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Abstract: Breast microcalcifications are one of the important imaging features of early breast cancer 

and are a key to early breast cancer diagnosis. Ultrasound imaging has been widely used in the 

detection and diagnosis of breast diseases because of its low cost, nonionizing radiation, and 

real-time capability. However, due to factors such as limited spatial resolution and speckle noise, it is 

difficult to detect breast microcalcifications using conventional B-mode ultrasound imaging. Recent 

studies show that new ultrasound technologies improved the visualization of microcalcifications over 

conventional B-mode ultrasound imaging. In this paper, a review of the literature on the ultrasonic 

detection methods of microcalcifications was conducted. The reviewed methods were broadly 

divided into high-frequency B-mode ultrasound imaging techniques, B-mode ultrasound image 

processing techniques, ultrasound elastography techniques, time reversal techniques, high spatial 

frequency techniques, second-order ultrasound field imaging techniques, and photoacoustic imaging 

techniques. The related principles and research status of these methods were introduced, and the 

characteristics and limitations of the various methods were discussed and analyzed. Future 

developments of ultrasonic breast microcalcification detection are suggested. 

Keywords: ultrasound imaging; breast cancer; microcalcification; noninvasive detection; 
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computer-aided diagnosis 

 

1. Introduction 

Breast cancer has become a serious health problem around the world. The latest report by the 

World Health Organization and International Agency for Research on Cancer showed that the 

incidence and mortality of breast cancer ranked the first place among female cancer patients [1].
 

Breast microcalcifications (MCs) are the first indication in more than 40% of breast cancers, and 

they are sometimes the only indication of malignancy [2,3]. In addition, 95% of breast ductal 

carcinoma in situ (DCIS) is diagnosed by analyzing MCs [4]. The early detection of breast MCs can 

increase the possibility of breast cancer survival, making their diagnosis critical [5].
 

Breast MCs are small calcium deposits, with size of 0.1–1.0 mm shown on ultrasound or 

mammography images [6]. MCs are majorly categorized as two types which differ in chemical 

composition. The first type is composed of calcium oxalate, which is mainly found in benign breast 

lesions; the second type is hydroxyapatite, a kind of calcium phosphate, which can be found in both 

benign and malignant tumors [7,8]. The size, number, distribution and morphology of MCs contain 

important information about the malignancy and benignity of breast lesions. According to the Breast 

Imaging Reporting and Data System (BI-RADS), imaging based diagnosis of breast MCs mainly 

include three types: low risk of malignancy, intermediate risk of malignancy, and high risk of 

malignancy [9,10]. Amorphous calcifications with round, thick rod, diffuse and non-catheter 

distribution are low risk of malignancy calcifications (Figures 1a, b). Large and heterogeneous 

calcifications and amorphous or isolated calcifications are more associated with indeterminate MCs 

(Figures 1c, d). Calcifications showing fine and pleomorphic, or fine linear branching distribution are 

associated with highly suspicious malignant MCs (Figures 1e, f). 

Among different imaging modalities, mammography has been taken as the reference standard 

for evaluation of MCs and is able to detect clustered MCs which have a size of about 100 μm or 

greater [11,12]. However, mammography exposes patients to ionizing radiation, and its diagnostic 

performance is relatively poor for dense and massive glands of breast [13]. Many studies have shown 

that Asian women have dense breast tissue and are fit for screening by ultrasound rather than 

mammography [13]. Ultrasound imaging is one of the most frequently used diagnostic tools to detect 

and classify abnormalities of the breast, because of its low cost, nonionizing radiation, and real-time 

capability. Ultrasound has potential for detecting breast MCs, especially for detecting MCs in dense 

breasts. Many researchers have strived to improve the capability of ultrasound in detecting breast 

MCs. However, a review of current ultrasound detection methods for breast MCs is still lacking. 

This paper aims to review the state-of-the-art ultrasound methods for breast MC detection. 

These methods were broadly divided into high-frequency B-mode ultrasound imaging techniques, 

B-mode ultrasound image processing techniques, ultrasound elastography techniques, time reversal 

techniques, high spatial frequency techniques, second-order ultrasound field (SURF) imaging 

techniques, and photoacoustic imaging (PAI) techniques. Table 1 summarizes the major ultrasound 

detection techniques of breast MCs in this review according to the following conditions: detection 

method, study type, number of cases, ultrasound transducer type, transducer center frequency, size of 

an individual MC, MC distribution pattern, reference standard, and major findings. 
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Figure 1. Typical distribution patterns of breast microcalcifications. (a) Diffuse. (b) 

Regional. (c) Isolated. (d) Large and heterogeneous. (e) Linear branching. (f) Clustered. 

(a) and (b) indicate breast microcalcifications that may have low risk of malignancy, (c) 

and (d) intermediate risk of malignancy, and (e) and (f) high risk of malignancy. 

2. High-frequency B-mode ultrasound imaging techniques 

MCs appear as bright spots on B-mode ultrasound. However, the speckle pattern and some 

tissue structures seen on B-mode ultrasound may look like MCs. High-frequency B-mode 

ultrasound increases the imaging resolution by increasing the transducer center frequency to 

generally above 7 MHz. 

Yang et al. reported that, high-frequency B-mode ultrasound achieved a sensitivity of 95%, a 

specificity of 87.8% and an accuracy of 91% in the detection of MCs when they were within a breast 

mass [14]. Gufler et al. showed that high-frequency B-mode ultrasound could reliably identify MCs 

in malignant breast lesions, but it is difficult to detect MCs in fibrocystic lesions [15]. Teh et al. 

demonstrated that clustered MCs could be visualized using high-frequency B-mode ultrasound in 

over 90% of cases [16]. Moon et al. reported that high-frequency B-mode ultrasound could depict 

more breast masses associated with malignant MCs, especially for clustered MCs larger than 10 mm [17]. 

Cheung et al. reported that high-frequency B-mode ultrasound could depict MCs without a mass on 

mammography [18]. Nagashima et al. reported that the lesions associated with MCs were identified 

by high-frequency B-mode ultrasound in 54 of 73 cases (74%) [4]. Stoblen et al. evaluated the 

diagnostic value of high-frequency B-mode ultrasound for the detection of MCs in BI-RADS 4a 

patients. It was shown that the detection rate of MCs was 98.1% [19]. Huang et al. reported that the 

high-frequency B-mode ultrasound has high sensitivity, specificity, and accuracy for malignancy 

(87.5%, 75%, and 82.1%, respectively) [20].
 
By using in vivo patient imaging, Huang et al. 
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demonstrated that high-frequency synthetic-aperture B-mode ultrasound was a promising imaging 

modality for detecting breast MCs [21]. 

It is easier to visualize MCs when they are located inside solid masses, because the solid masses 

can provide a hypoechoic background that improves the visualization of the bright echo associated 

with MCs, and the detection rate of MCs in malignant tumors is significantly higher than that in 

benign ones [4,17–19].
 
However, identifying isolated MCs within normal breast tissues remains 

challenging. Because MCs are so small, normal fibroglandular tissues or speckle artifacts can 

interfere with their visualization [17–19,22]. 

3. B-mode ultrasound image processing techniques 

MicroPure
TM

 imaging (Toshiba America Medical Systems, Tustin, CA, USA) is an innovative 

ultrasound imaging technology, which improves the visualization of breast MCs on B-mode 

ultrasound [23–29]. MicroPure
TM

 imaging is based on a nonlinear imaging and speckle suppression 

technique, log-(constant false alarm rate) (log-CFAR). The brightness of each pixel was compared 

with the average brightness of the surrounding pixels [26]. Let A(i,j) denote the brightness of a pixel 

at the coordinate (i,j); a new density B(i,j) was computed from the brightness of the surrounding n 

pixels (Ck): 

1

1
( , ) ( , )

n

k

k

B i j A i j C
n 

   .                                   (1) 

By optimizing the horizontal direction, isolated bright echoes were extracted from a 

heterogeneous background [23–25].
 
The filtered image of breast MCs was compounded with the 

original image, and the final MicroPure
TM

 image showed high-brightness dots (suspicious MCs) 

within a dark blue color overlay on the B-mode ultrasound image. 

Machado et al. evaluated MicroPure
TM

 and traditional B-mode ultrasound imaging for 

identifying breast MCs, using mammography as the reference standard [11].
 
It was shown that 

MicroPure
TM

 images identified more MCs than high-frequency B-mode ultrasound, but still less than 

mammography [11]. Grigoryev et al. compared ultrasound and mammography imaging for the 

detection of MCs in women with dense breast. It was shown that the detection of MCs in a 

hypoechoic focal lesion by MicroPure
TM

 imaging was closely related to mammography [30].
 
Tan et 

al. evaluated 70 pathologically proven breast lesions with suspected MCs and showed that 

MicroPure
TM

 imaging yielded better performance in MC detection than high-frequency B-mode 

ultrasound and Doppler ultrasound did [24].
 
Park et al. showed that MicroPure

TM
 imaging could 

improve the sensitivity in detecting grouped MCs that were not associated with a mass in the breast 

on mammography, and showed a larger number of MCs than high-frequency B-mode ultrasound 

did [25].
 
A recent study by Machado et al. used a total of 22 breast surgical specimens obtained from 

patients with diffuse MCs, and showed that MicroPure
TM

 (mean number of MCs detected: 14.0 ± 

12.0) can identify more breast MCs and fewer artifacts than high-frequency B-mode ultrasound 

(mean number of MCs detected: 3.0 ± 3.2) [31].
 
Machado et al. further investigated 100 female 

patients with breast MCs in vivo [32].
 
It was shown that MicroPure

TM
 could be used to identify 

suspicious areas with breast MCs, but it was difficult to effectively characterize these areas. Instead, 

MicroPure
TM

 had a potential for guiding a biopsy to areas of MCs. 
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Table 1. Summary of ultrasound detection techniques for breast microcalcifications. 

Authors Year Method Study N T TCF 

(MHz) 

Size* 

(mm) 

Pattern Reference standard Findings 

Yang et al. 

[14] 

1997 HF B-mode 

US 

MCs in tumors in vivo 84 LAT 10-5 <1 Clustered Mammography Sensitivity: 95%, specificity: 87.8%, accuracy: 

91%. 

Gufler et al. 

[15] 

2000 HF B-mode 

US 

MCs in non-palpable 

invasive carcinomas, in 

situ carcinomas and 

benign lesions in vivo 

46 LAT 7.5 0.1–1 Clustered Mammography /histology MCs in malignant lesions were reliably 

identified by HF B-mode US, but they were 

difficult to detect in fibrocystic breast lesions. 

Teh et al. 

[16] 

2000 HF B-mode 

US 

MCs without associated 

mammographic or 

palpable masses in vivo 

44 LAT 13 - Clustered Mammography /histology Isolated clustered MCs were visualized by HF 

B-mode US in 41 cases. 

Moon et al. 

[17] 

2000 HF B-mode 

US 

MCs in hypoechoic 

benign and malignant 

masses in vivo 

94 LAT 10, 12 - Clustered/line

ar /segmental 

Mammography /histology The visibility at high-frequency ultrasound was 

much higher in malignant MCs compared to 

benign MCs. 

Cheung et 

al. [18] 

2002 HF B-mode 

US 

Mammographically 

detected MCs without a 

mass in vivo 

66 LAT 7, 5–9 - Clustered/line

ar /segmental 

Mammography /histology High-frequency ultrasound could depict MCs 

without an associated mass on mammography. 

Nagashima 

et al. [4] 

2005 HF B-mode 

US 

Mammographically 

detected MCs in DCIS 

in vivo 

73 LAT 7.5–13 - Clustered/line

ar/segmental 

Mammography /histology The lesions associated with MCs were 

identified in 74% by HF B-mode US. 

Stoblen et 

al. [19] 

2011 HF B-mode 

US 

Mammographically 

detected MCs in 

BI-RADS 4a patients in 

vivo 

52 LAT 13 - Clustered/line

ar/segmental 

Mammography / histology Detection rate: HF B-mode US: 98.1%, 

ApliPureTM: 100%, MicroPureTM: 25%. 

Huang et al. 

[20] 

2017 HF B-mode 

US 

MCs in screening 

mammography in vivo 

133 - - - —— Mammography Sensitivity: 87.5%, specificity: 75%, accuracy 

for malignancy: 82.1%. 

 

Continued on next page 
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Authors Year Method Study N T TCF 

(MHz) 

Size* 

(mm) 

Pattern Reference standard Findings 

Machado et 

al. [11] 

2012 MicroPureTM Mammographically 

identified MCs in vivo 

20 LAT 14 - Isolated Mammography MicroPureTM images showed more MCs than HF 

B-mode US, but still less than mammography. 

Grigoryev 

et al. [30] 

2014 MicroPureTM Lesions with suspicious 

MCs in vivo 

104 LAT 9 - —— Mammography The detection of MCs with MicroPureTM 

imaging in breasts with a hypoechoic focal 

lesion correlated well with digital 

mammography. 

Tan et al. 

[24] 

2015 MicroPureTM Female patients with 

suspicious lesions 

135 LAT 5–14 - —— Histology MicroPureTM imaging yielded better 

performance in MC detection than HF B-mode 

US and Doppler US did. 

Park et al. 

[25] 

2016 MicroPureTM Grouped MCs without a 

mass on screening 

mammography 

9 LAT 7–18 - Clustered Mammography/histology MicroPureTM imaging was a promising US 

technique that could improve the sensitivity for 

detecting grouped MCs that were not associated 

with mass in the breast on mammography. 

Machado et 

al. [31] 

2018 MicroPureTM Surgical breast 

specimens in vitro 

22 LAT 14 - Isolated Mammography MicroPureTM identified more breast MCs than 

B-mode US in surgical breast specimens in 

vitro. 

Machado et 

al. [32] 

2018 MicroPureTM Lesions with suspicious 

MCs in vivo 

100 LAT 14 - Isolated Mammography MicroPureTM may represent a new imaging 

method for guiding a biopsy to areas of MCs. 

Fatemi et al. 

[44] 

2002 Elastography MCs in excised tissue 

samples ex vivo 

3 TCT 3 ≥ 0.11 —— Mammography/histology VA was capable of detecting small breast MCs, 

which could be delineated from within dense 

and sclerotic tissues. 

Alizad et al. 

[45] 

2004 Elastography MCs in excised tissue 

samples ex vivo 

74 TCT 3 ≥ 0.11 —— Radiograph/histology Visual inspection of VA guided by radiograph 

confirmed 78.4% of MCs. 

Gregory et 

al. [48] 

2015 Elastography Mammographically 

identified MCs in 

benign masses in vivo 

3 LAT 5, 5–14 - Clustered/isol

ated 

Mammography The presence of large isolated MCs and highly 

concentrated clusters of MCs could introduce 

areas with apparent high elasticity in SWE. 

Continued on next page 
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Authors Year Method Study N T TCF 

(MHz) 

Size* 

(mm) 

Pattern Reference standard Findings 

Labyed et 

al. [54] 

2011 TR-MUSIC Phantom experiments - LAT - 0.25 Isolated Synthetic aperture US Synthetic-aperture US had great potential for 

detecting breast MCs. 

Labyed et 

al. [57] 

2013 PC-MUSIC Computer simulation/ 

phantom experiments 

- LAT 7.5 0.25 Isolated Mammography The accuracy of target localization and image 

resolution were improved. 

Huang et al. 

[58] 

2013 PC-MUSIC Mammographically 

identified MCs in cysts, 

masses or breast tissues 

in vivo 

40 LAT 7.5 - —— Mammography The super-resolution US PC-MUSIC imaging 

with synthetic-aperture US data could provide a 

new imaging modality for detecting breast MCs in 

clinic. 

Bahramian 

et al. [62] 

2014 High spatial 

frequency 

Computer simulation - LAT 6.81 - Isolated —— 

 

The complement images that recovered the 

missing information in the display stage of 

B-mode imaging could resolve MCs. 

Bahramian 

et al. [64] 

2018 High spatial 

frequency 

Computer simulation - - - - Isolated —— 

 

Supplementary intensity processing provided 

about twice the spatial information of the center 

frequency of the ultrasound system, which 

significantly enhanced the contrast of MCs. 

Denarie 

[68] 

2010 SURF Computer simulation - LAT, 

CAT 

0.9(LF); 

8,10(HF

) 

- —— —— Using simulated data, the linear scattering 

components in the image was reduced by 29 dB, 

ensuring a 4 dB contrast level between MCs and 

surrounding tissues. 

Florenaes et 

al. [70] 

2017 SURF Breast phantom (CIRS 

model 073) 

1 LAT 8, 0.8 - Isolated Mammography By transmitting multiple dual frequency band 

pulse complexes, the scattering from normal 

tissue was suppressed and the signal from the 

MCs was enhanced. 

Kang et al. 

[74] 

2011 PAI Ex vivo experiments 7 LAT 7 <1 —— Mammography The feasibility of PAI to construct the images 

of MCs with high spatial and contrast 

resolutions was proved. 

Continued on next page 
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Authors Year Method Study N T TCF 

(MHz) 

Size* 

(mm) 

Pattern Reference standard Findings 

Kang et al. 

[75] 

2012 PAI Three-dimensional ex 

vivo data 

2 LAT 7.2 <1 Clustered Mammography PAI could provide optical contrast on breast 

MCs and their locations agreed well with their 

real positions. 

Kim et al. 

[73] 

2014 PAI Core-biopsied 

specimens 

21 LAT 7 - —— 

 

Mammography Photoacoustic imaging might serve as an 

alternative in overcoming the limitations of the 

conventional US imaging. 

Kang et al. 

[76] 

2015 PAI Three-dimensional ex 

vivo data  

- LAT 7.5 - Clustered/ 

isolated 

Mammography PAI might be more sensitive and specific in 

breast cancer screening than mammography. 

Taki et al. 

[83] 

2012 Correlation 

technique 

MC phantoms 

(spherical glass beads in 

swine breast tissue) 

4 LAT 7.5 0.1, 

0.2, 

0.3 

—— —— Using small glass beads to mimic MCs, the 

method based on the deterioration in the 

cross-correlation between adjacent scan lines 

had the potential to depict small MCs without 

acoustic shadowing. 

Huang et al. 

[87] 

2014 Beamforming Volunteer in vivo - LAT - - Isolated —— The beamforming technique had potential for 

MC detection. 

Shankar 

[90] 

2013 

 

Envelope 

statistics  

Phantom data modified 

to include bright spots 

to represent MCs 

2 LAT 6 - Isolated —— Higher speckle factors (seen with the McKay 

density) could be used to isolate and display 

MCs. 

Liao et al. 

[91] 

2014 strain-compou

nding speckle 

factor imaging 

Lesions with suspicious 

MCs in vivo 

26 LAT 7.5 - —— B-mode US The strain-compounding speckle factor imaging 

method was more effective at discriminating 

between MCs and false MCs. 

*: Mean size (diameter) of individual MCs; MC: Microcalcification; US: ultrasound; HF: High-frequency; VA: Vibro-acoustography; SWE: shear wave elastography; TR: time reversal; PC: phase 

coherent; MUSIC: multiple signal classification; SURF: second order ultrasound field; PAI: photoacoustic imaging. N: number of patients or specimens; T: transducer; TCF: transducer center frequency; 

LAT: linear array transducer; CAT: curvilinear array transducer; TCT: two-element confocal transducer. 
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The MicroPure
TM

 technique has shown its capability in improving the visualization of MCs ex 

vivo and in vivo [11,23,31,32].
 
It overcomes the disadvantage that traditional B-mode ultrasound is 

difficult to identify isolated MCs in normal breast tissues, and quickly determines the number and 

distribution of MCs. However, not all bright echoes are MCs. Because the high echoes of fibrous 

tissues in gland are easily confusing with those of MCs, it will cause a higher false positive rate. 

In addition to MicroPure
TM

, there are some other B-mode ultrasound image processing 

techniques for breast MC detection. Chang et al. employed three-dimensional (3D) ultrasound to 

detect breast MCs, using a slice by slice strategy [33]. In each slice, the top-hat filter was adopted to 

detect bright spots and four criteria were designed to select the spots as candidate MCs. Those spots 

appearing in sequent slices at the same position were detected as MCs. Chang et al. also proposed 

using adaptive speckle reduction and top hat filter for detecting breast MCs [34].
 
The sensitivity of 

MC detection was 80.3%, and the false positive rate was 3.1% [34]. Cho et al. used image 

enhancement and threshold adjacency statistics to improve the detection rate of MCs in ultrasound 

images, with an accuracy of 82.75% [35].
 
Islam combined multiple image processing techniques to 

improve the performance of MC detection [36].
 
Zhuang et al. employed a pattern recognition kernel 

to distinguish the small hyperechoic spots in B-mode ultrasound images collected from a concave 

automated breast ultrasound scanner [37]. The B-mode ultrasound image post-processing techniques 

can effectively improve the visualization of MCs, but they are limited by the inherent limitations of 

B-mode ultrasound imaging. 

4. Ultrasound elastography techniques 

Ultrasound elastography was first proposed in the early 1990s [38] and started to be used in the 

clinical setting in 1997 [39]. Elastography usually consists of three steps: (i) create a distortion 

(displacement) in the tissue, (ii) track and process the tissue response to infer the mechanical 

properties of the tissue, and (iii) display the results to the operator, usually as an image [40,41]. 

Elastography maps the elastic properties and stiffness of tissues, providing diagnostic information 

about the presence or status of disease. Breast calcifications have very different elastic behavior than 

normal or abnormal breast tissues do. Studies reported that the Young’s modulus of breast 

calcifications was 20–117 kPa, while the Young’s modulus of benign and malignant breast masses 

ranged from 10 to 80 kPa and 30 to 180 kPa, respectively [42,43]. 

Fatemi et al. proposed using acoustic radiation force with low frequency (kHz) to vibrate breast 

tissue; the obtained response was used to generate images related to tissue stiffness [44]. It was 

shown that vibro-acoustography (VA) could detect breast MCs with diameters as small as 110 μm, 

and dense breast tissues might not interfere with the imaging. Alizad et al. evaluated the performance 

of VA in detecting MCs in 74 breast tissue samples; 78.4% of MCs were correctly detected [45,46]. 

Gregory et al. investigated the effects of large isolated macrocalcifications and grouped MCs on 

shear wave elastography (SWE) by three sets of phantoms with different sizes and distributions [47]. 

It was shown that macrocalcifications had a higher effect on SWE than MCs did. In addition, the 

dispersion of MCs could decrease elasticity values and had less bias effect than concentrated clusters 

of MCs. Gregory et al. demonstrated that the presence of clustered MCs and macrocalcifications in 

benign breast masses in vivo could induce the appearance of high stiffness regions when they were 

evaluated by SWE [48]. Consequently, the method was easy to misdiagnose benign breast tumors 

containing MCs as malignant. 
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The advantage of ultrasound elastography is its ability to classify breast tissues according to 

hardness. Conventional B-mode ultrasound imaging is susceptible to the interference of various 

factors when detecting breast MCs. Ultrasound elastography may overcome this limitation. However, 

there still is a need to quantify the elasticity elevations of benign masses with different types of MCs. 

5. Time reversal (TR) techniques 

The principle of TR is briefly described as follows. An ultrasound transducer transmits a plane 

wave that propagates toward the target and is reflected off it. The reflected wave returns to the 

ultrasound transducer, where it looks as if the target has emitted a weak signal. The ultrasound 

transducer reverses and retransmits the signal, and a more focused wave propagates toward the target. 

As the process is repeated, the waves become more and more focused on the target. 

The TR with multiple signal classification (TR-MUSIC) imaging algorithm, developed by 

Devaney, was used to estimate the position of one or more coherent scatterers [49]. The major 

characteristic of TR is that it does not need to know the propagation model of the sound beam in the 

medium or the signal delay of the transducer array, but it can generate an automatic focusing effect 

on the signal [50,51]. TR-MUSIC can separate the target with high scattering amplitude from the 

inhomogeneous medium; it can also achieve super-resolution in the presence of multiple 

scattering [52,53]. Therefore, this method has potential for detecting MCs. 

Consider an array of N ultrasound transducer elements interrogating inhomogeneous media. 

Each element is excited sequentially and the backscattered signals are received by all elements, 

yielding the inter-element response matrix K  at each frequency. The matrix K  is then used to 

compute the TR matrix *T K K , where the superscript *  denotes the complex conjugate. 

TR-MUSIC can be implemented by performing singular value decomposition (SVD) on the array 

response matrix K . The pseudo-spectrum PS for generating the image is given by [54]. 

 
0

0

1

* 2
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| < , > |
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 rr ,                               (2)

 

where  PS r
 
is the intensity at any point r in the imaging area; 

0m  
is the 

0

thm eigenvector; A
r
 

is the vector Green’s function of the array element Rj to an arbitrary point r  and written as 
 

     1 1, , , ,..., ,NA A R A R A R   r
r r r .                         (3)

 

The inner product 
0

*< , >mu A
r  will vanish whenever r  corresponds to the location of one of 

the scatterers. 

When the number of point scatterers in the imaging plane is larger than the number of 

transducer elements, the TR-MUSIC algorithm is no longer valid [49]. To this end, Labyed et al. 

developed a windowed TR-MUSIC method to image small targets with high resolution [54]. The 

imaging plane was divided into several sub-regions, and each sub-region was imaged separately. The 

number of targets within the sub-regions was less than the number of transducer elements. Islam and 

Kaabouch investigated the impact of sampling frequency and speed of sound on TR-MUSIC by 
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using numerical phantoms that mimic breasts with MCs, and showed that the quality of images 

produced by TR-MUSIC increased with increasing sampling frequency and speed of sound [55]. 

TR-MUSIC can accurately locate point targets and has higher lateral resolution than 

synthetic-aperture ultrasound imaging. However, when there is noise, the TR-MUSIC 

super-resolution capability will be seriously weakened.  

The method of phase-coherent MUSIC (PC-MUSIC) was developed by Asgedom et al. [56]. 

This method modified TR-MUSIC and utilized the phase information from multiple frequencies to 

reduce noise effects and to maintain the super-resolution capability. Compared with TR-MUSIC, 

PC-MUSIC has almost no improvement in lateral resolution, but the axial resolution is 

significantly improved. However, due to neglecting the phase response between transducer 

elements, the target location is not accurate. Subsequently, Labyed et al. compensated for the phase 

response of the transducer elements to improve the accuracy of target localization and image 

resolution [57]. Huang et al. applied this method to clinical patients, and showed that it could get 

clear images of breast MCs [58]. 

TR-MUSIC imaging shows an elongation artifact that decreases the axial resolution. 

Consequently, it cannot identify axially adjacent point targets accurately. The artifacts depend on 

the point spread function and signal-to-noise ratio (SNR) of the transducer array at the scatterer 

position [57]. Although PC-MUSIC imaging obtains better imaging performance, the specific 

location of the scatterers must be known in advance to compensate for the phase factor. 

Additionally, PC-MUSIC has a high computational complexity. 

6. High spatial frequency techniques 

The principle is to recover high spatial frequency information which is lost in the processing of 

conventional B-mode ultrasound imaging. Comparing the information in the original radiofrequency 

(RF) data with the available information in B-mode ultrasound images, it was found that B-mode 

processing can eliminate up to 50% of the information that can be helpful for diagnosis [59]. Nguyen 

et al. showed that the RF signal can contain valid echo information about tissue scattering at spatial 

frequencies twice that of the pulse-envelope bandwidth [60]. Bahramian et al. measured the 

performance efficiency of B-mode images with ideal RF data, and showed that the task-energy 

efficiency could predict the performance efficiency, especially for large-area tasks [61]. Compared 

with the corresponding RF data, the loss of diagnostic information in B-mode images was verified. 

For small-area tasks, such as MC detection, the loss of information in the B-mode image was more 

significant [59]. 

In order to recover the lost high spatial frequency information related to MCs, Bahramian et al. 

analyzed the flow of signal energy in various stages of image formation [61,62]. The signal 

processing method of task-energy efficiency was used to retrieve the missing information, which was 

displayed as a complement image. The original B-mode image was combined with the complement 

image. The combined image ideally contained all the task information captured in the RF data. 

Computer simulation and phantom experiments showed that the small MC in the heterogeneous 

lesion area was detectable in the complement images. Moreover, with the increase of ultrasound 

pulse frequency, more information could be captured in both the original B-mode image and the 

complement image, which further enhanced the detection of MCs. Recently, on the basis of Abbey et 

al.’s work [63], Bahramian et al. proposed using complement intensity imaging to recover the high 
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spatial frequency information loss at the display stage [64]. Because an image composed of intensity 

signals provided the same diagnostic performance as B-mode (envelope) signals for lesion detection, 

analysis of either signal was related to the quality of the ultrasound image [65]. The complement 

intensity processing could provide spatial information about around twice the central frequency of 

the ultrasound system; the contrast of MCs was significantly enhanced [64]. In addition, the spatial 

information provided by compensated intensity processing could be extracted from the 

autocorrelation of RF signals sampled at the Nyquist rate, without additional processing cost.  

It is important to note that the methods of high spatial frequency were all realized under ideal 

conditions [59,62,63]. In the process of analyzing the energy efficiency of transmission tasks in the 

whole imaging stage, it is not considered that some tasks of scattering objects may lose energy in the 

acquisition process, and it is assumed that the filter in the display stage does not introduce any noise. 

In addition, in the processing of echo signal intensity, it is difficult to record multiple scattering 

signals from space-registered tissues. Usually, only one kind of scattering object is captured, and the 

information expressed by this separate implementation may be very weak. 

7. Second-order ultrasound field (SURF) imaging techniques 

The principle is to combine the advantages of low-frequency (LF) and high-frequency (HF) 

imaging pulses. The SURF imaging technique was developed to improve the contrast resolution for 

ultrasound contrast agents [66]; it has potential in detection and characterization of nonlinear 

scattering in tissues, including the imaging of MCs.  

HF pulse imaging has a high resolution, but a short wavelength and a weak penetration. On the 

contrary, LF pulse imaging is less affected by damping attenuation and has a stronger penetration, 

but the resolution is lower than HF pulse imaging. SURF is based on the transmission of 

dual-frequency band pulses from the same acoustic source using an LF manipulation pulse and an 

HF imaging pulse, while conventional B-mode ultrasound imaging uses a single frequency band 

pulse, as shown in Figure 2. The frequency ratio between the LF and the HF is typically 1:8-10 [67]. 

The HF is used to image tissues or nonlinear scatterers under the influence of the manipulation pulse. 

The purpose of the LF pulse is to manipulate the scattering and propagation of the HF imaging pulse; 

the LF pulse is only transmitted but not received. 

 

Figure 2. (a) Conventional ultrasound pulse. (b) SURF pulse. 

However, imaging of low-intensity nonlinear scatterers such as MCs requires higher 
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manipulation pressures. Denarie proposed to characterize and correct the nonlinear forward 

propagation effect [68]. The simulation results showed that the linear scattering components in the 

image were reduced by 29 dB, ensuring a 4 dB contrast level between MCs and surrounding tissues. 

Jahren et al. effectively suppressed reverberation noise by time delay correction [69]. The SNR for 

scatterers from stiff particles was increased. But nonlinear scattering did not increase by 

suppression of linear scattering. Florenaes et al. used a phantom, which had 100-300 μm MCs 

embedded in some spherical regions mimicking dense lesions to verify SURF imaging 

performance [70]. Nonlinear scattering was detected by transmitting multiple pulse complexes with 

different LF amplitudes, and received signals were processed by the delay correction subtraction 

method. The results showed that the background scattering could be suppressed by 20–40 dB, 

improving the detection capability of MCs. 

One of the challenges of SURF imaging techniques is to control the time interval between LF 

and HF pulses in the propagation process of the pulse complex. The co-propagating HF pulses will 

distort under non-homogeneous LF pressure. The distortion of HF pulses masks the nonlinear 

scattering. How to optimize the radiation aperture of LF and HF pulses, to produce minimum pulse 

distortion, and to improve the ability of SURF reverberation suppression still is a challenge. 

8. Photoacoustic imaging (PAI) techniques 

PAI is an emerging hybrid imaging modality with high spatial and contrast resolutions [71]. 

PAI can potentially overcome the shortcomings of mammography and ultrasound, and take the 

advantages of wavelength selective with high optical contrast and high ultrasonic resolution to detect 

breast lesions and MCs. Photoacoustic (PA) signal is generated by a laser (excitation source) 

irradiation of the biological tissue [72,73]. The irradiated tissue area and its adjacent area will absorb 

the pulsed laser energy and convert it into thermal energy. The pressure or stress changes due to 

thermo-elastic expansion will excite and propagate ultrasound waves. An ultrasound transducer is 

used to detect ultrasound signals, which are reconstructed to form images representative of optical 

absorption distribution. 

Kang et al. investigated the effects of transmitting laser pulse by ex vivo experiments with 

different wavelengths ranging from 680 to 1000 nm [74]. When the laser wavelength ranged from 

690 to 700 nm, the PA signals from MCs had the maximum amplitude. The feasibility of PAI to 

construct the images of MCs with high spatial and contrast resolutions was demonstrated. They also 

showed that PAI could provide optical contrast on breast MCs and the locations of MCs agreed well 

with their real positions [75]. Kim et al. compared PAI of breast specimens containing MCs (n = 11) 

and a non-MC group (n = 10), using laser pulses with two wavelengths (700 and 800 nm) [73]. It 

was shown that the PA signal amplitude of MCs was different from that of normal breast tissues. The 

PAI ratio (the ratio of signal amplitude at 700 and 800 nm) in the MC group was significantly higher 

than the PAI ratio of cores included in the control group. The sensitivity and specificity of PAI were 

90.91% and 80.0%, respectively. Kang et al. showed that the intensity of PA signals from MCs 

decreased with increasing laser wavelength from 700 to 800 nm, while the composition of 

surrounding tissues such as fat and glandular tissues remained almost unchanged [76]. However, the 

number of scattered MCs in the sample became less and less with increasing wavelength. The 

scattered MCs generally belong to calcium oxalate and mostly are benign, which means that PAI 

may be more sensitive and specific in breast cancer screening than mammography.  
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PAI overcomes the limitations of conventional B-mode ultrasound imaging and can distinguish 

between normal tissues and MCs in a breast. It has important application prospects for improving 

early diagnosis of breast cancer. However, PAI is susceptible to noise interference, and the choice of 

wavelengths will have an important impact on imaging performance. 

9. Other techniques 

Taki et al. reported a correlation technique for ultrasound calcification depiction, which utilized 

the decrease of correlation between adjacent scan lines caused by the echo waveform change [77]. 

Because calcification has greater acoustic impedance than soft tissue, the ultrasound pulse waveform 

changes greatly at the calcified position. The existence of small calcifications in a heterogeneous 

medium was supposed to suppress the correlation between adjacent scan lines [77–82]. When the 

region of interest contains small calcification, the variance of the correlation coefficient in 

inhomogeneous media will increase. The correlation method improves the ultrasonic sensitivity and 

has the potential to describe small calcifications without acoustic shadowing. However, the 

correlation coefficients are also susceptible to noise. The effect of SNR on the distribution of 

correlation coefficients between adjacent scan lines may be considered in future developments. In 

2014, Taki et al. proposed another imaging method based on frequency domain interferometry (FDI) 

to improve the performance of B-mode ultrasound in depicting small calcifications [83]. The FDI 

imaging method suppresses the contribution of undesired echo signals when their waveforms differ 

from the waveform of a small calcification echo. The results showed that when the SNR is 0 dB, the 

FDI method may depict small calcifications with a diameter of 0.2 mm that are difficult to identify in 

conventional B-mode images.  

The twinkling artifact in color Doppler ultrasound was employed to detect breast MCs [84,85]. 

The twinkling artifact is a well-known color Doppler artifact [86]. Tsujimoto investigated the 

twinkling artifact of breast MCs and found that the twinkling artifact may assist in the detection of 

calcified foci [84]. A prospective study of 46 patients demonstrated that the twinkling artifact on 

color Doppler ultrasound is useful in the ultrasound management of suspicious breast MCs [85]. 

The ultrasound channel data contains more information than the B-mode images obtained after 

the processing of beamforming and envelope detection [87]. Therefore, channel-data-based 

beamforming techniques can provide additional information related to MCs. Huang et al. developed 

MC detection algorithms based on coherence factor and dominance of the first eigenvalue of 

covariance matrices [87]. These two parameters were used to yield a binary MC map that assisted in 

indicating the presence of MCs. The preliminary results showed the promise of the algorithm for MC 

detection. However, the performance needs to be further validated. Huang et al. proposed a 

super-resolution ultrasound imaging method for detecting breast MCs; the method was based on 

SVD, a factorization scheme, and a wave-equation reflection imaging scheme, and could detect MCs 

at a full spatial resolution for numerical phantoms [88]. 

Liao et al. proposed using a strain-compounding technique with Nakagami imaging to detect 

breast MCs [89]. Shankar proposed a three-parameter statistical model of McKay density for the 

ultrasonic backscattered echo from tissues containing MCs [90]. The method could be used to 

separate and display MCs according to the observed high speckle factor. However, Shankar [90] did 

not investigate the use of ultrasound speckle factor to detect actual MCs within breast lesions. To this 

end, Liao et al. proposed a strain-compounding technique with speckle factor (SF) imaging to detect 
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MCs in human breast tissues [91]. Their method could be used to distinguish between the relative 

contributions of scattering from MCs versus false MCs. However, the detection capability was 

limited by the unfitting scattering statistical models, and estimating error was caused by manual 

compression conditions. 

10. Discussion 

MC is an important indicator of early breast cancers. In this review, we summarized the current 

ultrasonic detection methods for breast MCs. To the best of our knowledge, this paper is the first to 

provide a comprehensive review on the state-of-art ultrasound techniques for detecting breast MCs. 

At present, high-frequency B-mode ultrasound imaging, MicroPure
TM

 imaging, and ultrasound 

elastography techniques have been commercialized. Other detection techniques are mainly involved 

with experimental studies including computer simulation, phantom experiments, and experiments of 

breast tissue specimens containing MCs. Refer to Table 1 again. Most researchers used 

mammography as the reference standard; linear array transducers were mostly used to detect breast 

MCs. For the pattern of calcification distribution, most researchers have improved the detection rate 

of isolated MCs over conventional B-mode ultrasound. However, there still is a high false positive 

rate. How to distinguish between normal breast tissues and isolated MCs with hyperechoic 

background remains a challenge. In addition, clustered MCs are easy to detect as macrocalcifications, 

which are likely benign, thus causing misdiagnosis. In addition, the size of MCs has an important 

indication of the performance of detection, but only a few studies have reported it. 

Table 2 shows the advantages and limitations of various methods for ultrasonic detection of 

breast MCs. The advantages and disadvantages of some detection methods are briefly discussed as 

follows. The TR-MUSIC and PAI techniques show the feasibility for MC detection, but they are 

vulnerable to noise interference. The PC-MUSIC method retains phase information, but it cannot 

locate the scatterers accurately. Although PC-MUSIC improves the positioning accuracy after 

compensating for the phase response of the transducer elements, its computational complexity is high 

as it uses TR-MUSIC to pre-locate the scatters. SURF enhances the nonlinear scattering 

characteristics of MCs and enhances the contrast against surrounding tissues. However, to design a 

dual-band ultrasound transducer for SURF imaging is a challenge. We should consider not only the 

noise suppression but also the minimum distortion of imaging pulses. Retrieving high spatial 

frequency information is easy to implement. However, it should be noted that the experimental study 

is conducted in an ideal situation and the accuracy needs to be further validated. The correlation, FDI, 

and beamforming techniques have shown the potential for detecting MCs and have improved the 

sensitivity of conventional B-mode ultrasound, but they are susceptible to noise and the accuracy 

needs further verification. Ultrasound elastography is based on the different elastic modulus of breast 

MCs against surrounding breast tissues. The elastic modulus of breast MCs is much higher than that 

of glandular tissues. Therefore, dense tissues may have little influence on the detection of MCs. It 

may overcome the limitations of some detection techniques and has important application prospects. 

It is interesting to discuss different imaging features for the differing ultrasonic MC detection 

methods reviewed in this article. In high-frequency B-mode ultrasound imaging, detected breast MCs 

have a higher echogenicity than surrounding tissues do, thus appearing as bright spots. In 

MicroPure
TM

 imaging, detected breast MCs are high-brightness dots. In ultrasound elastography, 

detected breast MCs may have a different elasticity and thus show a contrast compared with 
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surrounding tissues. In TR-MUSIC and PC-MUSIC imaging and high spatial frequency imaging, 

breast MCs appear as brighter spots, compared with their appearance in conventional B-mode 

ultrasound imaging. Breast MCs are brighter spots in SURF imaging with a higher contrast, 

compared with their appearance in conventional B-mode ultrasound imaging. Breast MCs produce 

PA signals with their amplitude different from normal breast tissues, so there is an imaging contrast 

in PAI. 

Table 2. Comparison of ultrasound detection techniques for breast microcalcifications. 

Examination method Advantages Limitations 

HF B-mode US High specificity. The total detection rate of breast MCs is low. 

MicroPure
TM

 Enhancement of contrast of MC against 

background. 

False positive rate is high. 

Ultrasound elastography 

 

Effective detection of coarse calcification 

and clustered MCs in breast masses. 

It is easy to misdiagnose benign tumor with 

MCs as malignant. 

TR-MUSIC High precision in positioning scatterers and 

good horizontal resolution. 

It is easily affected by noise and the axial 

resolution is low. 

PC-MUSIC Improve axial resolution of TR-MUSIC. The positioning is not accurate. 

High spatial frequency It is easy to implement. The method is too idealized and the accuracy 

needs further verification. 

SURF It can suppress the linear scattering of 

background and increase the nonlinear 

scattering of MCs. 

Imaging pulse is easily distorted. 

PAI It combined the high contrast of optical 

imaging and high resolution of acoustic 

imaging. 

It is easily affected by noise. 

Correlation technique The sensitivity of conventional B-mode 

ultrasound is improved. 

It is easily affected by noise. 

FDI The sensitivity of conventional B-mode 

ultrasound is improved. 

It is easily affected by noise. 

Beamforming The sensitivity of conventional B-mode 

ultrasound is improved. 

The accuracy needs further verification. 

Strain-compounding 

speckle factor imaging 

Improve the effective identification of MCs 

and false MCs. 

Selection of scattering statistical models and 

manual compression can cause errors. 

MC: microcalcification; US: ultrasound; HF: high-frequency; VA: Vibro-acoustography; SWE: shear wave elastography; 

TR: time reversal; PC: phase coherent; MUSIC: multiple signal classification; SURF: second order ultrasound field; PAI: 

photoacoustic imaging; FDI: frequency domain interferometry 

The detection methods reviewed in this paper have improved the performance of traditional 

B-mode ultrasound for MC detection to a certain extent, but there still is a gap compared with 

mammography. The future developments of ultrasonic detection methods for breast MCs are 

suggested as below. 

 

1. Real-time ultrasound detection of breast MCs. Ultrasound is widely used, partially because 
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of its real-time performance. Because some detection algorithms are too complex, even if 

MCs can be characterized, it may not be suitable for real-time clinical application. Therefore, 

an increase in the time efficiency of ultrasonic breast MC detection methods may be 

considered in future developments. 

2. The comparison and evaluation of ultrasonic breast MC detection methods. Due to the 

difference in experimental methods, reference standards, and MC distributions, various 

detection techniques lack intuitive comparability. In addition, the use of histology as the 

reference standard is also limited by the fact that histologic processing can lead to the loss of 

MCs. A unified reference standard can be set up to detect the same MCs using different 

ultrasonic detection techniques to find out a more reliable detection method. 

3. Extensive in vivo validation. Although some ultrasonic detection techniques have shown 

satisfying performance for computer simulation, phantom experiments, and experiments of 

breast tissue specimens containing MCs, the extensive in vivo validation of ultrasonic 

detection techniques remains an issue. Comparison of biopsy examinations with noninvasive 

validations of different ultrasonic MC detection methods in vivo may be considered in future 

clinical research. 

4. Integration of different ultrasonic detection techniques. Because conventional B-mode 

ultrasound imaging is difficult to detect breast MCs, researchers have begun to introduce 

new concepts and methods to the ultrasound detection of breast MCs, such as PAI and SURF 

techniques. In future developments, the effective combination of different ultrasonic 

signal/image processing techniques can be considered, in order to obtain a high-contrast 

visualization of breast MCs. 

5. Diagnosis and classification of MC malignancy. Current ultrasound detection methods only 

determine the existence of breast MCs, but there are few reports on how to evaluate the 

malignancy of MCs. Therefore, it is a challenge to develop ultrasound methods that can not 

only detect MCs, but also identify the malignancy of MCs and classify their pathological 

types. 

6. Combination of computer-aided diagnosis (CAD) systems with automatic detection of MCs 

in breast ultrasound. Ultrasound is more dependent on operators than mammography, and 

good imaging results require well-trained and experienced radiologists. However, 

well-trained experts may have a high inter-observer variation rate. The computerized 

techniques for MC detection on breast ultrasound can reduce inter-observer variability. 

However, there are few reports on ultrasound CAD systems for breast MCs. Therefore, CAD 

systems of breast ultrasound [92–102] should be investigated further in future developments 

to incorporate automatic MC detection. Ultrasonographic features correlating with 

mammographic findings are valuable for differentiating between malignant and benign 

lesions, including the shape, orientation, margin, boundary, echo pattern, and posterior 

features of breast lesions [9]. A breast ultrasound CAD system is typically composed of four 

parts: preprocessing, segmentation, feature extraction and selection, and classification [92]. 

The incorporation of computerized breast MC detection/classification can enhance the 

capability of breast ultrasound CAD systems [92–102], especially for breast tumors with 

MCs. However, it should be noted that current breast ultrasound CAD systems [92–102] 

mainly use B-mode ultrasound images, while some of the ultrasonic MC detection 

techniques reviewed in this article are based on backscattered RF signals, such as ultrasound 
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elastography. Therefore, breast ultrasound CAD systems incorporating quantitative 

ultrasound techniques using ultrasound RF signals [95] may be considered in future 

developments. 

7. MC detection in 3D breast ultrasound. Conventional diagnostic ultrasound systems usually 

use two-dimensional (2D) ultrasound imaging, which can only show a cross-section of the 

tissue. A 2D image can result in a loss of spatial information and may cause superimposition 

of individual calcifications within the cluster. 3D breast ultrasound can offer an enhanced 

ultrasound tissue characterization, especially for detecting breast lesions and MCs [103–106]. 

Note that there are automated breast volume scanning (ABVS) 3D ultrasound systems that 

have been commercialized. Computerized detection and segmentation of breast tumors in 

ABVS ultrasound images have been investigated [107,108]. In future developments, 3D 

ultrasonic detection of breast MCs may be considered. In addition, the real-time performance 

of 3D ultrasonic breast MC techniques should be considered. 
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