
http://www.aimspress.com/journal/MBE

Mathematical Biosciences and Engineering, 16(3): 1683–1708
DOI: 10.3934/mbe.2019080
Received: 19 December 2018
Accepted: 31 January 2019
Published: 27 February 2019

Research article

Global dynamics for a multi-group alcoholism model with public health
education and alcoholism age

Shuang-Hong Ma1,2 and Hai-Feng Huo1,2,∗

1 College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou,
730050, P. R. China

2 Institute of Applied Mathematics, Lanzhou University of Technology, Lanzhou, 730050, P. R.
China

* Correspondence: E-mail: hfhuo@lut.cn.

Abstract: A new multi-group alcoholism model with public health education and alcoholism age
is considered. The basic reproduction number R0 is defined and mathematical analyses show that
dynamics of model are determined by the basic reproduction number. The alcohol-free equilibrium P0

of the model is globally asymptotically stable if R0 ≤ 1 while the alcohol-present equilibrium P∗ of
the model exists uniquely and is globally asymptotically stable if R0 > 1. The Lyapunov functionals
for the globally asymptotically stable of the multi-group model are constructed by using the theory of
non-negative matrices and a graph-theoretic approach. Meanwhile, the combined effects of the public
health education and the alcoholism age on alcoholism dynamics are displayed. Our main results show
that strengthening public health education and decreasing the age of the alcoholism are very helpful
for the control of alcoholism.
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1. Introduction

A small intake of alcohol may be beneficial to health, but alcoholism, also known as alcohol de-
pendence or alcohol abuse, is among the main healthy risky behavior due to the high relevance of
negative health and social effect. Alcohol consumption has been identified as a major contributor to
the global burden of chronic disease, injury and economic cost [1–3]. The World Health Organization
reports the harmful use of alcohol causes approximately 3.3 million deaths every year (or 5.9% of all
the global deaths), and 5.1% of the global burden of disease is attributable to alcohol consumption
[4]. Furthermore, alcoholism is reported to be among the major concerns to public health in many
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countries, like UK [5, 6]. Recently, the study of alcoholism model has become an important aspect of
social epidemic. A great number of literatures can be found where healthy risky behavior, including
drinking, smoking, drug use and obesity, are viewed as a treatable contagious disease, see [7–10] and
the reference contained therein. In particular, several alcohol models described by ordinary differen-
tial equations or delay differential equations have been investigated extensively (see [11–22]). In [11],
the authors modelled alcoholism as a contagious disease and studied how “infected” drinking buddies
spread problem drinking. Manthey et al. [12] studied campus drinking and suggested that the basic re-
productive numbers are not sufficient to predict whether drinking behavior will persist on campus and
that the pattern of recruiting new members play a significant role in the reduction of campus alcohol
problems. The impact of environmental factors and peer influences on the distribution of heavy drink-
ing was studied in [13, 16]. In addition, the two-stage models: one stage where people who admit to
having a alcohol problem and other stage where people who do not admit to having a alcohol problem
have been developed in [17, 18]. Bhunu [19] studied the co-interaction of alcoholism and smoking in
a community. Walters et al. [20] also discussed alcohol problems, and their results showed that an
increase in the recovery rate decreased the proportion of binge drinkers in the population. Xiang et al.
[21] considered the effect of constant immigration on drinking behavior. Wang et al. [22] presented
a deterministic mathematical model for the spread of alcoholism with two control strategies to gain
insights into this increasingly concerned about health and social phenomenon. The optimal control
strategies are derived by proposing an objective functional and using Pontryagins Maximum Principle.
Zhu et al. [23] formulated a alcohol model with the impact of tax and investigated their dynamical
behaviors. Other related drinking epidemic or population models, we refer to see [24–33].

Public health education (e.g. Radio, Newspapers, Billboards, TV, and Internet, etc.) has been used
to control the alcohol problems, which can not only influence the individuals’ behavior but also increase
the governmental health care involvement to control the spread of heavy drinking. These behavioral re-
sponses can change the transmission patterns and decline to drink. In recent years, many mathematical
models [34–37] have been used for studying the impact of awareness programs by media on drinking
problem. In [35], the authors studied drinking dynamics and focused on awareness programs and treat-
ment in the modelling process. They extended the model in [34] via including a treatment class and
established some sufficient conditions for the stability of the alcohol-free and alcohol-present equilib-
ria. Xiang et al. [36] also studied a drinking model with public health education campaigns. Their
results showed that awareness programs is an effective measure in reducing alcohol problems. These
studies suggested that public health education and media had huge impact in controlling the spread of
alcoholism. Recently, Ma et al. [37] proposed an alcohol consumption model with awareness programs
and time delay described by including media function S M

k0+M , where M was the cumulative density of
awareness programs driven by media. The results showed that the time delay in alcohol consumption
habit which developed in susceptible population might result in a Hopf bifurcation.

Actually, it has been found that heterogeneity (e.g., age, sex, space and so on) exists in many
aspects of social epidemic transmission processes. Since multi-group models play important roles in
considering the heterogeneity of host population, the study of the multi-group models can contribute
to clarify the transmission pattern of infectious diseases in more realistic situations. There are lots of
studies of the global stability of multi-group epidemic models, in which a general approach is used (see
[38–46]). This graph-theoretic approach is sufficiently general to be applicable to a variety of coupled
systems. On the other hand, since the pioneering work of Hoppensteadt established an age-dependent
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epidemic model in 1974 [47], the effects of the age factor on the multi-group epidemic models have
already been studied by many researchers (see [48–51]). Dynamical behaviors of these multi-group
epidemic models with age structure have been studied, respectively. However, to our knowledge, there
are few studies on the alcoholism model in heterogeneous populations. In particular, we should notice
that the impact of the age of alcoholism on other people is different. Thus, the study of the multi-group
alcoholism model with public health education and age of alcoholism can contribute to the control of
alcohol problems in more realistic situations.

In this paper, motivated by the above works, we formulate a novel and more reasonable multi-group
alcoholism model with public health education and alcoholism age to describe alcoholism spread in a
heterogeneous host population. Inspired by the method developed in [38–40], we construct Lyapunov
functionals and obtain the global stability of the alcohol-free equilibrium and alcohol-present equi-
librium. Our results demonstrate that, for age structured multi-group alcoholism model, this graph-
theoretic approach can be successfully applied by choosing an appropriate weighted matrix as well.
At the same time, our main results indicate that public health education is beneficial for alcoholism
control, and alcoholism age structure does not alter the dynamical behaviors.

This paper is organized as follows. In next section, we formulate a more reasonable multi-group
alcoholism model with public health education and alcoholism age. Some preliminary setting for the
multi-group and age-dependent alcoholism model are presented in Section 3. In Section 4, we state
our main results of this paper. We prove the global asymptotic stability of the alcohol-free equilibrium
P0 for R0 ≤ 1 by using the theory of non-negative matrices and the classical method of Lyapunov
functional. By applications of the graph-theoretic approach to the method of Lyapunov functionals,
we prove the existence, uniqueness and global asymptotic stability of the alcohol-present equilibrium
P∗ for R0 > 1. In Section 5, the effects of the public health education and alcoholism age are given. A
brief discussion is also given in last section.

2. Model formulation

Let n ∈ N be the number of groups, the heterogeneous host population is divided into n homoge-
neous groups. For i-th (1 ≤ i ≤ n) group, it is further classified as five compartments: the uneducated
susceptible individuals S i(t) who do not drink or drink only moderately and do not accepted the public
health education, but may one day develop light drinkers, the educated susceptible individuals Ei(t)
who do not drink or consume alcohol in moderation and accepted the public health education, but
may one day also develop light drinkers, the light drinkers Li(t) who often consume alcohol but they
don’t influence other people, the alcoholics Ai(t) who have drinking problems or addictions (i.e. heavy
drinkers) and they will influence susceptible individuals, and the recovered drinkers Ri(t) who are the
recovered drinkers and permanently quit drinking. In i-th (1 ≤ i ≤ n) group, we assume that the
susceptible individuals, the light drinkers and the recovered drinkers are homogeneous at time t. The
alcoholics individuals is structured by the age of alcoholism θ, and ai(t, θ) be the alcoholism age den-
sity of the individuals in the alcoholism individuals with alcoholism age θ at time t. Suppose that
ai(t, θ) = 0 for all sufficiently large θ > θ+, where θ+ is the maximum ages of alcoholism which is
finite. Then Ai(t) =

∫ ∞
0

ai(t, θ)dθ is the number of heavy drinkers at time t. Furthermore, we make the
following assumptions:

(H1) In group i, at any moment in time, new recruits enter the uneducated susceptible population at
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a rate Λi > 0.

(H2) In group i, via public health education, the uneducated susceptible individuals in S i class turn
into the educated susceptible individuals Ei class at a constant rate ξi > 0.

(H3) In group i, the coefficient of alcoholism transmission for susceptible individuals (S i or Ei) turn
into light drinkers (Li) is βi j ≥ 0 for some reasons (e.g. through peer pressure), in which a susceptible
individual contact with heavy drinkers A j come from the j-th group.

(H4) Some educated individuals who never have a drink due to the effect of the public health
educational campaigns, and the proportion αi > 0 is that fraction of Ei who move into the Ri class.

(H5) The heavy drinkers in Ai class can recover (due to counselling, health reasons, treatment,
prohibition, or tax hiked on alcohol beverages, etc.) and will permanently quit drinking. The proportion
µi > 0 is that fraction of Ai who move into the Ri class.

(H6) The n-square contact matrix B(n) = (βi j)n×n is irreducible [41], where βi j ≥ 0.
Remark 1: Assumption (H6) implies that every pair of groups is joined by an infectious path so that
the presence of a heavy drinking individual in the first group can cause “infection” in the second group.

The other parameters description of the model are presented in Table 1.

Table 1. The other parameters description of the alcoholism model.

Variables Description
pi j(θ) the infectivity between A j(t) and S i(t) at the age of alcoholism θ

qi j(θ) the infectivity between A j(t) and Ei(t) at the age of alcoholism θ

γi the rate of the light drinkers enter into the alcoholism compartment in i-th group

dS
i the natural death rate of uneducated susceptible individuals in i-th group

dE
i the natural death rate of educated susceptible individuals in i-th group

dL
i the natural death rate of light drinking individuals in i-th group

dA
i the natural death rate of heavy drinking individuals in i-th group

dR
i the natural death rate of recovered individuals in i-th group

mi(θ) the death rate of alcoholics due to excessive drinking in i-th group

Here, all the parameters are positive. Furthermore, the following assumptions are made.

(H7) We assume that pi j(θ), qi j(θ),mi(θ) ∈ L1
+(0,+∞) are nonnegative and essential bounded, and

they are all non-decreasing functions of the age of alcoholism θ. If θ ≥ θ0, then pi j(θ) ≡ pmax, qi j(θ) ≡
qmax, and mi(θ) ≡ mmax, where 0 < θ0 ≤ θ

+.

Because the effect of public health education, here the infectivity qi j(θ) is reduced relatively for
educated individuals, i.e., qi j(θ) ≤ pi j(θ) (the smaller, the better). For simplicity, we set Pi j =∫ ∞

0
pi j(θ)a j(t, θ)dθ, Qi j =

∫ ∞
0

qi j(θ)a j(t, θ)dθ, and [µiAi] stands for
∫ ∞

0
µiai(t, θ)dθ. Under assumptions

(H1)-(H6), the alcoholism transmission diagram is depicted in Figure 1.
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Figure 1. The transfer diagram for our multi-group age-structured alcoholism model.

The transfer diagram leads to the following multi-group age structured SELAR alcoholism model
with public health education:

dS i(t)
dt

= Λi −

n∑
j=1

βi jS i(t)
∫ ∞

0
pi j(θ)a j(t, θ)dθ − (dS

i + ξi)S i(t),

dEi(t)
dt

= ξiS i(t) −
n∑

j=1

βi jEi(t)
∫ ∞

0
qi j(θ)a j(t, θ)dθ − (dE

i + αi)Ei(t),

dLi(t)
dt

=

n∑
j=1

βi jS i(t)
∫ ∞

0
pi j(θ)a j(t, θ)dθ +

n∑
j=1

βi jEi(t)
∫ ∞

0
qi j(θ)a j(t, θ)dθ − (dL

i + γi)Li(t),

∂ai(t, θ)
∂t

+
∂ai(t, θ)
∂θ

= −[dA
i + mi(θ) + µi]ai(t, θ),

dRi(t)
dt

= αiEi(t) + µi

∫ ∞

0
ai(t, θ)dθ − dR

i Ri(t), i = 1, 2, ..., n.

(2.1)
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The initial conditions and boundary conditions of model (2.1) are respectively given by:

S i(0) = φi
1 ≥ 0, Ei(0) = φi

2 ≥ 0, Li(0) = φi
3 ≥ 0,Ri(0) = φi

4 ≥ 0,
ai(0, θ) = a0

i (θ) ∈ L1
+(0,+∞), ai(t, 0) = γiLi(t), i = 1, 2, ..., n,

(2.2)

where L1
+(0,+∞) is the space of functions that are nonnegative and Lebesgue integrable.

Remark 2: Neglecting the heterogeneity and alcoholism age, Xiang et al. [36] constructed a SEARQ
drinking model with public health educational campaigns, its threshold stability was achieved.

3. Preliminaries

In this section, some primary results are presented for establishing our main conclusions.

3.1. Volterra formulation

Note that the variables Ri(t) does not appear in the first four equations of (2.1), it suffices to study
the dynamical behaviors of the following reduced sub-system (3.1):



dS i(t)
dt

= Λi −

n∑
j=1

βi jS i(t)
∫ ∞

0
pi j(θ)a j(t, θ)dθ − (dS

i + ξi)S i(t),

dEi(t)
dt

= ξiS i(t) −
n∑

j=1

βi jEi(t)
∫ ∞

0
qi j(θ)a j(t, θ)dθ − (dE

i + αi)Ei(t),

dLi(t)
dt

=

n∑
j=1

βi jS i(t)
∫ ∞

0
pi j(θ)a j(t, θ)dθ +

n∑
j=1

βi jEi(t)
∫ ∞

0
qi j(θ)a j(t, θ)dθ − (dL

i + γi)Li(t),

∂ai(t, θ)
∂t

+
∂ai(t, θ)
∂θ

= −[dA
i + mi(θ) + µi]ai(t, θ).

(3.1)

Let

Γ0i(θ) = e−
∫ ∞

0 [dA
i +mi(s)+µi]ds, (3.2)

then Γ0i(θ) is the probability of an alcoholism individual in the i-th group surviving to alcoholism-
age θ. Using the approach introduced by Webb [53], integrating along the characteristic lines and
incorporating the boundary conditions, we can obtain that

ai(t, θ) =


γiLi(t − θ)Γ0i(θ), t > θ ≥ 0,

a0
i (θ − t)

Γ0i(θ)
Γ0i(θ − t)

, θ ≥ t ≥ 0.
(3.3)
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Substituting (3.3) into the equations for S ′i(t), E
′
i (t) and L′i(t) of system (3.1), we have

dS i(t)
dt

= Λi −

n∑
j=1

βi jS i(t)
∫ t

0
pi j(θ)γ jL j(t − θ)Γ0 j(θ)dθ − (dS

i + ξi)S i(t) − F1(t),

dEi(t)
dt

= ξiS i(t) −
n∑

j=1

βi jEi(t)
∫ t

0
qi j(θ)γ jL j(t − θ)Γ0 j(θ)dθ − (dE

i + αi)Ei(t) − F2(t),

dLi(t)
dt

=

n∑
j=1

βi jS i(t)
∫ t

0
pi j(θ)γ jL j(t − θ)Γ0 j(θ)dθ +

n∑
j=1

βi jEi(t)
∫ t

0
qi j(θ)γ jL j(t − θ)Γ0 j(θ)dθ

− (dL
i + γi)Li(t) + F1(t) + F2(t),

(3.4)

where

F1(t) =

n∑
j=1

βi jS i(t)
∫ ∞

t
pi j(θ)a0

j(θ − t)
Γ0 j(θ)

Γ0 j(θ − t)
dθ,

F2(t) =

n∑
j=1

βi jEi(t)
∫ ∞

t
qi j(θ)a0

j(θ − t)
Γ0 j(θ)

Γ0 j(θ − t)
dθ.

It is easy to check that limt−→∞ F1(t) = 0, limt−→∞ F2(t) = 0. Furthermore, set

hi(θ) = pi j(θ)γiΓ0i(θ), gi(θ) = qi j(θ)γiΓ0i(θ), i = 1, 2, · · · , n.

Obviously, hi(θ) ≥ gi(θ), i = 1, 2, · · · , n. Then, by application of the results in [54], any equilibrium of
system (3.4) (if it exists), must be a solution of the following limiting system associated with (3.4):

dS i(t)
dt

= Λi −

n∑
j=1

βi jS i(t)
∫ ∞

0
h j(θ)L j(t − θ)dθ − (dS

i + ξi)S i(t),

dEi(t)
dt

= ξiS i(t) −
n∑

j=1

βi jEi(t)
∫ ∞

0
g j(θ)L j(t − θ)dθ − (dE

i + αi)Ei(t),

dLi(t)
dt

=

n∑
j=1

βi jS i(t)
∫ ∞

0
h j(θ)L j(t − θ)dθ +

n∑
j=1

βi jEi(t)
∫ ∞

0
g j(θ)L j(t − θ)dθ − (dL

i + γi)Li(t).

(3.5)

The behavior of system (3.1) is equivalent to the system (3.5). Once the solution of system (3.5) is
determined, we can obtain ai(t, θ) from (3.3). So that the stability of the equilibrium of system (2.1) is
the same as that of system (3.5). In this paper, we focus on the system (3.5).

3.2. State space

For system (3.5), we need the appropriate fading memory space of continuous functions as follows
(see Atkinson et al. [52]):

Cλi =
{
φ ∈ C((−∞, 0],R+) : sups≤0 | φ(s) | eλi s < +∞

}
,
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which is a Banach space endowed with the norm ‖ φ ‖λi:= sups≤0 | φ(s) | eλi s < +∞, where R+ =

[0,+∞], λi is a positive constant. Let φit(s) ∈ Cλi be such that φit(s) = φi(t + s), s ∈ (−∞, 0]. Thus, we
consider the system (3.5) in the phase space

X =

n∏
i=1

(Cλi ×Cλi ×Cλi).

For system (3.5), the existence and uniqueness of the solution with the initial and boundary conditions
(2.2) can be checked by the standard approaches in [53]. Furthermore, we clams that any solution of
system (3.5) with nonnegative initial conditions remains nonnegative.

We define a continuous solution semi-flow Φ : R+ × X −→ X associated with (3.5):

Φ(t, x0) = Φt(x0) =
(
S 1(t), E1(t), L1(t), · · · , S n(t), En(t), Ln(t)

)
, x0 ∈ X, t ≥ 0.

Let
Ω ={(S 1(·), E1(·), L1(·), · · · , S n(·), En(·), Ln(·)) ∈ X | 0 ≤ S i(0) + Ei(0) + Li(0) ≤

Λi

ηi
,

S i(s), Ei(s), Li(s) ≥ 0, s ∈ (−∞, 0], i = 1, 2, · · · , n},

where ηi = min{dS
i , d

E
i , d

L
i , d

A
i , d

R
i }. And denote the interior of Ω as:

Ωo ={(S 1(·), E1(·), L1(·), · · · , S n(·), En(·), Ln(·)) ∈ X | 0 < S i(0) + Ei(0) + Li(0) <
Λi

ηi
,

S i(s), Ei(s), Li(s) > 0, s ∈ (−∞, 0], i = 1, 2, · · · , n}.

Lemma 3.1. For system (3.5), Ω is positively invariant for Φ, i.e., Φ(t, x0) ∈ Ω,∀x0 ∈ Ω, t ≥ 0.

Proof. First, we prove that all solutions of system (3.5) with the initial and boundary conditions
(2.2) remains nonnegative. By continuity of the solutions of system (3.5) and S i(0) = φi

1 ≥ 0, we claim
S i(t) ≥ 0 for all t ≥ 0, i = 1, 2, · · · , n. In fact, we assume that there exists a i1 ∈ {1, 2, , · · · , n} such that
S i1(t) lost its positivity for the first time at t1 > 0, i.e., S i1(t1) = 0. However, from the first equation of
(3.5), we can see dS i1 (t1)

dt = Λi1 > 0 which is a contradiction to the fact that S i1(t) > S i1(t1) = 0 for any
0 ≤ t < t1.

Similarly, we shall show that Ei(t) ≥ 0 for all t ≥ 0, i = 1, 2, · · · , n.Otherwise, we assume that there
exists a i2 ∈ {1, 2, , · · · , n} and the first time t2 > 0 such that Ei2(t2) = 0. However, from the second
equation of (3.5) one obtains dEi2 (t2)

dt = ξi2S i2(t2) > 0 which follows from the nonnegativity of S i(t) for
all t ≥ 0, i = 1, 2, · · · , n. Thus, Ei(t) ≥ 0 for all t ≥ 0, i = 1, 2, · · · , n.

Furthermore, we conclude that there is a i3 ∈ {1, 2, , · · · , n} and the first time t3 > 0 such that
Li3(t3) = 0. Note that 0 < t3 − θ < t3, thus, Li3(t3 − θ) > 0. Using the similar arguments and the third
equation of (3.5), we gets

dLi3 (t3)
dt > 0. This is a contradiction which implies the nonnegativity of Li(t)

for all t ≥ 0, i = 1, 2, · · · , n.
Second, we prove that all solutions of system (3.5) with the initial and boundary conditions (2.2)

remains bounded. The total population size is N(t) =
∑n

i=1 Ni(t). In the i-th group, Ni(t) = S i(t)+Ei(t)+

Li(t) +
∫ ∞

0
ai(t, θ)dθ + Ri(t). Let ηi = min{dS

i , d
E
i , d

L
i , d

A
i , d

R
i }, then

dNi(t)
dt

) ≤ Λi − ηiNi(t) −
∫ ∞

0
mi(θ)ai(t, θ)dθ ≤ Λi − ηiNi(t),
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this suggesting

lim sup
t−→∞

Ni(t) ≤
Λi

ηi
.

Then, we have

lim sup
t−→∞

(S i(t) + Ei(t) + Li(t)) ≤
Λi

ηi
.

Therefore, we can obtain that Ω is positively invariant for Φ, i.e., Φ(t, x0) ∈ Ω,∀x0 ∈ Ω, t ≥ 0. This
proof is completed. �

Our results in this paper will be stated for system (3.5) in Ω, and can be translated straightforwardly
to system (3.1). Moreover, all positive semi-orbits in Ω have compact closure in X (see [52]), and thus
have non-empty ω-limit sets. We have the following result.

Lemma 3.2. All positive semi-orbits in Ω have non-empty ω-limit sets.

Lemma 3.3. System (3.5) is point dissipative, that is, there exists constants Mi > 0 such that for each
solution of (3.5) there is a Ti > 0 such that ‖ S it ‖λi≤ Mi, ‖ Eit ‖λi≤ Mi and ‖ Lit ‖λi≤ Mi for all
t ≥ Ti, i = 1, 2, · · · , n.

Proof. Let Wi = maxt∈[0,Ti] S i(t) > 0, then, for any t ≥ Ti and any εi > 0, we get

‖ S it ‖λi= sup
s≤0

S it(s)eλi s = sup
u≤t

S it(u)eλiue−λit ≤ max
{

e−λit ‖ S i0 ‖λi ,WieλiTie−λit,
Λi

ηi
+ εi

}
,

where the last estimation was obtained by three separations to u ≤ 0, 0 ≤ u ≤ Ti and Ti ≤ u ≤ t. Hence,
we can choose MS

i > 0 such that ‖ S it ‖λi≤ MS
i . Similary, we can also prove that ‖ Eit ‖λi≤ ME

i and
‖ Lit ‖λi≤ ML

i . Set Mi = max{MS
i ,M

E
i ,M

L
i } > 0, this proof is completed for all t ≥ Ti, i = 1, 2, · · · , n. �

3.3. Equilibria

System (3.5) always has a alcohol-free equilibrium P0 = (S 0
1, E

0
1, 0, ..., S

0
n, E

0
n, 0) ∈ R3n

+ , where

S 0
i =

Λi

dS
i + ξi

, E0
i =

ξiS 0
i

dE
i + αi

=
ξiΛi

(dS
i + ξi)(dE

i + αi)
, i = 1, 2, ..., n.

Let
Bi =

∫ ∞

0
hi(θ)dθ > 0, Ci =

∫ ∞

0
gi(θ)dθ > 0.

The alcohol-present equilibrium of system (3.5) is given by

P∗ = (S ∗1, E
∗
1, L

∗
1, ..., S

∗
n, E

∗
n, L

∗
n) ∈ Ωo,

then it is determined by the following system of equations

Λi = (dS
i + ξi)S ∗i +

n∑
j=1

βi jB jS ∗i L∗j,

ξiS ∗i = (dE
i + αi)E∗i +

n∑
j=1

βi jC jE∗i L∗j,

(dL
i + γi)L∗i =

n∑
j=1

βi jB jS ∗i L∗j +

n∑
j=1

βi jC jE∗i L∗j.

(3.6)
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The basic reproduction number R0 (see [38, 55, 56]) is defined as the spectral radius of a matrix M0,
that is,

R0 = ρ(M0), M0 =

(
βi jB jS 0

i +βi jC jE0
i

dL
i +γi

)
n×n

.

It acts as a threshold as is shown in the following result. We shall establish that the dynamical
behaviors of system (3.5) are completely determined by values of R0.

4. Main results

In this section we state and prove our main results concerning the global dynamics of system (3.5).

4.1. Global stability of P0

Theorem 4.1. Assume that the matrix B(n) = (βi j)n×n is irreducible.
(1) If R0 ≤ 1, then the unique alcohol-free equilibrium P0 of system (3.5) is globally asymptotically
stable in Ω;
(2) If R0 > 1, then P0 is unstable and system (3.5) is uniformly persistent, i.e.,there exists a positive
constant c > 0 such that lim supt−→∞ S i(t) ≥ c, lim supt−→∞ Ei(t) ≥ c, lim supt−→∞ Li(t) ≥ c, i =

1, 2, . . . , n. Furthermore, system (3.5) has at least one alcohol-present equilibrium P∗ in Ωo.

Proof. (1) Let S = (S 1, S 2, ..., S n)T , E = (E1, E2, ..., En)T , we define a matrix-valued function

M(S , E) =:
(
βi j(S iB j+C jEi)

dL
i +γi

)
n×n

.

It is easy to see that M(S 0, E0) = M0, where S 0 = (S 0
1, S

0
2, ..., S

0
n)T , E0 = (E0

1, E
0
2, ..., E

0
n)T . We also

have
0 ≤ M(S , E) ≤ M(S 0, E0) = M0, 0 ≤ S i ≤ S 0

i , 1 ≤ i ≤ n.

First, we will prove the uniqueness of alcohol-free equilibrium in Ω. If R0 ≤ 1, (S , E) , (S 0, E0), then
we obtain

0 ≤ M(S , E) < M0.

Since B(n) = (βi j)n×n is irreducible, we know nonnegative matrix M(S , E) and M0 are also irreducible.
Using the Perron-Frobenius theorem (see Theorem 2.1.4 or Corollary 2.1.5 in [58]), we get

ρ(M(S , E)) < ρ(M0) ≤ 1, (S , E) , (S 0, E0).

Therefore, ρ(M(S , E)) < 1 holds when R0 = ρ(M0) ≤ 1 and (S , E) , (S 0, E0). This implies that the
vector equation M(S , E)L = L has only the trivial solution L = 0, where L = (L1, L2, ..., Ln)T . Thus P0

is the unique equilibrium of system (3.5) in Ω if R0 ≤ 1.
Next, we claim that the alcohol-free equilibrium P0 is globally asymptotically stable in Ω. Since

M0 is irreducible, there exists a positive left eigenvector ω of M0 corresponding to ρ(M0), i.e.,

(ω1, ω2, · · · , ωn)M0 = (ω1, ω2, · · · , ωn)ρ(M0),
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where ω = (ω1, ω2, ..., ωn) and ωi > 0, i = 1, 2, ..., n. We introduce the Volterra-type function ϕ(x) =

x − 1 − ln x, x > 0, which is positive definite and attains its global minimum ϕ(1) = 0 at x = 1. Note
that ω is a strictly positive left eigenvector. We define a Lyapunov functional La f e(t) : (S i, Ei, Li) → R
as

La f e(t) = H1(t) + H2(t) + H3(t),

which is nonnegative and continuously differentiable. Here

H1(t) =

n∑
i=1

ci

{
S 0

i ϕ(
S i

S 0
i

) + E0
i ϕ(

Ei

E0
i

) + Li

}
,

H2(t) =

n∑
i=1

ci

 n∑
j=1

βi jS 0
i

∫ ∞

0
m j(θ)L j(t − θ)dθ

 ,
H3(t) =

n∑
i=1

ci

 n∑
j=1

βi jE0
i

∫ ∞

0
n j(θ)L j(t − θ)dθ

 ,
where ci = ωi

dL
i +γi

, m j(θ) =
∫ ∞
θ

h j(s)ds and n j(θ) =
∫ ∞
θ

g j(s)ds. Obviously, m j(0) =
∫ ∞

0
h j(s)ds =

B j,
dm j(θ)

dθ = −h j(θ), and n j(0) =
∫ ∞

0
g j(s)ds = C j,

dn j(θ)
dθ = −g j(θ).

It follows from Lemmas 3.1 and 3.3 that La f e(t) is nonnegative and bounded for big enough positive
t > 0. It is clear that La f e(t) with the equality holds if and only if S i = S 0

i , Ei = E0
i , Li = 0. First,

calculating the time derivative of H1(t) along with the solutions of system (3.5), using the equation
Λi = (dS

i + ξi)S 0
i , we have

H
′

1(t) =

n∑
i=1

ci

{
(1 −

S 0
i

S i
)
dS i(t)

dt
+ (1 −

E0
i

Ei
)
dEi(t)

dt
+

dLi(t)
dt

}

=

n∑
i=1

ci

(dS
i + ξi)(S 0

i − S i) −
(dS

i + ξi)S 0
i

S i
(S 0

i − S i) +

n∑
j=1

βi jS 0
i

∫ ∞

0
h j(θ)L j(t − θ)dθ + ξiS i(t)

−(dE
i + αi)Ei − ξiS i

E0
i

Ei
+ (dE

i + αi)E0
i +

n∑
j=1

βi jE0
i

∫ ∞

0
g j(θ)L j(t − θ)dθ − (dL

i + γi)Li

 .
(4.1)

Second, calculating the time derivative of H2(t) along with the solutions of system (3.5). Let t − θ = s,
then −∞ < s < t, we obtain

H
′

2(t) =

 n∑
i=1

n∑
j=1

ciβi jS 0
i

∫ t

−∞

m j(t − s)L j(s)ds


=

n∑
i=1

n∑
j=1

ciβi jS 0
i m j(0)L j(t) +

n∑
i=1

n∑
j=1

ciβi jS 0
i

∫ t

−∞

m j(t − s)
dt

E j(s)ds

=

n∑
i=1

n∑
j=1

ciβi jS 0
i B jL j(t) −

n∑
i=1

n∑
j=1

ciβi jS 0
i

∫ ∞

0
h j(θ)L j(t − θ)dθ.

(4.2)
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Similar to H
′

2(t), we get derivative of H3(t) along with the solutions of system (3.5). Let t − θ = s, then
−∞ < s < t, we obtain

H
′

3(t) =

n∑
i=1

n∑
j=1

ciβi jE0
i C jL j(t) −

n∑
i=1

n∑
j=1

ciβi jE0
i

∫ ∞

0
g j(θ)L j(t − θ)dθ. (4.3)

Using (4.1)-(4.3), we have

dLa f e(t)
dt

=

n∑
i=1

ci

{
(dS

i + ξi)(S 0
i − S i) −

(dS
i + ξi)S 0

i

S i
(S 0

i − S i) + ξiS i(t) − (dE
i + αi)Ei

−ξiS i
E0

i

Ei
+ (dE

i + αi)E0
i − (dL

i + γi)Li +

n∑
i= j

βi jL j(S 0
i B j + E0

i C j)


=

n∑
i=1

ci

{
−

(dS
i + ξi)
S i

(S 0
i − S i)2 + ξiS 0

i (2 −
E0

i

Ei
−

Ei

E0
i

)
}

+

n∑
i=1

 n∑
j=1

ωiβi j(S 0
i B j + E0

i C j)L j

dL
i + γi

− ωiLi


≤

n∑
i=1

 n∑
j=1

ωiβi j(S 0
i B j + E0

i C j)L j

dL
i + γi

− ωiLi


= (ω1, ω2, . . . , ωn) · (M0L − L)
= (ρ(M0 − 1)(ω1, ω2, . . . , ωn)L
= (R0 − 1)(ω1, ω2, . . . , ωn)L ≤ 0, i f R0 ≤ 1.

(4.4)
If R0 = ρ(M0) < 1, then (4.4) implies L = 0, and dLa f e(t)

dt = 0 if and only if L = 0.
If R0 = ρ(M0) = 1, from (4.4), we see dLa f e(t)

dt = 0 implies (ω1, ω2, . . . , ωn) · (M0L − L) = 0, that is

(ω1, ω2, . . . , ωn)(M0 − In)L = 0, (4.5)

where In denote the n-dimensional identity matrix. Hence, if (S , E) , (S 0, E0), then we have

(ω1, . . . , ωn)M0 = (ω1, . . . , ωn)ρ(M0) = (ω1, . . . , ωn),

so the solution of (4.5) is only the trivial value L = 0. Summarizing the above statements, we see
that dLa f e(t)

dt = 0 implies that either L = 0 or R0 = 1 and (S , E) = (S 0, E0). It can be verified that the
largest compact invariant subset of

{
(S 1, E1, L1, ..., S n, En, Ln) ∈ Ω : dLa f e(t)

dt = 0
}

is the singleton {P0}.
Therefore, by Lemma 3.2 and the Lyapunov-LaSalle invariance principle (see Theorem 3.4.7 in [59]),
we can see that P0 is globally attractive in Ω if R0 ≤ 1. The local asymptotical stability of the disease-
free equilibrium P0 comes from the relationship between the eigenvalues of the linearized matrix and
R0, which can be proved using the same proof as one for Corollary 5.3.1 in [60] (The detailed process is
omitted here). Then, together with the local asymptotical stability of P0, we know that the alcohol-free
equilibrium P0 is globally asymptotically stable in Ω when R0 ≤ 1.

(2) Suppose that R0 = ρ(M0) > 1, and L , 0. By continuity and (4.4), we have

(ω1, ω2, . . . , ωn)(M0 − In)L = (ρ(M0) − 1)(ω1, ω2, . . . , ωn)L > 0,
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which implies that dLa f e(t)
dt > 0 in a sufficiently small neighborhood of the alcohol-free equilibrium P0

in Ω0. This implies that the alcohol-free equilibrium P0 is unstable when R0 > 1.
Next, with a uniform persistence result in [61] and a similar argument as in the proof of Proposition

3.3 of [62], we can show that the instability of P0 implies that system (3.5) is uniformly persistent
when R0 > 1, i.e., there exists a positive constant c > 0 such that

lim sup
t−→∞

S i(t) ≥ c, lim sup
t−→∞

Ei(t) ≥ c, lim sup
t−→∞

Li(t) ≥ c, i = 1, 2, ..., n,

provided (S 1(0), E1(0), L1(0), ..., S n(0), En(0), Ln(0)) ∈ Ω0.
Furthermore, using the uniform persistence of system (3.5), together with the uniform boundedness

of solutions, we shall establish the existence of the alcohol-present equilibrium P∗ (see Theorem 2.8.6
in [63] or Theorem D.3 in [64]). This completes the proof of theorem 4.1. �

4.2. Global stability of P∗

In following section, we devote to the alcohol-present equilibrium of system (3.5) is globally asymp-
totically stable. In order to prove our results, we will construct the proper Lyapunov functional and
apply subtle grouping technique in estimating the derivatives of Lyapunov functional guided by graph
theory, which was recently developed by Guo et al. in [38, 39] and Li et al. [40]. Here, we quote some
results from graph theory which will be used in the proof of our main results. We refer the reader to
[38–40] and the references cited therein for more details of these concepts and results.

Given a non-negative matrix A = (ai j)n×n, the directed graph G(A) associated with A has vertices
{1,2,...,n} with a directed arc (i, j) from i to j if and only if ai j , 0. It is strongly connected if any two
distinct vertices are joined by an oriented path. Matrix A is irreducible if and only if G(A) is strongly
connected.

A tree is a connected graph with no cycles. A subtree T of a graph G is said to be spanning if T
contains all the vertices of G. A directed tree is a tree in which each edge has been replaced by an arc
directed one way or the other. A directed tree is said to be rooted at a vertex, called the root, if every
arc is oriented in the direction towards to the root. An oriented cycle in a directed graph is a simple
closed oriented path. A unicyclic graph is a directed graph consisting of a collection of disjoint rooted
directed trees whose root are on an oriented cycle.

For a given nonnegative matrix (β̄i j)n×n, β̄i j ≥ 0, 1 ≤ i, j ≤ n. Let

B̄ =


∑

j,1 β̄1 j −β̄21 · · · −β̄n1

−β̄12
∑

j,2 β̄2 j · · · −β̄n2

· · · · · ·
. . .

...

−β̄1n −β̄2n · · ·
∑

j,n β̄n j

 (4.6)

be the Laplacian matrix of the directed graph (β̄i j)n×n, and Ci j denote the cofactor of the (i, j) entry of
B̄. For the linear system

B̄v = 0, (4.7)

the following results hold (see Lemma 2.1 in [38] and Theorem 2.2 in [40]).
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Lemma 4.1. ([38]) Assume that (β̄i j)n×n is irreducible and n ≥ 2. Then following results hold:
(1) The solution space of system (4.7) has dimension 1;
(2) A basis of the solution space is given by

(v1, v2, ..., vn) = (C11,C22, ...,Cnn),

where Cii denotes the cofactor of the k-th diagonal entry of B̄, 1 ≤ i ≤ n;
(3) For all 1 ≤ i ≤ n,

Cii =
∑
T∈Ti

w(T ) =
∑
T∈Ti

∏
(r,m)∈E(T )

β̄rm,

where Ti is the set of all directed spanning subtrees of G(B̄) that are rooted at the i − th vertex, w(T ) is
the weight of a directed tree T , and E(T ) denotes the set of directed arcs in a directed tree T;
(4) For all 1 ≤ i ≤ n,

Cii > 0.

Lemma 4.2. ([40]) Assume that vi is the same meaning in Lemma 4.1, and n ≥ 2, then

n∑
i, j=1

viβ̄i jFi j(xi, y j) =
∑
T∈T

w(T )
∑

(r,m)∈E(CT )

Frm(xr, ym),

where Fi j(xi, y j), 1 ≤ i, j ≤ n is an arbitrary function, T is the set of all spanning unicyclic graphs of
G(B̄), w(T ) is the weight of a directed tree T , CT denotes the oriented cycle in a unicyclic graph T ,
and E(CT ) denotes the set of directed arcs in CT.

Let P∗ = (S ∗1, E
∗
1, L

∗
1, ..., S

∗
n, E

∗
n, L

∗
n) be the alcohol-present equilibrium of system (3.5), then

S ∗i , E
∗
i , L

∗
i ( i = 1, 2, ..., n) are determined by the following equations

Λi = (dS
i + ξi)S ∗i +

n∑
j=1

βi jB jS ∗i L∗j,

ξiS ∗i = (dE
i + αi)E∗i +

n∑
j=1

βi jC jE∗i L∗j,

(dL
i + γi)L∗i =

n∑
j=1

βi jB jS ∗i L∗j +

n∑
j=1

βi jC jE∗i L∗j.

(4.8)

In the following section, we prove that the alcohol-present equilibrium P∗ is globally asymptotically
stable when R0 > 1. In particular, this proof implies that the endemic equilibrium is unique in the
region Ω0 when it exists. Therefore, we have the following main result on the uniqueness and global
stability of the positive equilibrium P∗ when R0 > 1.

Theorem 4.2. Assume that B(n) = (βi j)n×n is irreducible. If R0 > 1, then the alcohol-present equilibrium
P∗ of system (3.5) is globally asymptotically stable in Ω0 and thus is the unique positive equilibrium.

Proof. Case I: n = 1
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The multi-group system (3.5) reduces to a single-group system as follows



dS (t)
dt

= Λ − βS (t)
∫ ∞

0
h(θ)L(t − θ)dθ − (dS + ξ)S (t),

dE(t)
dt

= ξS (t) − βE(t)
∫ ∞

0
g(θ)L(t − θ)dθ − (dE + α)E(t),

dL(t)
dt

= βS (t)
∫ ∞

0
h(θ)L(t − θ)dθ + βE(t)

∫ ∞

0
g(θ)L(t − θ)dθ − (dL + γ)L(t),

(4.9)

where h(θ) = γp(θ)Γ0(θ),
∫ ∞

0
h(θ)dθ = B and g(θ) = γq(θ)Γ0(θ),

∫ ∞
0

g(θ)dθ = C. The alcohol-present
equilibrium P∗ of system (4.9) satisfies the following equations


Λ = (dS + ξ)S ∗ + βS ∗L∗B,

ξS ∗ = (dE + α)E∗ + βE∗L∗C,

(dL + γ)L∗ = βS ∗L∗B + βE∗L∗C.

(4.10)

Let (S (t), E(t), L(t)) be any solution of system (4.9) with non-negative initial data, we construct a
Lyapunov functional Vape(t) : (S , E, L)→ R as follows

Vape(t) = V1(t) + V2(t) + V3(t),

which is nonnegative and continuously differentiable. Here we define

V1(t) = S ∗ϕ(
S
S ∗

) + S + E∗ϕ(
E
E∗

) + L∗ϕ(
L
L∗

),

V2(t) = βS ∗
∫ ∞

0
m(θ)L∗ϕ

(
L(t − θ)

L∗

)
dθ,

V3(t) = βE∗
∫ ∞

0
n(θ)L∗ϕ

(
L(t − θ)

L∗

)
dθ,

where ϕ(x) = x− 1− ln x, m(θ) =
∫ ∞
θ

h(s)ds, m(0) = B, dm(θ)
dθ = −h(θ), and n(θ) =

∫ ∞
θ

g(s)ds, n(0) =

C, dn(θ)
dθ = −g(θ). It is clear that Vape(t) is bounded for all t ≥ 0, and Vape(t) ≥ 0 with the equality holds

if and only if S (t) = S ∗, E(t) = E∗, L(t) = L(t − θ) = L∗.

Using the equations in (4.9) and Λ = (dS + ξ)S ∗ + βS ∗L∗B, and differentiating V1(t) along system
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(4.8), we have

V
′

1(t) = (1 −
S ∗

S
)
dS (t)

dt
+

dS (t)
dt

+ (1 −
E∗

E
)
dE(t)

dt
+ (1 −

L∗

L
)
dL(t)

dt

= Λ(1 −
S ∗

S
) + (dS + ξ)(2S ∗ − S ) + βS ∗L∗B + βS ∗

∫ ∞

0
h(θ)L(t − θ)dθ − βS

∫ ∞

0
h(θ)L(t − θ)dθ

− (dE + α)E − ξS
E∗

E
− dS S + (dE + α)E∗ + βE∗

∫ ∞

0
g(θ)L(t − θ)dθ − βE

∫ ∞

0
g(θ)L(t − θ)dθ

− (dL + γ)L −
L∗

L
βS

∫ ∞

0
h(θ)L(t − θ)dθ −

L∗

L
βE

∫ ∞

0
g(θ)L(t − θ)dθ + (dL + γ)L∗

= −
dS + ξ

S
(S − S ∗)2 − βBS ∗L∗

S ∗

S
+ βS ∗

∫ ∞

0
h(θ)L(t − θ)dθ − βS

∫ ∞

0
h(θ)L(t − θ)dθ

− ξS
E∗

E
− dS S − (dE + α)(E − E∗) + βE∗

∫ ∞

0
g(θ)L(t − θ)dθ − βE

∫ ∞

0
g(θ)L(t − θ)dθ

− (dL + γ)(L − L∗) −
L∗

L
βS

∫ ∞

0
h(θ)L(t − θ)dθ −

L∗

L
βE

∫ ∞

0
g(θ)L(t − θ)dθ.

(4.11)
Further, let s = t − θ and base on fact that dm(θ)

dθ = −h(θ), we obtain

V
′

2(t) = βS ∗
d
dt

[∫ t

−∞

m(t − s)L∗ϕ
(

L(t)
L∗

)
ds

]
= βS ∗

[
m(0)L∗ϕ

(
L(t)
L∗

)
+

∫ t

−∞

dm(t − s)
dt

L∗ϕ
(

L(t)
L∗

)
ds

]
= βS ∗

[∫ ∞

0
h(θ)L∗ϕ

(
L(t)
L∗

)
dθ +

∫ ∞

0

dm(θ)
dθ

L∗ϕ
(

L(t − θ)
L∗

)
dθ

]
= βS ∗L∗

∫ ∞

0
h(θ)

[
L(t)
L∗
−

L(t − θ)
L∗

+ ln
L(t − θ)

L(t)

]
dθ

= βS ∗
∫ ∞

0
h(θ)L(t)dθ − βS ∗

∫ ∞

0
h(θ)L(t − θ)dθ + βS ∗L∗

∫ ∞

0
h(θ) ln

L(t − θ)
L(t)

dθ.

(4.12)

Similarly, base on fact that dn(θ)
dθ = −g(θ), we have

V
′

3(t) = βE∗L∗
∫ ∞

0
g(θ)

[
L(t)
L∗
−

L(t − θ)
L∗

+ ln
L(t − θ)

L(t)

]
dθ

= βE∗
∫ ∞

0
g(θ)L(t)dθ − βE∗

∫ ∞

0
g(θ)L(t − θ)dθ + βE∗L∗

∫ ∞

0
g(θ) ln

L(t − θ)
L(t)

dθ.
(4.13)
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Combining (4.10)-(4.13), we get

dVape(t)
dt

= −
dS + ξ

S
(S − S ∗)2 − βBS ∗L∗

S ∗

S
+ βS ∗

∫ ∞

0
h(θ)L(t − θ)dθ − βS

∫ ∞

0
h(θ)L(t − θ)dθ

− ξS
E∗

E
− dS S − (dE + α)(E − E∗) + βE∗

∫ ∞

0
g(θ)L(t − θ)dθ − βE

∫ ∞

0
g(θ)L(t − θ)dθ

− (dL + γ)(L − L∗) −
L∗

L
βS

∫ ∞

0
h(θ)L(t − θ)dθ −

L∗

L
βE

∫ ∞

0
g(θ)L(t − θ)dθ

+ βS ∗L∗
∫ ∞

0
h(θ)

[
L
L∗
−

L(t − θ)
L∗

+ ln
L(t − θ)

L

]
dθ

+ βE∗L∗
∫ ∞

0
g(θ)

[
L
L∗
−

L(t − θ)
L∗

+ ln
L(t − θ)

L

]
dθ

= −
dS + ξ

S
(S − S ∗)2 − βS

∫ ∞

0
h(θ)L(t − θ)dθ − ξS

E∗

E
− dS S − (dE + α)E

− βE
∫ ∞

0
g(θ)L(t − θ)dθ − (dL + γ)L −

L∗

L
βS

∫ ∞

0
h(θ)L(t − θ)dθ

−
L∗

L
βE

∫ ∞

0
g(θ)L(t − θ)dθ − βS ∗L∗

∫ ∞

0
h(θ)

[
ϕ(

S ∗

S
) + ϕ(

L
L∗

) + ϕ

(
S L(t − θ)

S ∗L

)]
dθ

− βE∗L∗
∫ ∞

0
g(θ)

[
ϕ(

L
L∗

) + ϕ

(
L(t − θ)

L

)]
dθ.

(4.14)
From (4.14), we conclude that dVape(t)

dt ≤ 0 and with the equality holds if and only if S (t) = S ∗, E(t) =

E∗, L(t) = L(t − θ) = L∗ for all t ≥ 0. Thus, the largest invariant set { dVape(t)
dt = 0} = {P∗}. Therefore,

using the LaSalles Invariance Principle, we get the alcohol-present equilibrium P∗ is globally attractive
in Ω0 if R0 > 1 for n = 1.
Case II: n ≥ 2

In the following, we are going to consider the case n ≥ 2. Let

β̄i j = βi jL∗j(S
∗
i B j + E∗i C j), 1 ≤ i, j ≤ n, n ≥ 2,

and matrix B̄ as given in (4.6). Since B(n) = (βi j)n×n is irreducible, we know the matrix B̄ is also
irreducible. Let v = {v1, . . . , vn}, vi > 0 be a basis for the solution space of linear system (4.7), i.e.,
B̄v = 0 as described in Lemma 4.1.

Let (S i(t), Ei(t), Li(t))(1 ≤ i ≤ n) be any solution of system (3.5) with non-negative initial data.
For such v = {v1, . . . , vn}, we define a Volterra-type Lyapunov functional Uape(t) : (S i, Ei, Li) → R as
follows

Uape(t) = U1(t) + U2(t) + U3(t),

which is nonnegative and continuously differentiable, where

U1(t) =

n∑
i=1

vi

{
S ∗i ϕ(

S i

S ∗i
) + E∗i ϕ(

Ei

E∗i
) + L∗i ϕ(

Li

L∗i
)
}
,

U2(t) =

n∑
i=1

vi

 n∑
j=1

βi jS ∗i

∫ ∞

0
m j(θ)L∗jϕ

L j(t − θ)
L∗j

 dθ

 ,
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U3(t) =

n∑
i=1

vi

 n∑
j=1

βi jE∗i

∫ ∞

0
n j(θ)L∗jϕ

L j(t − θ)
L∗j

 dθ

 ,
where m j(θ) =

∫ ∞
θ

h j(s)ds, m j(0) = B j,
dm j(θ)

dθ = −h j(θ), and n j(θ) =
∫ ∞
θ

g j(s)ds, n j(0) = C j,
dn j(θ)

dθ =

−g j(θ).

By the definition of the fading memory space, Lemmas 3.2 and 3.3, we known that Uape(t) is well-
defined, that is, Uape(t) is bounded for all t ≥ 0. It is clear that Uape(t) ≥ 0 with the equality holds if
and only if S i(t) = S ∗i , Ei(t) = E∗i , Li(t − θ) = Li(t) = L∗i . Differentiating U1(t),U2(t),U3(t) along the
solutions of system (3.5), and using the equilibrium equations (4.8), we get

U
′

1(t) =

n∑
i=1

vi

{
(1 −

S ∗i
S i

)
dS i(t)

dt
+ (1 −

E∗i
Ei

)
dEi(t)

dt
+ (1 −

L∗i
Li

)
dLi(t)

dt

}

=

n∑
i=1

vi

−dS
i + ξi

S i
(S i − S ∗i )2 −

n∑
j=1

βi jB jS ∗i L∗j(
S ∗i
S i
− 1) +

n∑
j=1

βi jS ∗i

∫ ∞

0
h j(θ)L j(t − θ)dθ

−ξiS i(
E∗i
Ei
− 1) − (dE

i + αi)(Ei − E∗i ) −
n∑

j=1

βi jEi

∫ ∞

0
g j(θ)L j(t − θ)dθ

+

n∑
j=1

βi jE∗i

∫ ∞

0
g j(θ)L j(t − θ)dθ − (dLi

i + γi)(Li − L∗i ) −
n∑

j=1

L∗j
L j
βi jS i

∫ ∞

0
h j(θ)L j(t − θ)dθ

−

n∑
j=1

L∗j
L j
βi jEi

∫ ∞

0
g j(θ)L j(t − θ)dθ

 .
(4.15)

Further, let s = t − θ and base on fact that dm j(θ)
dθ = −h j(θ), we obtain

U
′

2(t) =

n∑
i=1

n∑
j=1

viβi jS ∗i L∗j

∫ ∞

0
h j(θ)

L j(t)
L∗j
−

L j(t − θ)
L∗j

+ ln
L j(t − θ)

L j(t)

 dθ

=

n∑
i=1

n∑
j=1

viβi jS ∗i

{∫ ∞

0
h j(θ)L j(t)dθ −

∫ ∞

0
h j(θ)L j(t − θ)dθ + L∗j

∫ ∞

0
h j(θ) ln

L j(t − θ)
L j(t)

dθ
}
.

(4.16)
Similarly, base on fact that dn j(θ)

dθ = −g j(θ), we have

U
′

3(t) =

n∑
i=1

n∑
j=1

viβi jE∗i L∗j

∫ ∞

0
g j(θ)

L j(t)
L∗j
−

L j(t − θ)
L∗j

+ ln
L j(t − θ)

L j(t)

 dθ

=

n∑
i=1

n∑
j=1

viβi jE∗i

{∫ ∞

0
g j(θ)L j(t)dθ −

∫ ∞

0
g j(θ)L j(t − θ)dθ + L∗j

∫ ∞

0
g j(θ) ln

L j(t − θ)
L j(t)

dθ
}
.

(4.17)
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Combining (4.15)-(4.17), we get

dUape(t)
dt

=

3∑
k=1

U
′

k(t)

=

n∑
i=1

vi

−dS
i + ξi

S i
(S i − S ∗i )2 −

n∑
j=1

βi jB jS ∗i L∗j(
S ∗i
S i
− 1) +

n∑
j=1

βi jS ∗i

∫ ∞

0
h j(θ)L j(t − θ)dθ

−ξiS i(
E∗i
Ei
− 1) − (dE

i + αi)(Ei − E∗i ) −
n∑

j=1

βi jEi

∫ ∞

0
g j(θ)L j(t − θ)dθ

+

n∑
j=1

βi jE∗i

∫ ∞

0
g j(θ)L j(t − θ)dθ − (dLi

i + γi)(Li − L∗i ) −
n∑

j=1

L∗j
L j
βi jS i

∫ ∞

0
h j(θ)L j(t − θ)dθ

−

n∑
j=1

L∗j
L j
βi jEi

∫ ∞

0
g j(θ)L j(t − θ)dθ


+

n∑
i=1

n∑
j=1

viβi jS ∗i

{∫ ∞

0
h j(θ)L j(t)dθ −

∫ ∞

0
h j(θ)L j(t − θ)dθ + L∗j

∫ ∞

0
h j(θ) ln

L j(t − θ)
L j(t)

dθ
}

+

n∑
i=1

n∑
j=1

viβi jE∗i

{∫ ∞

0
g j(θ)L j(t)dθ −

∫ ∞

0
g j(θ)L j(t − θ)dθ + L∗j

∫ ∞

0
g j(θ) ln

L j(t − θ)
L j(t)

dθ
}
.

(4.18)
Using ϕ(x) = x − 1 − ln x and β̄i j = βi jL∗j(S

∗
i B j + E∗i C j), we rearrange the terms in (4.18) as follows

dUape(t)
dt

=

n∑
i=1

vi

−dS
i + ξi

S i
(S i − S ∗i )2 −

n∑
j=1

βi jB jS ∗i L∗j
S ∗i
S i
− ξiS i

E∗i
Ei
− (dE

i + αi)Ei

−(dLi
i + γi)Li −

n∑
j=1

βi jS ∗i L∗j

∫ ∞

0
h j(θ)

[
ϕ

(
S ∗i
S i

)
+ ϕ

(
S iL j(t − θ)

S ∗i L j

)]
dθ

−

n∑
j=1

βi jE∗i L∗j

∫ ∞

0
g j(θ)

ϕ L j

L∗j

 + ϕ

(
L∗i L j(t − θ)

LiL j

) dθ


+

n∑
i=1

n∑
j=1

viβ̄i j

L j

L∗j
−

Li

L∗i

 − n∑
i=1

n∑
j=1

viβ̄i j ln
L∗i L j

LiL∗j
.

(4.19)

Now, we are going to show that dUape(t)
dt ≤ 0. From the properties of function ϕ(x), it is easy to see

that we only need to consider the last two items in (4.19). In what follows, we first prove that the
penultimate item

n∑
i=1

n∑
j=1

viβ̄i j

L j

L∗j
−

Li

L∗i

 ≡ 0. (4.20)

In fact, from (4.7) B̄v = 0, we get

vi

n∑
j=1

β̄i j =

n∑
j=1

β̄ jiv j, i = 1, . . . , n.
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Note that β̄i j = βi jL∗j(S
∗
i B j + E∗i C j), we obtain

vi

n∑
j=1

βi jL∗j(S
∗
i B j + E∗i C j) =

n∑
j=1

β jiL∗i (S ∗j Bi + E∗jCi)v j, i = 1, . . . , n.

Using this equation, we can obtain

n∑
i=1

n∑
j=1

viβ̄i j
L j

L∗j
=

n∑
i=1

n∑
j=1

viβi j(S ∗i B j + E∗i C j)L j =

n∑
i=1

Li

n∑
j=1

v jβ ji(S ∗j Bi + E∗jCi)

=

n∑
i=1

Li

L∗i

n∑
j=1

v jβ jiL∗i (S ∗j Bi + E∗jCi) =

n∑
i=1

n∑
j=1

v jβ jiL∗i (S ∗j Bi + E∗jCi)
Li

L∗i

=

n∑
i=1

n∑
j=1

viβi jL∗j(S
∗
i B j + E∗i C j)

Li

L∗i
=

n∑
i=1

n∑
j=1

viβ̄i j
Li

L∗i
.

(4.21)

Therefore, we have
n∑

i=1

n∑
j=1

viβ̄i j

L j

L∗j
−

Li

L∗i

 ≡ 0

holds for all L1, L2, · · · , Ln > 0.
Next, we will show that the last item is also equal to zero. Let

Wn =

n∑
i=1

n∑
j=1

viβ̄i j ln
L∗i L j

LiL∗j
.

Then, we will find that
Wn ≡ 0 (4.22)

holds for all L1, L2, · · · , Ln > 0.
In fact, by the Kirchhoff’s Matrix-Tree Theorem in Lemmas 4.1 and 4.2 (see [38]-[40]), we known

that vi = Cii is a sum of weights of all directed spanning subtrees T of G that are rooted at vertex i.
So, each term viβ̄i j is the weight w(Q) of a unicyclic subgraph Q of G, obtained from such a tree T by
adding a directed arc (i, j) from the root i to vertex j. Thus, the meaning of double sum in (4.22) can
be considered as a sum over all unicyclic subgraphs Q containing vertices {1, 2, . . . , n}, that is

Wn =
∑

Q

Wn,Q =
∑

Q

w(Q) ·
∑

(i, j)∈E(CQ)

ln
L∗i L j

LiL∗j
=

∑
Q

w(Q) · ln

 ∏
(i, j)∈E(CQ)

L∗i L j

LiL∗j

 .
For each unicyclic subgraph Q, we can see that∏

(i, j)∈E(CQ)

L∗i L j

LiL∗j
= 1,

which implies that

ln

 ∏
(i, j)∈E(CQ)

L∗i L j

LiL∗j

 = 0.
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For example, we set n = 2, the unique cycle CQ has two vertices with the cycle 1 → 2 → 1, and
E(CQ) = {(1, 2), (2, 1)} . Then we can get v1 = β̄21, v2 = β̄12, and∏

(i, j)∈E(CQ)

L∗i L j

LiL∗j
=

L∗1L2

L1L∗2
·

L∗2L1

L2L∗1
= 1.

So, we have Wn ≡ 0 holds for all L1, L2, · · · , Ln > 0.
Therefore, combining with (4.19)-(4.20), (4.22) and using properties of ϕ(x), we have dUape(t)

dt ≤ 0
for all (S 1, E1, A1, . . . , S n, En, An) ∈ Ω0, and with the equality holds if and only if S i(t) = S ∗i , Ei(t) =

E∗i , Li(t) = Li(t − θ) = L∗i for all t ≥ 0, θ ∈ [0, θ+], i = 1, . . . , n. We conclude that the largest invariant
set {dUape(t)

dt = 0} = {P∗}. The ω-limit set of Ω0 consist of just the alcohol-present equilibrium P∗.
Therefore, using the LaSalles Invariance Principle, we see that the alcohol-present equilibrium P∗ is
globally attractive in Ω0 if R0 > 1 for n ≥ 2.

As for the local asymptotical stability of the alcohol-present equilibrium P∗, which can be proved
by the way of Corollary 5.3.1 in [60]. Therefore, using an argument similar to that in the proof of
Theorem 4.1 (1), the alcohol-present equilibrium P∗ is globally asymptotically stable in Ω0 if R0 > 1,
which consequently implies that the alcohol-present equilibrium P∗ is unique. The proof of Theorem
4.2 is completed. �

5. Education and alcoholism age effects

In this section, we will discuss the effects of the public health education and alcoholism age on the
alcohol control. It follows from Theorems 4.1 and 4.2 that the global dynamics of system (3.5) are
completely determined by the basic reproduction number

R0 = ρ(M0), M0 =

(
βi j(B jS 0

i +C jE0
i )

dL
i +γi

)
n×n

,

where S 0
i = Λi

dS
i +ξi

, E0
i =

ξiΛi

(dS
i +ξi)(dE

i +αi)
, and B j =

∫ ∞
0

h j(θ)dθ, C j =
∫ ∞

0
g j(θ)dθ.

For convenience, we assume that the natural death rate of susceptible population (including unedu-
cated and educated susceptible population) is the same, that is, dS

i = dE
i . To investigate the effect of the

public health education, we consider the special case with ξi = 0, which is the rate of the susceptible
population who accepted the public health education entering into the educated class. Then for ξi = 0,
we have Ê0

i = 0 and Ŝ 0
i = Λi

dS
i
. Note that Λi

dS
i
−

Λi
dS

i +ξi
=

ξiΛi

dS
i (dS

i +ξi)
> ξiΛi

(dS
i +ξi)(dE

i +αi)
and B j ≥ C j, we can obtain

that
R̂0 = R0|ξi=0 > R0.

This implies that public health education leads to the basic reproduction number decline. On the other
hand, the reproduction number R0 is an increasing function of transmission coefficient βi j. By increas-
ing public health educational campaigns at all social levels, the value of ξi will be increase. Hence,
the awareness about drinking will alert the susceptible individuals so that they isolate themselves and
decline to drink or drink moderately. This leads to a decrease in the value of βi j. In this case, the value
of the reproduction number R0 will be decrease. Considering both the cost and the practical purposes,
efforts to increase public health education are more effective in controlling the spread of alcohol prob-
lems than efforts to increase the number of individuals who have access to treatment. Therefore, public
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health education is one of the effective measures to control the spread of alcohol problems and it is
beneficial for alcoholism control in the whole society.

However, R0 is a decreasing function of γi which is the rate of the light drinkers enter into the
alcoholism compartment. From the assumption (H7), alcoholism age θ will cause the value of the
reproduction number R0 increase, which is bad for alcoholism control. It suggests that the longer the
light drinkers stay in their compartment, the better alcohol problems will be controlled.

6. Discussion

The goal of this paper is to analysis threshold dynamics of a multi-group alcoholism epidemic model
with public health education and alcoholism age in heterogeneous populations. Our results expands
the previous related works which have been obtained in single-group models without alcoholism age.
Mathematical analysis shown that the global asymptotic behavior of multi-group alcoholism model
is completely determined by the size of the basic reproduction number R0. By using the theory of
non-negative matrices and the classical method of Lyapunov functional, Theorem 4.1 implies that the
alcohol problems dies out in the sense that alcoholism fractions go to zero from all the groups if R0 ≤ 1.
By applications of the graph-theoretic approach to the method of Lyapunov functionals, we proved the
existence, uniqueness and global asymptotic stability of the alcohol-present equilibrium P∗ for R0 > 1,
see Theorem 4.2. Our results implies that the alcoholism will persist in all the groups of the population
and will eventually settle at a constant level in each group.

Our main results indicate that the dynamics of alcoholism model (2.1) is similar to that for the
models without considering multi-group and alcoholism age. That is, heterogeneity of populations
does not alter the dynamical behaviors as shown in [36]. However, our model is more realistic than
the corresponding models already established. Because by decomposing the heterogeneous population
into several subgroups, the effects of both the intra-group and inter-group are considered. Moreover,
inclusion of alcoholism population with alcoholism age leads to the basic reproduction number R0

is increase. So the heterogeneity of populations plays an important role on R0, it affects the global
dynamics of the model. Strengthening public health education and controlling the age of drinking
have a positive role in alcoholism control. In addition, there is an innovation in the method of study
in this paper. Our findings in this paper may be valuable for the health workers who are performing
alcoholism control. These results are provided with intention to inform and assist policy-makers in
targeting education and treatment resources for maximum effectiveness.

Of course, other factors, such as time lag for alcoholism or nonlinear transmission rate, taking into
account the model which will make the model more realistic. In addition, relapse is very common
when it comes to drinking. Research on these issues remains to be completed in the future.
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