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Abstract: In this study, we propose an n-species stochastic model which considers the influences of
the competitions and delayed diffusions among populations on dynamics of species. We then inves-
tigate the stochastic dynamics of the model, such as the persistence in mean of the species, and the
asymptotic stability in distribution of the model. Then, by using the Hessian matrix and theory of
optimal harvesting, we investigate the optimal harvesting problem, obtaining the optimal harvesting
effort and the maximum of expectation of sustainable yield (ESY). Finally, we numerically discuss
some examples to illustrate our theoretical findings, and conclude our study by a brief discussion.
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1. Introduction

In mathematical modelling, the term diffusion is used to describe the motion of species from one
region to another. Influenced by various natural factors, such as geographic, hydrological or climatic
conditions and human activities, migrations occur between patches, which affects the population dy-
namics, for example the persistence and extinction of species [1–8]. The growth of species population
is also affected by competition caused by disputing food, resources, territories and spouses, including
intraspecific and interspecific competitions among populations. To see the effects of the diffusion and
competition on population dynamics, we propose the following mathematical model with n species,
for i, j = 1, 2, . . . , n,

dxi(t) = xi(t)
[
ri − aiixi(t) −

n∑
j=1, j,i

ai jx j(t) +

n∑
j=1, j,i

Di jx j(t)

http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019074


1555

−

n∑
j=1, j,i

Di jαi jxi(t)
]
dt, (1)

where xi(t) is the population size at time t of the ith species, positive constants ri, aii are the growth rate
and the interspecific competition rate of the ith species respectively, ai j > 0 ( j , i) is the competition
rate between species i and j, Di j ≥ 0 is the diffusion coefficient from species j to species i, αi j ≥ 0
indicates the diffusion boundary condition.

Recently, time delays have been widely used in biological and ecological models in order to get
more realistic mathematical models, for example [9–16]. In this paper, we also consider the time
delay, which is accounted for the diffusion. For example, birds cannot migrate immediately after they
were born, so the time delay here is the time it takes for them to learn to fly before they can migrate,
and death can also occur in the process. Then, from (1) we have the model with time delays as follows

dxi(t) = xi(t)
[
ri − aiixi(t) −

n∑
j=1, j,i

ai jx j(t) +

n∑
j=1, j,i

Di je−d jτi j x j(t − τi j)

−

n∑
j=1, j,i

Di jαi jxi(t)
]
dt, i, j = 1, 2, . . . , n, (2)

where τi j ≥ 0 is the time delay and d j is the death rate of the jth species. Let τ = maxi, j=1,...,n{τi j}

and C([−τ, 0]; Rn
+) denote the family of all bounded and continuous functions from [−τ, 0] to Rn

+. We
assume model (2) is subject to the following initial condition

x(θ) = (x1(θ), . . . , xn(θ))T = (φ1(θ), . . . , φn(θ))T = φ(θ) ∈ C
(
[−τ, 0]; Rn

+

)
. (3)

Reference [17] suggests that the growth rate of organisms is generally affected by environmental
fluctuations accounted for the disturbance of ecological environment in nature, consequently param-
eters in biologic models will exhibit random perturbations [18]. Thus, the deterministic models, like
(2) are not applicable to capture the essential characters. In the past years, researchers have suggested
the use of white noises to capture the main characters of these stochastic fluctuations, see [18–27] for
example. Denote by {Bi(t)}t≥0, (i = 1, 2, . . . , n) the independent standard Brownian motions defined on
a complete probability space (Ω, {Ft}t∈R+

, P) with σ2
i represents the intensity of the environment noises.

Then, the growth rate subject to random perturbation can be described by

ri → ri + σidBi(t),

with which the model (2) reads

dxi(t) = xi(t)
[
ri − aiixi(t) −

n∑
j=1, j,i

ai jx j(t) +

n∑
j=1, j,i

Di je−d jτi j x j(t − τi j)

−

n∑
j=1, j,i

Di jαi jxi(t)
]
dt + σixi(t)dBi(t), i, j = 1, 2, . . . , n. (4)

We further consider the optimal harvesting problem of model (4). The research on the optimal
harvesting of the population is of great significance to the utilization and development of resources,
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and can also help mankind to get the optimal strategy of harvesting in order to obtain the most long-
term benefits [28–35]. Then, we reach the following model accounted for harvesting:

dxi(t) = xi(t)
[
ri − aiixi(t) −

n∑
j=1, j,i

ai jx j(t) +

n∑
j=1, j,i

Di je−d jτi j x j(t − τi j)

−

n∑
j=1, j,i

Di jαi jxi(t)
]
dt − hixi(t)dt + σixi(t)dBi(t), i, j = 1, 2, . . . , n, (5)

where hi ≥ 0 denotes the harvesting effort of the species i.
In the rest of the paper, we will devote ourselves to explore the dynamics and the optimal harvesting

strategy of model (5). More precisely, in Section 2, we establish necessary conditions for persistence of
species in mean and extinction of the species. In Section 3, we investigate conditions of stability, and
prove asymptotic stability in distribution of the model, namely, there is a unique probability measure
ρ(·) such that for each φ ∈ C([−τ, 0]; Rn

+), the transition probability p(t, φ, ·) of x(t) converges weekly
to ρ(·) when t → ∞. In Section 4, by the use of the Hessian matrix and theorems of optimal harvesting
due to [36], we investigate the optimal harvesting effort and gain the maximum of expectation of
sustainable yield (ESY). In Section 5, we numerically illustrate our theoretical results obtained in
previous sections, and then conclude our study in Section 6.

2. Persistence and extinction

For the convenience of the following discussion, we define some notations as follows

bi = ri − hi − 0.5σ2
i , qi j = aii +

n∑
j=1, j,i

Di jαi j, ci = bi −

n∑
j=1, j,i

ai j

q ji
b j, i, j = 1, . . . , n,

and assume that
∑n

j=1, j,i ai j ≥
∑n

j=1, j,i Di je−d jτi j holds in the rest of the paper.
Following the same argument as in [37], we can prove the existence of the positive solution.

Lemma 2.1. Given initial value (3), model (5) admits a unique global positive solution x(t) =

(x1(t), . . . , xn(t))T almost surely. Furthermore, for each p > 1, there exists a positive constant K = K(p)
such that

lim sup
t→+∞

E

∣∣∣∣∣x(t)
∣∣∣∣∣p ≤ K. (6)

To show our main result of this section, we consider the following auxiliary equations

dΦi(t) = Φi(t)
(
ri − hi − aiiΦi(t) −

n∑
j=1, j,i

Di jαi jΦi(t)
)
dt + σiΦi(t)dBi(t), (7)

dΨi(t) = Ψi(t)
(
ri − hi − aiiΨi(t) −

n∑
j=1, j,i

ai jΦ j(t) +

n∑
j=1, j,i

Di je−d jτi jΦ j(t − τi j)

−

n∑
j=1, j,i

Di jαi jΨi(t)
)
dt + σiΨi(t)dBi(t), (8)
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with initial value
Φi(θ) = Ψi(θ) = xi(θ), θ ∈ [−τ, 0], i = 1, 2, . . . , n.

By [38, Stochastic Comparison Theorem], we know that for t ≥ −τ,

Ψi(θ) ≤ xi(θ) ≤ Φi(θ) a.s., i = 1, 2, . . . , n. (9)

Remark 1. It is easy to see from [39] that the explicit solution of (7) is

Φi(t) =
exp{bit + σiBi(t)}

Φ−1
i (0) + (aii +

∑n
j=1, j,i Di jαi j)

∫ t

0
exp{bis + σiBi(s)}ds

, i = 1, 2, . . . , n. (10)

Similar calculation gives

Ψi(t) = exp
{
bit −

n∑
j=1, j,i

ai j

∫ t

0
Φ j(s)ds +

n∑
j=1, j,i

Di je−d jτi j

∫ t

0
Φ j(s − τi j)ds + σidBi(t)

}
×

{
Ψ−1

i (0) +

(
aii +

n∑
j=1, j,i

Di jαi j

) ∫ t

0
exp

{
bis −

n∑
j=1, j,i

ai j

∫ s

0
Φ j(u)du

+

n∑
j=1, j,i

Di je−d jτi j

∫ s

0
Φ j(u − τi j)du + σiBi(s)

}
ds

}−1

, i = 1, 2, . . . , n. (11)

Then, by using [40], we obtain the following.

Lemma 2.2. Let bi > 0. Then, from (7) we have

lim
t→+∞

t−1 ln Φi(t) = 0, lim
t→+∞

t−1
∫ t

0
Φi(s)ds =

bi

qi j
, a.s., i = 1, 2, . . . , n. (12)

Based on Lemma 2.2, we assume:

Assumption 2.1. bi > 0, ci > 0, i = 1, 2, . . . , n.

Remark 2. A result due to Golpalsamy [10] and Assumption 2.1 imply that there exists a unique
positive solution (det(A1)/ det(A), . . . , det(An)/ det(A))T for the following system

(a11 +

n∑
j=2

D1 jα1 j)x1 + (a12 − D12e−d2τ12)x2 + . . . + (a1n − D1ne−dnτ1n)xn = b1 , r1 − h1 −
1
2
σ2

1,

(a21 − D21e−d1τ21)x1 + (a22 +

n∑
j=1, j,2

D2 jα2 j)x2 + . . . + (a2n − D2ne−dnτ2n)xn = b2 , r2 − h2 −
1
2
σ2

2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .,

(an1 − Dn1e−d1τn1)x1 + (an2 − Dn2e−d2τn2)x2 + . . . + (ann +

n−1∑
j=1

Dn jαn j)xn = bn , rn − hn −
1
2
σ2

n,

(13)
in which

A =


a11 +

∑n
j=2 D1 jα1 j a12 − D12e−d2τ12 · · · a1n − D1ne−dnτ1n

a21 − D21e−d1τ21 a22 +
∑n

j=1, j,2 D2 jα2 j · · · a2n − D2ne−dnτ2n

...
...

. . .
...

an1 − Dn1e−d1τn1 an2 − Dn2e−d2τn2 · · · ann +
∑n−1

j=1 Dn jαn j


and Ai is the matrix given by using the (b1, b2, . . . , bn)T to replace the ith column of matrix A.
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Now we are in the position to show our main results.

Theorem 2.1. All species in system (5) are persistent in mean a.s., i.e.,

lim
t→+∞

t−1
∫ t

0
xi(s)ds = det(Ai)/ det(A) > 0 a.s., i = 1, 2, . . . , n. (14)

when Assumption 2.1 is satisfied.

Proof. Let bi > 0, according to (12) that for i, j = 1, 2, . . . , n, j , i, one has

lim
t→+∞

t−1
∫ t

t−τi j

Φ j(s)ds = lim
t→+∞

(
t−1

∫ t

0
Φ j(s)ds − t−1

∫ t−τi j

0
Φ j(s)ds

)
= 0, (15)

which together with (9) yields

lim
t→+∞

t−1
∫ t

t−τi j

x j(s)ds = 0, i, j = 1, 2, . . . , n, j , i. (16)

By using Itô’s formula to (5), one can see that

t−1 ln xi(t) − t−1 ln xi(0)

=bi − aiit−1
∫ t

0
xi(s)ds −

n∑
j=1, j,i

ai jt−1
∫ t

0
x j(s)ds +

n∑
j=1, j,i

Di je−d jτi jt−1
∫ t

0
x j(s − τi j)ds

−

n∑
j=1, j,i

Di jαi jt−1
∫ t

0
x j(s)ds + σit−1Bi(t)

=bi −

[
aiit−1

∫ t

0
xi(s)ds +

n∑
j=1, j,i

ai jt−1
∫ t

0
x j(s)ds −

n∑
j=1, j,i

Di je−d jτi jt−1
∫ t

0
x j(s)ds

+

n∑
j=1, j,i

Di jαi jt−1
∫ t

0
xi(s)ds

]
+

n∑
j=1, j,i

Di je−d jτi jt−1
[ ∫ 0

−τi j

x j(s)ds −
∫ t

t−τi j

x j(s)ds
]

+ σit−1Bi(t), i, j = 1, 2 . . . , n, i , j. (17)

According to (16) together with the property of Brownian motion, we obtain

lim
t→+∞

t−1
[ ∫ 0

−τi j

x j(s)ds −
∫ t

t−τi j

x j(s)ds
]

= 0,

lim
t→+∞

t−1Bi(t) = 0, lim
t→+∞

t−1 ln xi(0) = 0, a.s.

We next to show that
lim

t→+∞
t−1 ln xi(t) = 0, i = 1, 2, . . . , n.

In view of (9) and (12), we have

lim inf
t→+∞

t−1 ln Ψi(t) ≤ lim inf
t→+∞

t−1 ln xi(t) ≤ lim sup
t→+∞

t−1 ln xi(t) ≤ lim sup
t→+∞

t−1 ln Φi(t) = 0.
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Therefore we obtain
lim inf

t→+∞
t−1 ln Ψi(t) ≥ 0 a.s., i = 1, 2, . . . , n. (18)

From (15) and (12), we get

lim
t→+∞

t−1
∫ t

0
Φ j(s − τi j)ds

= lim
t→+∞

t−1
( ∫ t

0
Φ j(s)ds −

∫ t

t−τi j

Φ j(s)ds +

∫ 0

τi j

Φ j(s)ds
)

=
b j

q ji
, a.s., i, j = 1, 2 . . . , n, i , j.

By using limt→+∞ t−1Bi(t) = 0 together with what we have just obtained, yields that for any given ε > 0,
there exists a T = T (ω) thus for t ≥ T, i, j = 1, 2 . . . , n, i , j,

b j/q ji − ε ≤ t−1
∫ t

0
Φ j(s − τi j)ds ≤ b j/q ji + ε, −ε ≤ t−1σiBi(t) ≤ ε.

Applying these inequalities to (11), we have

1
Ψi(t)

= exp
{
− bit +

n∑
j=1, j,i

ai j

∫ t

0
Φ j(s)ds −

n∑
j=1, j,i

Di je−d jτi j

∫ t

0
Φ j(s − τi j)ds − σiBi(t)

}
×

{
Ψ−1

i (0) +

aii +

n∑
j=1, j,i

Di jαi j

 ∫ t

0
exp

{
bis −

n∑
j=1, j,i

ai j

∫ s

0
Φ j(u)du

+

n∑
j=1, j,i

Di je−d jτi j

∫ s

0
Φ j(u − τi j)du + σiBi(s)

}
ds

}

= exp
{
− bit +

n∑
j=1, j,i

ai j

∫ t

0
Φ j(s)ds −

n∑
j=1, j,i

Di je−d jτi j

∫ t

0
Φ j(s − τi j)ds − σiBi(t)

}
×

{
Ψ−1

i (0) +

aii +

n∑
j=1, j,i

Di jαi j

 ∫ T

0
exp

{
bis −

n∑
j=1, j,i

ai j

∫ s

0
Φ j(u)du

+

n∑
j=1, j,i

Di je−d jτi j

∫ s

0
Φ j(u − τi j)du + σiBi(s)

}
ds

+

(
aii +

n∑
j=1, j,i

Di jαi j

) ∫ t

T
exp

{
bis −

n∑
j=1, j,i

ai j

∫ s

0
Φ j(u)du

+

n∑
j=1, j,i

Di je−d jτi j

∫ s

0
Φ j(u − τi j)du + σiBi(s)

}
ds

}
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≤ exp
{
t
[
− bi +

n∑
j=1, j,i

ai j

( b j

q ji
+ ε

)
−

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
− ε

)
+ ε

]}
×

{
Ψ−1

i (0) + Mi j +

(
aii +

n∑
j=1, j,i

Di jαi j

) ∫ t

T
exp

{
s
[
bi −

n∑
j=1, j,i

ai j

( b j

q ji
− ε

)
+

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
+ ε

)
+ ε

]}
ds

}
, i, j = 1, . . . , n,

in which Mi j > 0 is a constant. Note that ci = bi −
∑n

j=1, j,i
ai j

q ji
b j > 0, thereby for large enough t, one has

that

Ψ−1
i (0) + Mi j

≤

(
aii +

n∑
j=1, j,i

Di jαi j

) ∫ t

T
exp

{
s
[
bi −

n∑
j=1, j,i

ai j

( b j

q ji
− ε

)
+

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
+ ε

)
+ ε

]}
ds.

Hence for sufficiently large t, we obtain

1
Ψi(t)

≤ exp
{
t
[
− bi +

n∑
j=1, j,i

ai j

( b j

q ji
+ ε

)
−

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
− ε

)
+ ε

]}
× 2

(
aii +

n∑
j=1, j,i

Di jαi j

) ∫ t

T
exp

{
s
[
bi −

n∑
j=1, j,i

ai j

( b j

q ji
− ε

)
+

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
+ ε

)
+ ε

]}
ds

=

2
(
aii +

∑n
j=1, j,i Di jαi j

)
bi −

∑n
j=1, j,i ai j

(
b j

q ji
− ε

)
+

∑n
j=1, j,i Di je−d jτi j

(
b j

q ji
+ ε

)
+ ε

× exp
{
t
[
− bi +

n∑
j=1, j,i

ai j

( b j

q ji
+ ε

)
−

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
− ε

)
+ ε

]}
× exp

{[
bi −

n∑
j=1, j,i

ai j

( b j

q ji
− ε

)
+

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
+ ε

)
+ ε

]
(t − T )

}
.

Rearranging this inequality shows that

t−1 ln Ψi(t) ≥ t−1 ln
bi −

∑n
j=1, j,i ai j

(
b j

q ji
− ε

)
+

∑n
j=1, j,i Di je−d jτi j

(
b j

q ji
+ ε

)
+ ε

2
(
aii +

∑n
j=1, j,i Di jαi j

)
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−2ε
( n∑

j=1, j,i

ai j +

n∑
j=1, j,i

Di je−d jτi j + 1
)

+

[
bi −

n∑
j=1, j,i

ai j

( b j

q ji
− ε

)
+

n∑
j=1, j,i

Di je−d jτi j

( b j

q ji
+ ε

)
+ ε

]T
t
.

Since t is large enough and ε is arbitrary, we get (14). This completes the proof of Theorem 2.1. �

Corollary 2.1. If there is a bi < 0, then according to (17), one has lim supt→+∞ t−1 ln xi(t) ≤ bi < 0, a.s.
It is to say limt→+∞ xi(t) = 0, a.s., which means that the ith species in system (5) will die out.

3. Stability in distribution

In this section, we study the stability of the model. To this end, we suppose the following holds:

Assumption 3.1. aii +
∑n

j=1, j,i Di jαi j ≥
∑n

j=1, j,i a ji +
∑n

j=1, j,i D jie−diτ ji , i = 1, 2, . . . , n.

Then, we can prove the following.

Theorem 3.1. The system (5) is asymptotically stable in distribution if Assumption 3.1 holds.

Proof. Given two initial values φ(θ), ψ(θ) ∈ C
(
[−τ, 0]; Rn

+

)
of model (5), the corresponding solutions

are xφ(t) = (xφ1
1 (t), . . . , xφn

n (t))T and xψ(t) = (xψ1
1 (t), . . . , xψn

n (t))T respectively. Let

V(t) =

n∑
i=1

∣∣∣∣∣ ln xφi
i (t) − ln xψi

i (t)
∣∣∣∣∣ +

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∫ t

t−τi j

∣∣∣∣∣xφ j

j (s) − xψ j

j (s)
∣∣∣∣∣ds.

Applying Itô’s formula yields

d+V(t)

=

n∑
i=1

sgn
(
xφi

i (t) − xψi
i (t)

)
d
(

ln xφi
i (t) − ln xψi

i (t)
)

+

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t) − xψ j

j (t)
∣∣∣∣∣dt

−

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t − τi j) − xψ j

j (t − τi j)
∣∣∣∣∣dt

=

n∑
i=1

sgn
(
xφi

i (t) − xψi
i (t)

)[
− aii

(
xφi

i (t) − xψi
i (t)

)
−

n∑
j=1, j,i

ai j

(
xφ j

j (t) − xψ j

j (t)
)

+

n∑
j=1, j,i

Di je−d jτi j

(
xφ j

j (t − τi j) − xψ j

j (t − τi j)
)
−

n∑
j=1, j,i

Di jαi j

(
xφi

i (t) − xψi
i (t)

)]
dt

+

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t) − xψ j

j (t)
∣∣∣∣∣dt −

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t − τi j) − xψ j

j (t − τi j)
∣∣∣∣∣dt

≤ −

n∑
i=1

aii

∣∣∣∣∣xφi
i (t) − xψi

i (t)
∣∣∣∣∣dt +

n∑
i=1

n∑
j=1, j,i

ai j

∣∣∣∣∣xφ j

j (t) − xψ j

j (t)
∣∣∣∣∣dt
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+

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t − τi j) − xψ j

j (t − τi j)
∣∣∣∣∣dt +

n∑
i=1

n∑
j=1, j,i

Di jαi j

∣∣∣∣∣xφi
i (t) − xψi

i (t)
∣∣∣∣∣dt

+

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t) − xψ j

j (t)
∣∣∣∣∣dt −

n∑
i=1

n∑
j=1, j,i

Di je−d jτi j

∣∣∣∣∣xφ j

j (t − τi j) − xψ j

j (t − τi j)
∣∣∣∣∣dt

= −

n∑
i=1

(
aii −

n∑
j=1, j,i

a ji +

n∑
j=1, j,i

Di jαi j −

n∑
j=1, j,i

D jie−diτ ji

)∣∣∣∣∣xφi
i (t) − xψi

i (t)
∣∣∣∣∣dt.

Therefore

E(V(t)) ≤ V(0) −
n∑

i=1

(
aii −

n∑
j=1, j,i

a ji +

n∑
j=1, j,i

Di jαi j −

n∑
j=1, j,i

D jie−diτ ji

) ∫ t

0
E

∣∣∣∣∣xφi
i (s) − xψi

i (s)
∣∣∣∣∣ds.

Together with E(V(t)) ≥ 0, one has

n∑
i=1

(
aii −

n∑
j=1, j,i

a ji +

n∑
j=1, j,i

Di jαi j −

n∑
j=1, j,i

D jie−diτ ji

) ∫ t

0
E

∣∣∣∣∣xφi
i (s) − xψi

i (s)
∣∣∣∣∣ds ≤ V(0) < ∞.

Hence we have E
∣∣∣∣∣xφi

i (s) − xψi
i (s)

∣∣∣∣∣ ∈ L1[0,∞), i = 1, 2, . . . , n. At the same time, by using (5) we obtain

that

E(xi(t))

=xi(0) +

∫ t

0

[
E(xi(s))(ri − hi) − aiiE(xi(s))2 −

n∑
j=1, j,i

ai jE(xi(s)x j(s))

+

n∑
j=1, j,i

Di je−d jτi jE(xi(s)x j(s − τi j)) −
n∑

j=1, j,i

Di jαi jE(xi(s))2
]
ds

=xi(0) +

∫ t

0

[
E(xi(s))(ri − hi) − aiiE(xi(s))2 −

n∑
j=1, j,i

ai jE(xi(s)x j(s))

−

n∑
j=1, j,i

Di jαi jE(xi(s))2
]
ds +

n∑
j=1, j,i

Di je−d jτi j

[ ∫ 0

−τi j

E(xi(s)x j(s))ds

+

∫ t

0
E(xi(s)x j(s))ds −

∫ t

t−τi j

E(xi(s)x j(s))ds
]

≤xi(0) +

∫ t

0

[
Exi(s)(ri − hi) − aiiE(xi(s))2 −

n∑
j=1, j,i

ai jE(xi(s)x j(s))

−

n∑
j=1, j,i

Di jαi jE(xi(s))2
]
ds +

n∑
j=1, j,i

Di je−d jτi j

[ ∫ 0

−τi j

E(xi(s)x j(s))ds

+

∫ t

0
E(xi(s)x j(s))ds

]
.
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That is to say E(xi(t)) is continuously differentiable with respect of t. Computing by (5) leads to

dE(xi(t))
dt

≤E(xi(t))(ri − hi) −
(
aii +

n∑
j=1, j,i

Di jαi j

)
E(xi(t))2 −

n∑
j=1, j,i

ai jE(xi(t)x j(t))

+

n∑
j=1, j,i

Di je−d jτi jE(xi(t)x j(t))

≤E(xi(t))ri ≤ riK,

in which K > 0 is a constant. It implies that E(xi(t)) is uniformly continuous. Using [41], we get

lim
t→+∞
E|xφi

i (t) − xψi
i (t)| = 0, a.s., i = 1, 2, . . . , n. (19)

Denote p(t, φ, dy) as the transition probability density of the process x(t) and P(t, φ, A) represents the
probability of event x(t) ∈ A. By (6) and [42, Chebyshev’s inequality], we can obtain that the family
of p(t, φ, dy) is tight. Now define Γ

(
C

(
[−τ, 0]; Rn

+

))
as the probability measures on C

(
[−τ, 0]; Rn

+

)
. For

arbitrary two measures P1, P2 ∈ Γ, we define the metric

dL(P1, P2) = sup
v∈L

∣∣∣∣∣ ∫
Rn

+

v(x)P1(dx) −
∫

Rn
+

v(x)P2(dx)
∣∣∣∣∣,

where
L =

{
v : C

(
[−τ, 0]; R3

+

)
→ R : ||v(x) − v(y)|| ≤‖ x − y ‖, |v(·)| ≤ 1

}
.

Since {p(t, φ, dy)} is tight, then according to (19) we know that for any ε > 0, there is a T > 0 satisfies
that for t ≥ T, s > 0,

sup
v∈L

∣∣∣∣∣Ev(x(t + s)) − Ev(x(t))
∣∣∣∣∣ ≤ ε.

Therefore {p(t, ξ, ·)} is Cauchy in Γ with metric dL, in which ξ ∈ C
(
[−τ, 0]; Rn

+

)
is arbitrary given.

Hence there exists a unique κ(·) ∈ Γ(C([−τ, 0]; Rn
+)) such that lim

t→∞
dL(p(t, ξ, ·), κ(·)) = 0. At the same

time, it follows from (19) that
lim
t→∞

dL(p(t, φ, ·), p(t, ξ, ·)) = 0.

Consequently,

lim
t→∞

dL(p(t, φ, ·), κ(·)) ≤ lim
t→∞

dL(p(t, φ, ·), p(t, ξ, ·)) + lim
t→∞

dL(p(t, ξ, ·), κ(·)) = 0.

This completes the proof of Theorem 3.1. �

4. Optimal harvesting

In this section, we consider the optimal harvesting problem of system (5). Our purpose is to find
the optimal harvesting effort H∗ = (h∗1, . . . , h

∗
n) such that:

(i) Y(H) = limt→+∞

∑n
i=1 E(hixi(t)) is maximum;
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(ii) Every xi(i = 1, 2, . . . , n) is persistent in the mean.

Before we give our main results, we define

Θ = (θ1, θ2, . . . , θn)T = [A(A−1)T + I]−1G, (20)

in which G = (r1−0.5σ2
1, r2−0.5σ2

2, . . . , rn−0.5σ2
n)T and I is the unit matrix, and make an assumption:

Assumption 4.1. A−1 + (A−1)T is positive definite,

Theorem 4.1. Suppose Assumptions 3.1 and 4.1 hold, and If these following inequalities

θi ≥ 0, bi |hi=θi> 0, ci |hm=θm, m=1,2,...,n> 0, i = 1, · · · , n (21)

are satisfied. Then, for system (5) the optimal harvesting effort is

H∗ = Θ = [A(A−1)T + I]−1G

and the maximum of ES Y is
Y∗ = ΘT A−1(G − Θ). (22)

Proof. Denote W = {H = (h1, . . . , hn)T ∈ Rn | bi > 0, ci > 0, hi > 0, i = 1, . . . , n}. Easily we can see
that for any H ∈ W, (14) is satisfied. Note that Θ ∈ W, then W is not empty. According to (14), we
have that for every H ∈ W,

lim
t→+∞

t−1
∫ t

0
HTx(s)ds =

n∑
i=1

hi lim
t→+∞

t−1
∫ t

0
xi(s)ds = HTA−1(G − H). (23)

Applying Theorem 4.1, there is a unique invariant measure ρ(·) for model (5). By [43, Corollary
3.4.3], we obtain that ρ(·) is strong mixing. Meanwhile, it is ergodic according to [43, Theorem 3.2.6].
It means

lim
t→+∞

t−1
∫ t

0
HTx(s)ds =

∫
Rn

+

HTxρ(dx). (24)

Let µ(x) represent the stationary probability density of system (5), then we have

Y(H) = lim
t→+∞

n∑
i=1

E(hixi(t)) = lim
t→+∞
E(HTx(t)) =

∫
Rn

+

HTxµ(x)dx. (25)

Since the invariant measure of model (9) is unique, one has∫
Rn

+

HTxµ(x)dx =

∫
Rn

+

HTxρ(dx). (26)

In other words,
Y(H) = HTA−1(G − H). (27)

Assume that Θ = (θ1, θ2, . . . , θn)T is the solution of the following equation

dY(H)
dH

=
dHT

dH
A−1(G − H) +

d
dH

[
(G − H)T(A−1)T

]
H

= A−1G −
[
A−1 + (A−1)T

]
H

= 0.

(28)
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Thus, Θ = [A(A−1)T + I]−1G. By using of the Hessian matrix (see [44, 45]),

d
dHT

[
dY(H)

dH

]
=

 d
dH

(dY(H)
dH

)TT

=

(
d

dH

[
GT(A−1)T − HT[A−1 + (A−1)T]

])T

= −A−1 − (A−1)T

is negative defined, then Θ is the unique extreme point of Y(H). That is to say, if Θ ∈ W and under the
condition of (21), the optimal harvesting effort is H∗ = Θ and Y∗ is the maximum value of ESY. This
completes the proof of Theorem 4.1.

�

5. Numerical simulations

To see our analytical results more clearly, we shall give some numerical simulations in this section.
Without loss of generality, we consider the following system

dx1(t) =x1(t)
[
r1 − h1 − a11x1(t) − a12x2(t) + D12e−d2τ12 x2(t − τ12) − D12α12x1(t)

]
dt

+ σ1x1(t)dB1(t),

dx2(t) = x2(t)
[
r2 − h2 − a22x2(t) − a21x1(t) + D21e−d1τ21 x1(t − τ21) − D21α21x2(t)

]
dt

+ σ2x2(t)dB2(t),

(29)

which is the case when n = 2 in (5), with initial value

x(θ) = φ(θ) ∈ C
(
[−τ, 0]; R2

+

)
, τ = max{τ1, τ2},

where ri > 0, ai j > 0, τi ≥ 0, i, j = 1, 2.
Firstly, we discuss the persistence in mean of x1 and x2. For that, we take the parameter values as

follows:

Table 1. Parameter Values for Figure 1–3.

Parameter Value Parameter Value Parameter Value
r1 0.9 h1 0.1 α12 0.6
r2 0.8 h2 0.05 α21 0.3
a11 0.6 a12 0.2 a21 0.35
a22 0.23 σ1 0.05 σ2 0.05
d1 1 d2 1 D12 4

D21 3 τ12 8 τ21 5

The initial values are x1(θ) = 0.5+0.01 sin θ, x2(θ) = 0.5+0.02 sin θ, θ ∈ [−τ, 0]. Simple calculations
show that b1 = 0.7988 > 0, b2 = 0.7488 > 0, c1 = 0.6662 > 0, c2 = 0.6556 > 0 implying
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Figure 1. Time series of species x1 and x2 of system (29) with initial values x1(θ) = 0.5 +

0.01 sin θ, x2(θ) = 0.5 + 0.02 sin θ, θ ∈ [−τ, 0] and parameter values in Table 1.

Assumption 2.1 is satisfied. Then by Theorem 2.1, we can obtain that in (29)

lim
t→+∞

t−1
∫ t

0
x1(s)ds = det(A1)/ det(A) = 0.2268 > 0 a.s.,

lim
t→+∞

t−1
∫ t

0
x2(s)ds = det(A2)/ det(A) = 0.5964 > 0 a.s..

Applying the Milstein numerical method in [47], we then obtained the numerical solution of system
(29), see Figure 1. It shows that x1 and x2 respectively asymptotical approach to 0.2268 and 0.5964 time
averagely. And this agrees well with our results in Theorem 2.1. Then we research the distributions
of x1 and x2 under the same conditions. Obviously, we have a11 + D12α12 ≥ a21 + D21e−d1τ21 , a22 +

D21α21 ≥ a12 + D12e−d2τ12 , it is to say Assumption 3.1 is satisfied. Thus by Theorem 3.1, system (29) is
asymptotically stable in distribution as suggested by Figure 2.
Lastly, we consider the optimal harvesting strategy of system (29). It is easy to see that the Assumption

2.1 and Assumption 3.1 are satisfied. Furthermore, we have

Θ = (θ1, θ2)T = [A(A−1)T + I]−1(r1 − 0.5σ2
1, r2 − 0.5σ2

2)T = (0.4817, 0.3820)T ,

in which I =

(
1 0
0 1

)
. Since condition (21) is satisfied, by Theorem 4.1, the optimal harvesting effort

is
H∗ = Θ = (θ1, θ2)T = [A(A−1)T + I]−1(r1 − 0.5σ2

1, r2 − 0.5σ2
2)T = (0.4817, 0.3820)T ,

on the other hand, the maximum of ESY is

Y∗ = ΘT A−1(r1 − 0.5σ2
1 − θ1, r2 − 0.5σ2

2 − θ2)T = 0.1789.
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Figure 2. Distributions of species x1 and x2 of system (29) with initial values x1(θ) = 0.5 +

0.01 sin θ, x2(θ) = 0.5 + 0.02 sin θ, θ ∈ [−τ, 0] and parameter values in Table 1.

By using the Monte Carlo method (see [48]) and the parameters in Table 1, we can obtain Figure 3,
showing our results in Theorem 4.1.

Next, we consider a case of three species.



dx1(t) =x1(t)
[
r1 − h1 − a11x1(t) −

(
a12x2(t) + a13x3(t)

)
+

(
D12e−d2τ12 x2(t − τ12)

+ D13e−d3τ13 x3(t − τ13)
)
−

(
D12α12x1(t) + D13α13x1(t)

)]
dt

+ σ1x1(t)dB1(t),

dx2(t) =x2(t)
[
r2 − h2 − a22x2(t) −

(
a21x1(t) + a23x3(t)

)
+

(
D21e−d1τ21 x1(t − τ21)

+ D23e−d3τ23 x3(t − τ23)
)
−

(
D21α21x2(t) + D23α23x2(t)

)]
dt

+ σ2x2(t)dB2(t),

dx3(t) =x3(t)
[
r3 − h3 − a33x3(t) −

(
a31x1(t) + a32x2(t)

)
+

(
D31e−d1τ31 x1(t − τ31)

+ D32e−d2τ32 x2(t − τ32)
)
−

(
D31α31x3(t) + D32α32x3(t)

)]
dt

+ σ3x3(t)dB3(t).

(30)

We use the following parameter values:
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Figure 3. The harvesting policies E[h1x1(t) + h2x2(t)] of system (29) with initial values
x1(θ) = 0.5 + 0.01 sin θ, x2(θ) = 0.5 + 0.02 sin θ, θ ∈ [−τ, 0] and parameter values in Table
1. The red line is with h1 = h∗1 = 0.4817, h2 = h∗2 = 0.3820, the green line is with
h1 = 0.53, h2 = 0.2, the blue line is with h1 = 0.1, h2 = 0.2.

Table 2. Parameter Values for Figure 4–6.

Parameter Value Parameter Value Parameter Value
r1 2 h1 0.4452 α12 0.8
r2 1.12 h2 0.3307 α13 0.67
r3 0.6 h3 0.3307 α21 0.56
α23 0.8 α31 0.6 α32 0.77
a11 0.18 a12 0.35 a13 0.3
a21 0.45 a22 0.22 a23 0.6
a31 0.4 a32 0.3 a33 0.2
σ1 0.05 σ2 0.05 σ3 0.05
d1 0.39 d2 0.57 d3 0.37
τ12 3 τ13 3 τ21 5
τ22 5 τ31 4 τ32 5.5
D12 4 D13 5 D21 2.4
D23 4 D31 2 D32 2.5

The initial values are x1(θ) = 0.5 + 0.01 sin θ, x2(θ) = 0.5 + 0.02 sin θ, x3(θ) = 0.5 + 0.001 sin θ,
θ ∈ [−τ, 0]. Easily we get that b1 = 0.1.5536 > 0, b2 = 0.7881 > 0, b3 = 0.2681 > 0, c1 = 1.4502 >
0, c2 = 0.0552 > 0, c3 = 0.0229 > 0. Thus Assumption 2.1 is hold. By Theorem 2.1, we have for (30)

lim
t→+∞

t−1
∫ t

0
x1(s)ds = det(A1)/ det(A) = 0.2543 > 0 a.s.,
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lim
t→+∞

t−1
∫ t

0
x2(s)ds = det(A2)/ det(A) = 0.1601 > 0 a.s.,

lim
t→+∞

t−1
∫ t

0
x3(s)ds = det(A3)/ det(A) = 0.0730 > 0 a.s..

The numerical results of Theorem 2.1 when n = 3 are shown in Figure 4.
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Figure 4. Time series of species x1, x2 and x3 of system (30) with initial values x1(θ) =

0.5 + 0.01 sin θ, x2(θ) = 0.5 + 0.02 sin θ, x3(θ) = 0.5 + 0.001 sin θ, θ ∈ [−τ, 0] and parameter
values in Table 2.

The stable distribution for n = 3 are shown in Figure 5.
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Figure 5. Distributions of species x1, x2 and x3 of system (30) with initial values x1(θ) =

0.5 + 0.01 sin θ, x2(θ) = 0.5 + 0.02 sin θ, x3(θ) = 0.5 + 0.001 sin θ and parameter values in
Table 2.

To numerical illustrate the optimal harvesting effort of (30), we set

Θ = (θ1, θ2, θ3)T = [A(A−1)T + I]−1(r1 − 0.5σ2
1, r2 − 0.5σ2

2, r3 − 0.5σ2
3)T = (1.1052, 0.5537, 0.1663)T ,
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which yield H∗ = Θ = (1.1052, 0.5537, 0.1663)T , and the maximum of ESY is Y∗ = 0.2263, see
Figure-6.
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Figure 6. The harvesting policies E[h1x1(t) + h2x2(t) + h3x3(t)] of system (29) with initial
values x1(θ) = 0.5+0.01 sin θ, x2(θ) = 0.5+0.02 sin θ, x3(θ) = 0.5+0.001 sin θ and parameter
values in Table 2. The red line is with h1 = h∗1 = 1.1052, h2 = h∗2 = 0.5537, h3 =

h∗3 = 0.1663, the green line is with h1 = 0.1, h2 = 0.6, h3 = 0.6, the blue line is with
h1 = 0.35, h2 = 0.4, h3 = 0.1.

6. Conclusions and discussions

In this paper, a stochastic n-species competitive model with delayed diffusions and harvesting has
been considered. We studied the persistence in mean of every population, which is biologically signif-
icant because it shows that all populations can coexist in the community. Since the model (5) does not
have a positive equilibrium point and its solution can not approach a positive value, we considered its
asymptotically stable distribution. By using ergodic method, we obtained the optimal harvesting policy
and the maximum harvesting yield of system (5). We have also done some numerical simulations of
the situations for n = 2 and n = 3 in model (5) to illustrate our theoretical results as it is very useful
whether in terms of mathematics or biology to visualize our conclusions.

Our studies showed some interesting results

(a) Both environmental disturbance and diffused time delay can effect the persistence and optimal
harvesting effort of system (5)..

(b) Environmental noises have no effect on asymptotic stability in distribution of system (5), but the
time delays have.

There are other meaningful aspects that can be studied further since our paper only consider the
effects of white noises on population growth rate. In future, for example, we can consider the situation
when white noises also have influences over harvesting (see [45]) and non-autonomous system (see
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[46]); the time delay will also be reflected in competition (see [49]). Furthermore, we can consider
something more complex models such as the ones with regime-switching (see [50,51]) or Lévy jumps
(see [14, 42]).
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