 

entrance, but a lower one at the membrane exit. This would, of course, not lead to a higher total 

uptake (mass conservation implies that the total quantity of the uptake is equal to the administered 

quantity), but may lead to a higher efficiency if a higher mass fraction is needed for a better healing 

in a shorter time period. Having discussed drug uptake by means of drug diffusion through a cell 

membrane, it is also interesting to provide tools to drug release by scaffolds, applicable in the field of 

nanomedicine. This is treated in the next subsection. 

4.2. Scaffold drug release 

We use our model, given by Eqs (20)–(22), and solve it in the same way as for the non-local 

drug diffusion model. We take        and present the results in Figures 7 and 8 for different    

numbers and slip factors   . When we take     , this stands for a zero slip length of the mass flux. 

This means that the mass flux at the wall of the pores in the scaffold is equal to zero. However, when 

    , this means that there is full slip at the pore walls and that the mass flux is everywhere equal 

in the radial direction. We take a value       to be quite large, standing for “large slip” and 

compare its results to “no-slip”. The slip behaviour of the mass flux is not clearly defined in the 

literature, but is rather often used in the framework of fluid flow, related to its velocity. The very 

definition of a mass flux in a porous medium being [23] 

 

                       (23) 

 

where   is the porosity of the porous medium,    the density of the fluid flowing through it,    the 

fluid velocity and   the barycentric velocity, we see that the mass flux is directly related to the fluid 

velocity. If we note that in a two-component system the barycentric velocity is expressed as    

               , wherein the total mass density   is               with    and    the 

density and velocity of the solid component, respectively, and that in case of a scaffold     , we 

can quickly see that in (23) the only variable the mass flux is related directly to is the fluid velocity 

  . As such, the discussion on the slip factor becomes more physical and understandable.   
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Figure 7. Mass fraction across the scaffold pores for several times   for        (left), 

  (middle) and    (right) with a no-slip condition at the pore walls,     . 

   

Figure 8. Mass fraction across the scaffold pores for several times   for        (left), 

  (middle) and    (right) with a high-slip condition at the pore walls,      . 

Figures 7 and 8 show that the    number tends to delay the drug release. This suggests that for 

pores of sizes of the order of magnitude of the mean free path of the drug molecules the drug release 

is slowed down. On the other hand, in some applications, it is necessary to have pores of such a size. 

Figure 8 shows that the slower drug release can be compensated by a higher slip factor, which 

accelerates the release of medication, illustrated by mass fraction profiles that evolve faster with 

respect to Figure 7. Figure 9 shows the mass fraction evolution for different    numbers for “no-slip” 

(    ) and “high-slip” (     ) at the membrane exit (   ). It can be seen that indeed, when 

   is increased, the reduction of the mass fraction due to an increase in the    number (from 

       to     ) is compensated, resulting into a similar profile. This confirms that by 

increasing the slip factor, which amounts to say altering the material properties of the scaffold pores 

to properties that reduce the interaction with the drug molecule solutions, compensates the reduction 

of drug release in nanopores. 
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Figure 9. Mass flux as a function of time at     for different values of    and      

(left) and    (right). 

5. Conclusions 

This work presents new developments in Extended Non-Equilibrium Thermodynamics, 

proposing a model for studying drug uptake through cell membranes and drug release out of 

scaffolds. The theory is based on elevating fluxes to the same independent status of the usual 

variables. In this particular case, the mass flux has the same status as the mass fraction or 

concentration of the medication solution. This means that the mass flux follows its own evolution 

next to that of the mass fraction, being connected on an equal level via a species balance. By taking 

into account the relative importance of the relaxation time with respect to the diffusion characteristic 

time, and of the mean free path with respect to the system characteristic size, non-local effects are 

included in this way.  

As for the diffusion through a cell membrane, it appeared that for sizes and relaxation times of 

the order of magnitude of or smaller than the mean free path (        ) and diffusion 

characteristic time (      ), respectively, leads to a lower drug uptake. This is due to the non-

local effect, mentioned before. Non-Fickian profiles result from this, where it can be seen that at high 

non-locality a large mass fraction gradient is present close to the membrane entrance, but a nearly 

horizontal one near the exit. The latter contributes to the reduction of drug uptake. Furthermore, it 

has also been shown that at the membrane exit, a mass fraction jump (within the membrane) occurs 

that is not due to the boundary condition, but also due the non-locality effect. This is an effect that 

has not only been observed for heat transport [25], where it is already an established phenomenon, 

but also for mass transport [26]. The effect of the partition coefficient on the mass fraction is also 

studied, since they are typically introduced to account for the typical mass fraction jump (outside the 

membrane) observed in membrane diffusion studies, though still presenting experimental uncertainty 

to its precise value [26–28]. No particular effect has been observed other than that a higher partition 

coefficient causes a higher mass fraction jump at the membrane boundaries. If the medication could 

be chosen in such a way that the partition coefficient is high at the entrance and low at the exit, the 

efficiency of the medication could be increased if a higher concentration would lead to a better 

healing. Of course, mass conservation implies that this would not influence the total quantity of the 

uptake, but rather the speed of uptake, which could influence the kinetics of healing.  
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As for the drug release from the scaffold, the non-locality effect also showed to have a reducing 

impact on the release of drugs from the scaffold. It appeared that such a reduction could be countered 

by choosing the material of the scaffold in such a way that (besides biocompatibility, which is not a 

complicated task on its own) the interaction between the scaffold pore walls and the medication 

solution is weakened. This results into a higher slip factor enhancing drug release.  

Future developments of this work include experimental demonstration, using the proposed 

model in this work. As quantitative agreement between experiments and models are difficult to find 

in the literature, comparison with experimental data should first be performed by nanomaterials of 

which material properties are well known and documented. As example, we can mention the delivery 

of nucleic acids with DNA nanostructures as new means of drug delivery by nanocarriers [29,30]. In 

the case of the nanocarriers, which can also be seen as scaffolds, the diffusion of the carriers through 

the cell membranes could be described by the set of Eqs (10)–(12) and (14)–(15). Subsequently, the 

delivery of the drugs out of the carriers into the cells could be described as release from a scaffold by 

Eqs (20)–(22). The difficulty lies in determining the interaction the medication can have with the 

nanocarrier, such as the DNA nanostructures [29]. In other words, it is important to know the slip 

length or slipping coefficient in Eq (17). Enhancement of drug release does not depend only on the 

release of the drug out of the carrier, but also the solubility of the carrier itself through the cell 

membranes. It is reported that DNA nanostructures can overcome the usually large circulation times 

of carriers [29,30]. The aforementioned discussion implies a necessity of measuring some material 

properties in order to use the presented model in this paper. In some cases, information about 

material properties could be obtained by in vitro experiments with a controlled experimental setup in 

a similar way performed by [31] for high-precision regulation of cell behaviour. This brings the 

intermediate step between modelling and full experimental demonstration to be identified by bio-

mimicking cell membranes or scaffolds. Finally, such information can complete an experimental 

demonstration of our model.  
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