
http://www.aimspress.com/journal/MBE

Mathematical Biosciences and Engineering, 16(3): 1709–1717
DOI: 10.3934/mbe.2019081
Received: 17 December 2018
Accepted: 31 January 2019
Published: 27 February 2019

Research article

A viral protein identifying framework based on temporal convolutional
network

Hanyu Zhao1, Chao Che1,∗, Bo Jin2 and Xiaopeng Wei3

1 Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, Dalian
University, Dalian 116622, China

2 School of Innovation and Entrepreneurship, Dalian University of Technology, Dalian, 116024,
China

3 School of Computer Science, Dalian University of Technology, Dalian 116024, China

* Correspondence: Email: chechao101@163.com.

Abstract: The interaction between viral proteins and small molecule compounds is the basis of drug
design. Therefore, it is a fundamental challenge to identify viral proteins according to their amino
acid sequences in the field of biopharmaceuticals. The traditional prediction methods suffer from the
data imbalance problem and take too long computation time. To this end, this paper proposes a deep
learning framework for virus protein identifying. In the framework, we employ Temporal Convolu-
tional Network(TCN) instead of Recurrent Neural Network(RNN) for feature extraction to improve
computation efficiency. We also customize the cost-sensitive loss function of TCN and introduce
the misclassification cost of training samples into the weight update of Gradient Boosting Decision
Tree(GBDT) to address data imbalance problem. Experiment results show that our framework not
only outperforms traditional data imbalance methods but also greatly reduces the computation time
with slight performance enhancement.
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1. Introduction

Protein is one of the main components of cells and performs a vast array of function in the organ-
isms. In the biopharmaceutical field, the drug is designed according to the interaction between viral
proteins and small molecule compounds. With the development of bioinformatics, extensive informa-
tion of protein sequence continuously come forth. It is a time-consuming and labor-intensive work
to identify viral proteins by molecular biology experiments. Therefore, exploring computer technol-
ogy to identify viral proteins efficiently is an essential way in the biopharmaceutical field. At present,
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the primary protein sequence recognition methods include prediction methods based on sequence ho-
mology comparison and machine learning methods based on feature extraction. Methods based on
sequence homology comparison mainly include Basic Local Alignment Search Tool (BLAST) [1] and
FAST-Aye (FASTA) [2]. The main problem faced by such methods is that there are some proteins with
high homology that exhibit different functions. The machine learning methods mainly construct the
feature set by mining the features of the protein sequence and then use the machine learning algorithm
to perform prediction. The performance of machine learning methods is superior to the prediction
method based on sequence homology comparison in identifying proteins. However, since viral pro-
tein sequences account for only a small fraction of all protein sequences, traditional feature extraction
methods cannot efficiently extract features of the rare class, namely, viral protein. TCN [3] can extract
sequence information more efficiently by stacking more convolutional layers, using a larger dilation
factor, increasing the size of the filter and expanding the receptive field. Compared with the traditional
sequence modeling, RNN [4], which must wait for the former element to be processed before the next
element can be processed and is extremely computationally intensive, TCN require less memory and
time for training especially for long input sequence like protein sequence. Thus, this paper employs an
improved deep learning framework based on TCN to identify the viral protein. In the framework, we
propose Cost-TCN algorithm to extract features of the protein sequence and Cost-GBDT algorithm to
identify the viral proteins, respectively. To address the data imbalance problem, Cost-TCN customizes
the loss function of TCN, and Cost-GBDT changes the update rules of GBDT[5].

2. Related work

The first step in the machine learning method for identifying viral protein is to construct a sequence
feature set by mining the protein sequence. For example, Wang et al. [6] proposed a feature con-
struction method of 3-gram. However, the dimensions of the extracted feature by this approach will
exponentially increase when n takes a big value. Lin et al. [7] put forward a 188-dimensional method
which combined n-gram and physicochemical properties to reduce dimensional catastrophe.

Nevertheless, the above methods still cannot effectively extract the dependence between functional
regions in the sequence. In recent years, the neural network has made significant achievements in
language modeling. With the continuous research on protein sequences, more and more scholars have
focused their attention on deep learning models. Timothy et al. [8] attempted to classify proteins
using deep learning networks such as Convolutional Neural Network (CNN), Long Short-Term Mem-
ory (LSTM) and Gated Recurrent Unit (GRU). Moreover, the classification accuracy based on GRU
network had reached 0.9484. Li Hongshun et al. [9] first used CNN to detect the functional domain
of proteins and then used LSTM to study the long-term dependence between functional domains, and
finally achieved an accuracy of 0.9592 in the prediction of RNA-binding proteins. Although LSTM
reduces the gradient explosion or gradient disappearance that often occurs in RNN to a certain extent,
the problem cannot be completely avoided. However, the path of the TCN in the backpropagation is
different from the time direction of the sequence, which can effectively avoid such problems.

In protein sequence data, viral protein sequences account for only a small fraction of all sequences
and the data imbalance severely restricts the performance of protein identification. At present, there
are two strategies to solve the data imbalance problem. One is to reduce the imbalance by changing
the sample distribution of the training set. For example, Chawla et al.[10] proposed Synthetic Mi-
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nority Over-sampling Technique(SMOTE) algorithm to balance the training data by generating small
class without repetition. Another method is to use the learning algorithm, which mainly refers to cost-
sensitive learning methods. Fan et al. [11] proposed Cost-sensitive Adaptive Boosting(Cost-Adaboost)
algorithm to improve the classification accuracy of boosting algorithm on imbalance samples by in-
troducing the error cost of each training sample into the weight updating rule of boosting algorithm
[12]. However, the above methods cannot effectively extract the features of the rare class in protein
sequence. This paper proposes a viral protein identifying model based on Cost-TCN and Cost-GBDT,
which introduces the error cost of the sample into the both feature extraction and classification iterative
processes so that the model can pay more attention to rare class and solves the imbalance problem.

3. Methods

In order to predict the viral protein in the protein sequence, we designed a three-stage deep learning
framework consisting of protein embedding, feature extraction and protein classification. We first
encode amino acids in the protein sequence so that the computer can recognize the protein sequence.
Then we propose a deep learning model called Cost-TCN to extract features from the encoded protein
sequence automatically. Finally, Cost-GBDT algorithm which combines GBDT with cost-sensitive
learning is employed to classify proteins and the extracted feature is used as the input.

3.1. Protein embeddings

A protein sequence can be described as s = a1a2...an, where n is the length of the protein sequence,
ai is an amino acid which comes from the collection

∑
= A, B, ...,Z. In order to represent the protein

sequences, the 20 amino acids in Table 1 are encoded, and each amino acid is mapped to a specific
real number. Suppose s is a 10-length protein sequence s = MDKFRVOGPT , the amino acids in
the sequence are encoded according to Table 1, and each sequence is converted into a 1-dimensional
vector.

S i = encoding(s) = (18, 7, 10, 14, 11, 4, 15, 3, 12, 8) (3.1)

Table 1. Amino Acid Embeddings Cross Reference Table.

Amino Acids Letters code Amino Acids Letters code
Leucine L 1 Alanine A 2
Glycine G 3 Valine V 4

Glutamic E 5 Serine S 6
Aspartic D 7 Threonine T 8

Isoleucine I 9 Lysine K 10
Arginine R 11 Proline P 12

Asparagine N 13 Phenylalanine F 14
Glutamine Q 15 Tyrosine Y 16
Histidine H 17 Methionine M 18

Tryptophan W 19 Cysteine C 20
Illegal Amino acids B,j,O,U,X,Z 0
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Figure 1. Residual Block.

3.2. Cost-TCN feature extraction

TCN combines the two structures of 1D fully-convolutional [13] and causal convolutions [14]. The
use of a 1D fully-convolutional network allows TCN to produce output sequences of the same length as
the input sequence, and each hidden layer can keep the same length with the output layer after padding.
By using causal convolutions, TCN can guarantee that the prediction of the previous time step does not
need future information because the output of time step t only relies on the convolutions operation on
t − 1 and the previous time step. The formula is as follows:

yt =

T∏
t=1

P(xt|x1x2...xt − 1) (3.2)

However, in order to construct a long-term memory of sequences, causal convolutions require a huge
number of layers or a large convolutions kernel to broaden the receptive field, which costs a sig-
nificant number of computational resources. To solve this problem, TCN uses dilated convolutions
[15] to enable an exponentially large receptive field. The dilated convolutions add some weights to
the convolutions kernel with zero value while keeping the input unchanged, which can increase the
length of the observed sequence while not increasing the amount of calculation. The size of the 1D
fully-convolutions kernel is 2, the dilation factor of the first layer is 1, dilated convolutions reduce
to a regular convolution. Moreover, the following dilation factor is sequentially increased. A regular
convolutions operation can only observe five inputs from left to right, while a hole convolutions can
observe 16 input data. Formally, for a one-dimensional input sequence x ∈ Rn and convolutions kernel
f : 0, 1, ..., k − 1→ R, the formula for dilated convolutions is:

F(s) = (x ∗ d f )(s) =

k−1∑
i=0

f (i)sx−di (3.3)

Where d is the dilation factor, k is the filter size, and s − d ∗ i accounts for the direction of the past.
The dilation factor controls the number of zeros inserted between each two convolutions kernels. The
larger dilation factor allows the neurons at the output to characterize a broader range of input sequences,
which can more effectively expand the receptive field. Therefore, when we use dilated convolutions, we
generally increase the expansion factor exponentially with the increase of network depth. In addition,
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TCN adds a jump connection block within residual convolutions [16] and a 1∗1 convolutions operation
to improve accuracy. Residual block is shown in Figure1.

Within the residual block of the TCN, there are two layers of dilated convolutions and loss functions
ReLU, and the weights of each convolutions kernel are normalized, and dropout is added after each
dilated convolutions to perform regularization. Since the input and output dimensions of the residual
convolutions are different in the TCN, we additionally use a 1∗1 convolutions to ensure that the features
added from the lower layer to the upper layer receive the same shape tensor.

Traditional TCN classification model uses cross-entropy loss function. Considering the data imbal-
ance problem, we introduce cost-sensitive learning into TCN network to better extract the feature of
the rare class. The loss function formula of Cost-TCN is defined as below:β =

cpos
cneg+cpos

L(x) = −(βP(x)
∑

j3Y+
log q(yi = 0|x) + (1 − β)P(x)

∑
j3Y− log q(yi = 1|x))

(3.4)

Where cpos denotes the positive number, cneg represents the negative number, p(x) is the true value,
and q(x) is the predicted value. By weighting the loss values of positive and negative samples, the
network pays more attention to the classification results of the rare class, so as to better identify the
viral proteins.

3.3. Cost-GBDT protein classification

In the imbalanced dataset, rare classes are the focus of classification, and it is more valuable to
identify the samples of rare class correctly. Cost-sensitive learning solves the data imbalance problem
by assigning different misclassification costs to different classes to minimize the total cost. Borrowing
from the idea of cost-sensitive learning, we proposed Cost-GBDT by changing the update rules of
GBDT weights and effectively improve the classification performance of GBDT for the rare class.

Algorithm 1 LK TreeBoost
Input: X = x1, x2, .., Xn

Output: Fkm(x)
1. Fk0 = 0, k = 1,K
2. For m = 1 to M do :
3. Pk(x) =

eFK (x)∑k
l=1 eFl(x)

, k = 1,K

4. For k = 1 to K do :
5. L(yk, Fk(x)2

1) = −
∑2

k=1
yk
y yk log pk(x)

6. ỹ = yik − Pk,m−1(xi)
7. {R jkm}

J
j=1 = J terminal node tree({ỹik, xi}

N
1 )

8. γ jkm = K−1
K

∑
x j∈R jkm

ỹik∑
x j∈R jkm

|ỹik |(1−|ỹik |)

9. Fkm(x) = Fk,m−1(x) +
∑J

j=1 γ jkm1(x ∈ Rklm)
10. end For
11. end For
12. end Algorithm
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GBDT is a boosting ensemble learning algorithms, which promotes iterative learning from weak
learner to strong learner. Because of its high efficiency, accuracy, and interpretability, GBDT has been
widely used in various machine learning tasks. The traditional GBDT algorithm integrates the decision
tree and trains the decision tree successively by fitting the steepest descent in each iteration. In order to
make GBDT better solve the data imbalance problem, we update the weights of the samples according
to the size of the class of the sample. We increase the weights of error samples of the rare classed in the
training process so that the weak classifier will pay more attention to the rare classes. The Cost-GBDT
algorithm flow is shown as Algorithm 1.

4. Results and discussion

4.1. Dataset

In the experiment, we selected 278866 protein sequences obtained from the RCSB PDB protein
database as the raw data, and only use the protein types with more than 2000 samples. In the dataset,
8495 viral protein sequences are marked as positive examples and 270371 protein sequences of other
types are marked as negative examples. We selected 80% of the data as the training set, and 20% of
the data as the test set. The dataset we used in the experiment is shown in Table 2.

Table 2. Division and Construction of Data Sets.

Data Non VIRAL VIRAL Total
Original Set 270371 8495 278866

Train Set 216296 6796 223092
Test Set 54075 1699 55774

To verify the effectiveness of our framework in solving data imbalance problem, we employed AUC,
Sensitive and Specificity [17] to evaluate the model performance.

4.2. Feature extraction methods comparison

To verify the advantages of TCN network in extracting protein features from protein datasets, we
compared the traditional feature extraction methods with the deep learning models. We choose 3-gram
method as traditional feature extraction method and employ four RNN models including LSTM, GRU,
Bi-Directional LSTM(BiLSTM) and Bi-Directional GRU(BiGRU) as deep learning models. All the
methods used softmax to do classification. The experimental results are shown in Table 3.

Table 3. The Comparison Results of Different Feature Extraction Methods.

Feature Extraction methods Sensitivity Specificity AUC Time
3 gram 0.7836 0.9732 0.8783 -
LSTM 0.8423 0.9980 0.9201 8328s
GRU 0.8529 0.9982 0.9255 6521s
BiLSTM 0.8634 0.9972 0.9303 15501s
BiGRU 0.8623 0.9981 0.9302 12812s
TCN 0.8735 0.9973 0.9353 2085s
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As we can see from Table 3, the deep learning models have significant advantages over the tradi-
tional method in extracting features from large-scale protein datasets. The traditional method cannot
get the location information between the motifs, while the deep learning models can automatically
learn the dependence between motif and motif. TCN only performs slightly better than RNN models
in sensitivity and AUC, and even a little worse in specificity. However, it shows tremendous advantages
in computational efficiency and only takes about 1/3-1/6 of the time of RNN models. TCN can further
reduce the computation time by parallel computation, while RNN model can not be implemented in
parallel. When dealing with the protein sequence problems, TCN can better control the dependence of
protein sequences by using causal convolutions and dilated convolutions, which consider the sequence
of amino acids, expand the receptive field and can better control the length of memory.

4.3. Cost-TCN vs. TCN

For the validity of feature extraction on imbalanced samples, we compared Cost-TCN method with
the traditional TCN network. The comparison results are shown in Table 4.

Table 4. The Performances of COST-TCN and TCN.

Feature Extraction methods Sensitivity Specificity AUC
TCN+softmax 0.8735 0.9973 0.9353
Cost-TCN+softmax 0.8917 0.9969 0.9443

Table 4 shows that Cost-TCN using the cost-sensitive cross-entropy loss function can classify the
imbalanced data more effectively, especially for the rare class. Since the number of non-viral proteins
is much larger than the virus protein in the training set, TCN is more inclined to classify proteins into
non-viral proteins in the iterative process. Meanwhile, Cost-TCN algorithm pays more attention to the
classification results of the rare class in the iterative process by assigning bigger weight to the samples
virus protein in training. This can effectively improve the classification performance of the rare class,
namely, the viral proteins.

4.4. Comparison of methods for data imbalance

As can be seen from Table 4, the classifier tends to classify the sample in an unbalanced data
set into the categories with a large sample size, which results in a low recall for the categories with
small sample size. To identify the viral protein with small sample size, we extract protein feature us-
ing Cost-TCN and employ Cost-GBDT to predict the viral protein. To verify the effectiveness of the
framework combining Cost-TCN and Cost-GBDT for solving the data imbalance problem, we com-
pared our framework with two traditional methods for data imbalance problem, namely, SMOTE and
the downsampling method, Edited Nearest Neighbors (ENN). The feature extracted by three methods
are all fed into Cost-GBDT to predict the viral protein. The results are shown in Table 5.

Table 5 shows that Cost-TCN+Cost-GBDT can improve the identifying performance of viral pro-
tein significantly. Although the traditional method based on data sampling can solve the sample imbal-
ance problem to a certain extent, it still has major defects for example, the SMOTE algorithm based
on the oversampling balances the training samples by generating new samples around small sample
sequences. However, it sometimes pays too much attention to these samples, which will result in over-
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fitting. The ENN algorithm based on down-sampling lose too much detailed information of the data,
which will decrease identifying performance. Compared with the traditional method, Cost-TCN+Cost-
GBDT will make the rare class samples get more attention in the process of classification by giving
them a larger weight in the iterative process.

Table 5. The Performances of COST-TCN and TCN.

Methods Sensitivity Specificity AUC
SMOTE +GBDT 0.8377 0.9979 0.9157

ENN +GBDT 0.8710 0.9974 0.9342
Cost-TCN+softmax 0.8917 0.9969 0.9443
Cost-TCN+GBDT 0.9417 0.9949 0.9683

Cost-TCN+Cost-GBDT 0.9508 0.9950 0.9728

5. Conclusions

This paper proposed a deep learning framework based on TCN to identify the viral protein in the
protein sequence. Our framework greatly improved the computational efficiency without loss of per-
formance. In the future, we will test our framework on different protein databases and continue to
optimize the Cost-TCN model and parameters. We are going to build a deeper Cost-TCN model,
which can better extract protein sequence features.
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