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Abstract: In this work, dynamical behaviors of discrete time Beverton-Holt population model with
fuzzy parameters are studied. It provides a flexible model to fit population data. For three different
fuzzy parameters and fuzzy initial conditions, according to a generalization of division (g-division)
of fuzzy number, it can represent dynamical behaviors including boundedness, global asymptotical
stability and persistence of positive solution. Finally, two examples are given to demonstrate the effec-
tiveness of the results obtained.
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1. Introduction

Discrete time single-species model is the most appropriate mathematical description of life histories
of organism whose reproduction occurs only once a year during a very short season. It is assumed that,
in the rest of the year, the population is only subjected to mortality, but not to births. Therefore the
between year dynamics is characterized by a first order difference equation xn+1 = f (xn), where xn

denotes population at the nth generation. The production function f is usually density-dependent,
and the strength of density dependence is determined by several parameters including growth rate, the
probability of surviving the reproductive season, the carrying capacity of surrounding environment, and
intraspecific cooperation or competition factors. These models are widely used in fisheries and many
organisms [1]. Beverton-Holt model [2] is one of classic population model which has been studied

xn+1 =
βxn

1 + δxn
, n = 0, 1, · · · ,

where xn is population at the nth generation, β represents a productivity parameter, and δ controls the
level of density dependence. Since then, many results on the model and the generation of the model
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have been widely obtained by some researchers [3, 4, 5].
In fact, the identification of the parameters of the model is usually based on statistical method,

starting from data experimentally obtained and on the choice of some method adapted to the identi-
fication. These models, even the classic deterministic approach, are subjected to inaccuracies (fuzzy
uncertainty) that can be caused by the nature of the state variables, by parameters as coefficients of the
model and by initial conditions.

In our real life, we have learned to deal with uncertainty. Scientists also accept the fact that un-
certainty is very important study in most applications. Modeling the real life problems in such cases,
usually involves vagueness or uncertainty in some of the parameters. The concept of fuzzy set and sys-
tem was introduced by Zadeh [6] and its development has been growing rapidly to various situation of
theory and application including fuzzy differential and fuzzy difference equations. It is well known that
fuzzy difference equation is a difference equation whose parameters or the initial values are fuzzy num-
bers, and its solutions are sequences of fuzzy numbers. It has been used to model a dynamical systems
under possibility uncertainty [7]. Due to the applicability of fuzzy difference equation for the analysis
of phenomena where imprecision is inherent, this class of difference equation is a very important topic
from theoretical point of view and also its applications. Recently there has been an increasing interest in
the study of fuzzy difference equations (see [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]).

Inspired with the previous, by virtue of the theory of fuzzy difference equation, in this work, we
consider the following discrete time Beverton-Holt model with fuzzy uncertainty parameters and initial
conditions.

xn+1 =
Axn

1̃ + Bxn
, n = 0, 1, · · · , (1.1)

where xn is population at the nth generation, A denotes a productivity parameter, B controls the level
of density dependence. Furthermore A, 1̃, B and the initial value x0 are positive fuzzy numbers.

The main aim of this work is to study the existence of positive solutions of Beverton-Holt population
model (1.1). Furthermore, according to a generation of division (g-division) of fuzzy numbers, we
derive some conditions so that every positive solution of Beverton-Holt population model (1.1) is
bounded and persistent. Finally, under some conditions we prove that Beverton-Holt population model
(1.1) has a unique positive equilibrium x and every positive solution tends to x as n→ ∞.

2. Preliminary and definitions

Firstly, we give the following definitions.
Definition 2.1. [24] u : R→ [0, 1] is said to be a fuzzy number if it satisfies conditions (i)-(iv) written
below:
(i) u is normal, i. e., there exists an x ∈ R such that u(x) = 1;
(ii) u is fuzzy convex, i. e., for all t ∈ [0, 1] and x1, x2 ∈ R such that

u(tx1 + (1 − t)x2) ≥ min{u(x1), u(x2)};

(iii) u is upper semicontinuous;
(iv) The support of u,suppu =

⋃
α∈(0,1][u]α = {x : u(x) > 0} is compact.

For α ∈ (0, 1], the α−cuts of fuzzy number u is [u]α = {x ∈ R : u(x) ≥ α} and for α = 0, the support
of u is defined as suppu = [u]0 = {x ∈ R|u(x) > 0}.
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Definition 2.2. Fuzzy Number (Parametric form): [24] A fuzzy number u in a parametric form is a
pair (u, u) of functions u(r), u(r), 0 ≤ r ≤ 1, which satisfies the following requirements:
(1) u(r) is a bounded monotonic increasing left continuous function,
(2)u(r) is a bounded monotonic decreasing left continuous function,
(3) u(r) ≤ u(r), 0 ≤ r ≤ 1.

A crisp (real) number x is simply represented by (u(r), u(r)) = (x, x), 0 ≤ r ≤ 1. The fuzzy number
space {(u(r), u(r))} becomes a convex cone E1 which could be embedded isomorphically and isometri-
cally into a Banach space [24].

Definition 2.3. [24] The distance between two arbitrary fuzzy numbers u and v is defined as follows:

D(u, v) = sup
α∈[0,1]

max{|ul,α − vl,α|, |ur,α − vr,α|}. (2.1)

It is clear that (E1,D) is a complete metric space.

Definition 2.4. [24] Let u = (u(r), u(r)), v = (v(r), v(r)) ∈ E1, 0 ≤ r ≤ 1, and arbitrary k ∈ R. Then
(i) u = v iff u(r) = v(r), u(r) = v(r),
(ii) u + v = (u(r) + v(r), u(r) + v(r)),
(iii) u − v = (u(r) − v(r), u(r) − v(r)),

(iv) ku =

{
(ku(r), ku(r)), k ≥ 0;
(ku(r), ku(r)), k < 0,

(v) uv = (min{u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)},max{u(r)v(r), u(r)v(r), u(r)v(r), u(r)v(r)}).

Definition 2.5. Triangular Fuzzy Number. [24] A triangular fuzzy number (TFN) denoted by A is
defined as (a, b, c) where the membership function

A(x) =



0, x ≤ a;
x−a
b−a , a ≤ x ≤ b;
1, x = b;

c−x
c−b , b ≤ x ≤ c;
0, x ≥ c.

The α−cuts of A = (a, b, c) are described by [A]α = {x ∈ R : A(x) ≥ α} = [a + α(b − a), c − α(c −
b)] = [Al,α, Ar,α], α ∈ [0, 1], it is clear that the [A]α are closed interval. A fuzzy number is positive if
suppA ⊂ (0,∞).

The following proposition is fundamental since it characterizes a fuzzy set through the α-levels.
Proposition 2.1 [24] If {Aα : α ∈ [0, 1]} is a compact, convex and not empty subset family of Rn such
that
(i)

⋃
Aα ⊂ A0.

(ii) Aα2 ⊂ Aα1 if α1 ≤ α2.

(iii) Aα =
⋂

k≥1 Aαk if αk ↑ α > 0.

Then there is u ∈ En(En denotes n dimensional fuzzy number space) such that [u]α = Aα for all
α ∈ (0, 1] and [u]0 =

⋃
0<α≤1 Aα ⊂ A0.

Definition 2.6. [25] Suppose that A, B ∈ E1 have α-cuts [A]α = [Al,α, Ar,α], [B]α = [Bl,α, Br,α], with
0 < [B]α,∀α ∈ [0, 1]. The g-division ÷g is the operation that calculates the fuzzy number C = A ÷g B
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having level cuts [C]α = [Cl,α,Cr,α](here [A]α−1 = [1/Ar,α, 1/Al,α]) defined by

[C]α = [A]α ÷g [B]α ⇐⇒


(i) [A]α = [B]α[C]α,
or
(ii) [B]α = [A]α[C]α−1

(2.2)

provided that C is a proper fuzzy number (Cl,α is nondecreasing,Cr,α is nondecreasing, Cl,1 ≤ Cr,1).

Remark 2.1. According to [25], in this paper the fuzzy number is positive, if A ÷g B = C ∈ E1 exists,
then the following two cases are possible
Case I. if Al,αBr,α ≤ Ar,αBl,α,∀α ∈ [0, 1], then Cl,α =

Al,α

Bl,α
,Cr,α =

Ar,α

Br,α ,

Case II. if Al,αBr,α ≥ Ar,αBl,α,∀α ∈ [0, 1], then Cl,α =
Ar,α

Br,α
,Cr,α =

Al,α

Bl,α .

The fuzzy analog of the boundedness and persistence (see [9, 10]) is as follows:

Definition 2.7. A sequence of positive fuzzy numbers (xn) is persistence (resp. bounded) if there exists
a positive real number M (resp. N) such that

supp xn ⊂ [M,∞)(resp. supp xn ⊂ (0,N]), n = 1, 2, · · · ,

A sequence of positive fuzzy numbers (xn) is bounded and persistence if there exist positive real
numbers M,N > 0 such that

supp xn ⊂ [M,N], n = 1, 2, · · · .

A sequence of positive fuzzy numbers (xn), n = 1, 2, · · · , is an unbounded if the norm ‖xn‖, n =

1, 2, · · · , is an unbounded sequence.

Definition 2.8. xn is a positive solution of (1.1) if (xn) is a sequence of positive fuzzy numbers which
satisfies (1.1). A positive fuzzy number x is called a positive equilibrium of (1.1) if

x =
Ax

1̃ + Bx
.

Let (xn) be a sequence of positive fuzzy numbers and x is a positive fuzzy number, xn → x as n→ ∞
if limn→∞ D(xn, x) = 0.

3. Main results

3.1. Existence of solution of Beverton-Holt population model (1.1)

Firstly we study the existence of positive solutions of Beverton-Holt population model (1.1). We
need the following lemma.

Lemma 3.1. [24] Let f : R+ × R+ × R+ → R+ be continuous, A, B,C are fuzzy numbers. Then

[ f (A, B,C)]α = f ([A]α, [B]α, [C]α), α ∈ (0, 1] (3.1)

Theorem 3.1. Consider Beverton-Holt population model (1.1) with fuzzy uncertainty parameters and
initial condition. Then, for any positive fuzzy number x0, there exists a unique positive solution xn of
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Beverton-Holt population model (1.1) with initial conditions x0.
Proof. The proof is similar to those of Proposition 2.1 [9]. Suppose that there exists a sequence of
fuzzy numbers (xn) satisfying (1.1) with initial condition x0. Consider the α−cuts, α ∈ (0, 1],

[xn]α = [Ln,α,Rn,α], n = 0, 1, 2, · · · , [A]α = [Al,α, Ar,α], [B]α = [Bl,α, Br,α], [1̃]α = [1̃l,α, 1̃r,α], (3.2)

It follows from (1.1), (3.2) and Lemma 3.1 that

[xn+1]α = [Ln+1,α,Rn+1,α] =

[
Axn

1̃ + Bxn

]α
=

[A]α × [xn]α

[1̃]α + [B]α × [xn]α

=
[Al,αLn,α, Ar,αRn,α]

[1̃l,α + Bl,αLn,α, 1̃r,α + Br,αRn,α]

Noting Remark 2.1, one of the following two cases holds
Case I

[xn+1]α = [Ln+1,α,Rn+1,α] =

[
Al,αLn,α

1̃l,α + Bl,αLn,α
,

Ar,αRn,α

1̃r,α + Br,αRn,α

]
(3.3)

Case II

[xn+1]α = [Ln+1,α,Rn+1,α] =

[
Ar,αRn,α

1̃r,α + Br,αRn,α
,

Al,αLn,α

1̃l,α + Bl,αLn,α

]
(3.4)

If Case I holds true, it follows that for n ∈ {0, 1, 2, · · · }, α ∈ (0, 1]

Ln+1,α =
Al,αLn,α

1̃l,α + Bl,αLn,α
, Rn+1,α =

Ar,αRn,α

1̃r,α + Br,αRn,α
(3.5)

Then it is obvious that, for any initial condition (L0,α,R0,α), α ∈ (0, 1], there is a unique solution
(Ln,α,Rn,α). Now we prove that [Ln,α,Rn,α], α ∈ (0, 1], where (Ln,α,Rn,α) is the solution of system (3.5)
with initial conditions (L0,α,R0,α), determines the solution xn of (1.1) with initial conditions x0 such
that

[xn]α = [Ln,α,Rn,α], α ∈ (0, 1], n = 0, 1, 2, · · · . (3.6)

For n = 1, since A, B, 1̃ and x0 are positive fuzzy numbers, it is easy to see that [L1,α,R1,α] is the
α-cuts of x1 = Ax0

1̃+Bx0
, for any α ∈ (0, 1], we have

[L1,α,R1,α] =

[
Al,αL0,α

1̃l,α + Bl,αL0,α
,

Ar,αR0,α

1̃r,α + Br,αR0,α

]
=

[A]α[x0]α

[1̃]α + [B]α[x0]α

Working inductively, let [Lk,α,Rk,α], k ≥ 1, be the α-cuts of fuzzy number xk as [xk]α = [Lk,α,Rk,α],
we show that [Lk+1,α,Rk+1,α] determines the α-cuts of fuzzy number xk+1 = Axk

1̃+Bxk
.

According to (3.5), for α ∈ (0, 1], we have

[Lk+1,α,Rk+1,α] =

[
Al,αLk,α

1̃l,α + Bl,αLk,α
,

Ar,αRk,α

1̃r,α + Br,αRk,α

]
=

[Al,αLk,α, Ar,αRk,α]
[1̃l,α + Bl,αLk,α, 1̃r,α + Br,αRk,α]

=
[A]α[xk]α

[1̃]α + [B]α[xk]α
. (3.7)
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Then [Lk+1,α,Rk+1,α] determines the α-cuts of fuzzy number xk+1 = Axk
1̃+Bxk

. Then for each n,
[Ln,α,Rn,α], α ∈ (0, 1] determines the α-cuts of fuzzy number xn satisfying with (3.6).

Next we prove the uniqueness of the solution. Suppose that there exists another solution xn of (1.1)
with the initial condition x0. Then arguing as above, it is easy to get

[xn]α = [Ln,α,Rn,α], α ∈ (0, 1], n = 0, 1, · · · . (3.8)

Then from (3.6) and (3.8) we have [xn]α = [xn]α, α ∈ (0, 1], n = 0, 1, 2, · · · , from which it follows
that xn = xn, n = 0, 1, · · · . Thus the proof is completed.

If Case II holds true, the proof is similar to those of Case I. Thus the proof of Theorem 3.1 is
completed.

Remark 3.1. From a theoretical point of view, the existence of solution for fuzzy difference equation is
very important and meaningful with initial condition. Therefore, in that sense, the existence of positive
fuzzy solution for Beverton-Holt population model is of vital importance and practical significance. In
fact, it can see that the positive solution of Beverton-Holt population model with fuzzy environment is
a sequence of positive fuzzy numbers describing the fuzzy uncertainty.

3.2. Dynamics of Beverton-Holt population model (1.1)

To study the dynamical behavior of the positive solutions of Beverton-Holt population model (1.1),
according to Definition 2.3, we consider two cases.

Firstly, if Case I holds true, we need the following lemma.

Lemma 3.2 Consider the system of difference equations

yn+1 =
ayn

p + cyn
, zn+1 =

bzn

q + dzn
, n = 0, 1, · · · , (3.9)

where p ∈ (0, 1), q ∈ (1,+∞), a, b, c, d ∈ (0,+∞), y0, z0 ∈ (0,+∞), if a > p, b > q, then the following
statements are true:
(i) The system exists unique positive equilibrium

(
a−p

c , b−q
d

)
which is globally asymptotically stable.

(ii) yn and zn are bounded and persistent.

Proof. (i) Let (y, z) be equilibrium point of (3.9). It is easy to get positive equilibrium (y, z) =
(

a−p
c , b−q

d

)
.

The linearized equation associated with (3.9) about equilibrium (y, z) is

yn+1 =
p
a

yn, zn+1 =
q
b

zn.

Since a > p, b > q, it follows that the system is locally asymptotically stable.
On the other hand, set f (y) =

ay
p+cy , g(z) = bz

q+dz , then

f ′(y) =
ap

(p + cy)2 > 0, g′(z) =
bq

(q + dz)2 > 0. (3.10)

Namely, the sequences (yn) and (zn) are increasing and

yn =
ayn−1

p + cyn−1
<

a
c
, zn =

bzn−1

q + dzn−1
<

b
d
. (3.11)
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Therefore, from (3.10) and (3.11), it follows that the limitation of (yn), (zn) exist. Set limn→∞ yn =

y, limn→∞ zn = z, integrating with (3.9), it can follows that

lim
n→∞

yn =
a − p

c
, lim

n→∞
zn =

b − q
d

. (3.12)

Therefore, it follows that the positive equilibrium
(

a−p
c , b−q

d

)
is globally asymptotically stable.

(ii) Set Yn = 1
yn
, Zn = 1

zn
, then (3.9) can be transformed into

Yn+1 =
c
a

+
p
a

Yn, Zn+1 =
d
b

+
q
b

Zn, n = 0, 1, · · · , (3.13)

It follows from (3.13) that

Yn =
c
a

+
pc
a2 +

p2

a2 Yn−2 =
c
a

+
pc
a2 + · · · +

pn−1c
an +

pn

an Y0

=

c
a

[
1 −

(
p
a

)n−1
]

1 − p
a

+
pn

an Y0 ≤
c

a − p
+ Y0 :=

1
δ

(3.14)

Zn =
d
b

+
qd
b2 +

q2

b2 Zn−2 =
d
b

+
qd
b2 + · · · +

qn−1d
bn +

qn

bn Z0

=

d
b

[
1 −

(
q
b

)n−1
]

1 − q
b

+
qn

bn Z0 ≤
d

b − q
+ Z0 :=

1
γ

(3.15)

From (3.11), (3.14) and (3.15), This implies

δ ≤ yn ≤
a
c
, γ ≤ zn ≤

b
d
.

This completes the proof of Lemma 3.2.

Theorem 3.2 Consider Beverton-Holt population model (1.1) with fuzzy uncertainty parameters and
initial condition. If

0 < 1̃l,α ≤ Al,α, 1̃r,α ≤ Ar,α, α ∈ (0, 1], (3.16)

then the following statements are true
(i) Every positive solution xn of Beverton-Holt population model (1.1) is bounded and persistent.
(ii) Every positive solution xn of Beverton-Holt population model (1.1) tends to the positive equilibrium
point x as n→ ∞.

Proof. (i) Since A, 1̃, B and the initial value x0 are positive fuzzy numbers, there exist positive real
numbers MA,NA,MB,NB,M0,N0, P,Q, such that, for all α ∈ (0, 1],

[Al,α, Ar,α] ⊂ [MA,NA], [Bl,α, Br,α] ⊂ [MB,NB], [L0,α,R0,α] ⊂ [M0,N0], [1̃l,α, 1̃r,α] ⊂ [P,Q], (3.17)
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Let xn be a positive solution of Beverton-Holt population model (1.1), from (3.16), (3.17) and Lemma
3.2, we get

Ln,α >
(Al,α − 1̃l,α)L0,α

Bl,αL0,α + Al,α − 1̃l,α
>

(MA − Q)M0

NBN0 + NA − Q
:= M, Rn,α <

Ar,α

Br,α
<

NA

MB
:= N (3.18)

From which, we get for n ≥ 1,
⋃

α∈(0,1][Ln,α,Rn,α] ⊂ [M,N], and so
⋃

α∈(0,1][Ln,α,Rn,α] ⊆ [M,N]. Thus
the positive solution is bounded and persistent.

(ii) Suppose that there exists a fuzzy number x such that

x =
Ax

1̃ + Bx
, [x]α = [Lα,Rα], α ∈ (0, 1]. (3.19)

where Lα,Rα ≥ 0. Then from (3.19) we can prove that

Lα =
Al,αLα

1̃l,α + Bl,αLα
, Rα =

Ar,αRα

1̃r,α + Br,αRα

. (3.20)

Hence from (3.20), we have

Lα =
Al,α − 1̃l,α

Bl,α
, Rα =

Ar,α − 1̃r,α

Br,α
. (3.21)

Let xn be a positive solution of Beverton-Holt population model (1.1). Since (3.16) holds true, we can
apply Lemma 3.2 to system (3.5), and so we have

lim
n→∞

Ln,α = Lα, lim
n→∞

Rn,α = Rα, (3.22)

Therefore from (3.22) we have

lim
n→∞

D(xn, x) = lim
n→∞

sup
α∈(0,1]

{max{|Ln,α − Lα|, |Rn,α − Rα|}} = 0.

This completes the proof of the Theorem.
Secondly, if Case II holds true, it follows that for n ∈ {0, 1, 2, · · · }, α ∈ (0, 1]

Ln+1,α =
Ar,αRn,α

1̃r,α + Br,αRn,α
, Rn+1,α =

Al,αLn,α

1̃l,α + Bl,αLn,α
(3.23)

We need the following lemmas.

Lemma 3.3. Consider the system of difference equations

yn+1 =
bzn

q + dzn
, zn+1 =

ayn

p + cyn
, n = 0, 1, · · · , (3.24)

where p ∈ (0, 1), q ∈ (1,+∞), a, b, p, q, c, d, y0, z0 ∈ (0,+∞). If

a > p, b > q. (3.25)
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Then the following statements are true
(i) The solution of (3.24) is bounded and persistent.
(ii) Furthermore suppose that

a − p
c

<
b − q

d
. (3.26)

Then system exists unique positive equilibrium point (ab−pq
qc+ad ,

ab−pq
pd+bc ) which is globally asymptotically

stable.

Proof. (i) It is clear from (3.24) that

yn ≤
b
d
, zn ≤

a
c
. (3.27)

Setting Yn = 1
yn
, Zn = 1

zn
, then (3.24) can be transformed to

Yn =
d
b

+
q
b

Zn−1, Zn =
c
a

+
p
a

Yn−1. (3.28)

Working inductively, for n − 2k ≥ 0, it can conclude that

Yn =
d
b

+
q
b

(c
a

+
p
a

Yn−2

)
=

d
b

+
qc
ab

+
pq
ab

Yn−2

=
d
b

+
qc
ab

+
pqd
ab2 +

pq2

ab2 Zn−3 =
d
b

+
qc
ab

+
pqd
ab2 +

pq2c
a2b2 +

p2q2

a2b2 Yn−4

= · · · =

d
b

[
1 −

(
pq
ab

)k
]

1 − pq
ab

+

qc
ab

[
1 −

(
pq
ab

)k
]

1 − pq
ab

+

( pq
ab

)k
Yn−2k

≤

d
b +

qc
ab

1 − pq
ab

+ Y0 =
bc + pd
ab − pq

+ Y0 :=
1
ξ

(3.29)

Zn =
c
a

+
p
a

(
d
b

+
q
b

Zn−2

)
=
α

a
+

pd
ab

+
pq
ab

Zn−2

=
c
a

+
pd
ab

+
pqc
a2b

+
p2q
a2b

Zn−3 =
c
a

+
pd
ab

+
pqc
a2b

+
p2qd
a2b2 +

p2q2

a2b2 Zn−4

= · · · =

c
a

[
1 −

(
pq
ab

)k
]

1 − pq
ab

+

pd
ab

[
1 −

(
pq
ab

)k
]

1 − pq
ab

+

( pq
ab

)k
Zn−2k

≤

c
a +

pd
ab

1 − pq
ab

+ Z0 =
bc + pd
ab − pq

+ Z0 :=
1
ρ

(3.30)

It follows from (3.27),(3.29) and (3.30) that

ξ ≤ yn ≤
b
d
, ρ ≤ zn ≤

a
c
, for n > 0. (3.31)

This completes the proof of (i).
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(ii) Let (y, z) be an equilibrium point of (3.24). It is clear to obtain that (y, z) = ( ab−pq
qc+ad ,

ab−pq
pd+bc ). The

linearized equation of system (3.24) about the equilibrium point (y, z) is

Ψn+1 = GΨn. (3.32)

where Ψn = (yn, zn)T and

G =

 0 qb
(q+dz)2

pa
(p+cy)2 0


Thus the characteristic equation of (3.32) is

λ2 −
pqab

(p + cy)2(q + dz)2 = 0.

Since (3.25) and (3.26) hold true, it is easy to obtain that the root of characteristic equation |λ| < 1.
From [26, 27], thus the unique positive equilibrium point (y, z) is locally asymptotically stable.

Next, let (yn, zn) be an arbitrary positive solution of (3.24). From (3.29) and (3.30), we have {Yn},
{Zn} are monotone increasing and have a upper bound. Namely, {yn}, {zn} are monotone decreasing and
have lower bound. So, set limn→∞ yn = y, limn→∞ zn = z., From (3.24), it can follow that

lim
n→∞

yn = y = y =
ab − pq
qc + ad

, lim
n→∞

zn = z = z =
ab − pq
pd + bc

.

Therefore it implies that the unique positive equilibrium point (y, z) is globally asymptotically stable.

Theorem 3.3. Consider Beverton-Holt population model (1.1) with fuzzy uncertainty parameters and
initial condition. If (3.16) and the following condition are satisfied

Bl,α

Br,α
≤

Al,α − 1̃l,α

Ar,α − 1̃r,α
, ∀α ∈ (0, 1]. (3.33)

Then the following statements are true
(i) Every positive solution xn of Beverton-Holt population model (1.1) is bounded and persistence.
(ii) Every positive solution xn of Beverton-Holt population model (1.1) tends to the positive equilibrium
point x as n→ +∞.

Proof. (i) The proof is similar to those of Theorem 3.2. Let xn be a positive solution of (1.1), from
(3.16), (3.17) and Lemma 3.3, we get

Ln,α ≥
L0,α(Al,αAr,α − 1̃l,α1̃r,α)

L0,α(Ar,αBl,α + 1̃l,αBr,α) + (Al,αAr,α − 1̃l,α1̃r,α)
≥

M0(M2
A − Q2)

N0(NANB + QNB) + (N2
A − P2)

=: K (3.34)

Rn,α ≤
Al,α

Bl,α
≤

NA

MB
=: L (3.35)

From (3.34) and (3.35), we get, for n ≥ 1,
⋃

α∈(0,1][Ln,α,Rn,α] ⊂ [K, L]. And so⋃
α∈(0,1]

[Ln,α,Rn,α] ⊆ [K, L].
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Thus the positive solution xn of (1.1) is bounded and persistent.
(ii) Suppose that there exists a fuzzy number x such that (3.19) is satisfied. Then from (3.19) and

Case II, we have

Lα =
Ar,αRα

1̃r,α + Br,αRα

, Rα =
Al,αLα

1̃l,α + Bl,αLα
. (3.36)

It follows from (3.36) that

Lα =
Al,αAr,α − 1̃l,α1̃r,α

1̃r,αBl,α + Al,αBr,α
, Rα =

Al,αAr,α − 1̃l,α1̃r,α

1̃l,αBr,α + Ar,αBl,α
. (3.37)

Let xn be a positive solution of (1.1) such that Case II holds. Namely.

Ln+1,α =
Ar,αRn,α

1̃r,α + Br,αRn,α
, Rn+1,α =

Al,αLn,α

1̃l,α + Bl,αLn,α
. (3.38)

Since (3.38) is satisfied, we can apply Lemma 3.3 to system (3.38) and so we have

lim
n→∞

Ln,α = Lα, lim
n→∞

Rn,α = Rα, (3.39)

Therefore from (3.39) we have

lim
n→∞

D(xn, x) = lim
n→∞

sup
α∈(0,1]

{max{|Ln,α − Lα|, |Rn,α − Rα|}} = 0.

This completes the proof of Theorem 3.3.

Remark 3.2. In population dynamical model, the parameters of model derived from statistic data with
vagueness or uncertainty. It corresponds to reality to use fuzzy parameters in population dynamical
model. In contrast with classic population model, the solution of fuzzy population model is within a
range of value (approximate value), which are taken into account fuzzy uncertainties. Furthermore the
global asymptotic behaviour of discrete Beverton-Holt population model are obtained in fuzzy context.

4. Numerical examples

Example 4.1 Consider the following fuzzy discrete time Beverton-Holt population model

xn+1 =
Axn

1̃ + Bxn
, n = 0, 1, · · · , (4.1)

we take A, B, 1̃ and the initial values x0 such that

A(x) =


5
4 x − 1, 0.8 ≤ x ≤ 1.6

−5
2 x + 5, 1.6 ≤ x ≤ 2

, 1̃(x) =


2x − 1, 0.5 ≤ x ≤ 1

−5x + 6, 1 ≤ x ≤ 1.2
(4.2)

B(x) =


10x − 4, 0.4 ≤ x ≤ 0.5

−10x + 6, 0.5 ≤ x ≤ 0.6
, x0(x) =


x − 3, 3 ≤ x ≤ 4

−x + 5, 4 ≤ x ≤ 5
(4.3)
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From (4.2), we get

[A]α =

[
0.8 +

4
5
α, 2 −

2
5
α

]
, [1̃]α =

[
0.5 +

1
2
α, 1.2 −

1
5
α

]
, α ∈ (0, 1]. (4.4)

From (4.3) we get

[B]α =

[
0.4 +

1
10
α, 0.6 −

1
10
α

]
, [x0]α = [3 + α, 5 − α] , α ∈ (0, 1]. (4.5)

Therefore, it follows that⋃
α∈(0,1]

[A]α = [0.8, 2],
⋃
α∈(0,1]

[1̃]α = [0.5, 1.2],
⋃
α∈(0,1]

[B]α = [0.4, 0.6],
⋃
α∈(0,1]

[x0]α = [3, 5]. (4.6)

From (4.1), it results in a coupled system of difference equations with parameter α,

Ln+1,α =
Al,αLn,α

1̃l,α + Bl,αLn,α
, Rn+1,α =

Ar,αRn,α

1̃r,α + Br,αRn,α
, α ∈ (0, 1]. (4.7)

Therefore, Al,α ≥ 1̃l,α > 0, Ar,α ≥ 1̃r,α,∀α ∈ (0, 1], and initial values x0 are positive fuzzy numbers,
so from Theorem 3.2, we have that every positive solution xn of Eq.(4.1) is bounded and persistence.

In addition, from Theorem 3.2, Eq.(4.1) has a unique positive equilibrium x = (0.75, 1.2, 1.333).
Moreover every positive solution xn of Eq.(4.1) converges the unique equilibrium x with respect to D
as n→ ∞. (see Figure 1–Figure 3)

0.5 1 1.5 2 2.5 3 3.5 4
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1.5

2

2.5

3

3.5

4

4.5

5

L
n

R
n

α=0

α=0.25

α=0.75

α=1

Figure 1. The dynamics of system (4.7).

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1471–1488.



1483

0 20 40 60 80 100
0

2

4

6

n

L
n
 &

 R
n

0 20 40 60 80 100
0

1

2

3

4

5

n

L
n
 &

 R
n

L
n

R
n

L
n

R
n

Figure 2. The solution of system (4.7) at α = 0 and α = 0.25.
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Figure 3. The solution of system (4.7) at α = 0.75 and α = 1.

Example 4.2 Consider the following fuzzy discrete time Beverton-Holt population model (4.1).
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where A, 1̃, B and the initial values x0 are satisfied

A(x) =


10
3 x − 3, 0.9 ≤ x ≤ 1.2

−10
3 x + 5, 1.2 ≤ x ≤ 1.5

, 1̃(x) =


10
3 x − 7

3 , 0.7 ≤ x ≤ 1

−10
3 x + 13

3 , 1 ≤ x ≤ 1.3
(4.8)

B(x) =


5x − 2, 0.4 ≤ x ≤ 0.6

−5x + 4, 0.6 ≤ x ≤ 0.8
, x0(x) =


5
2 x − 1.5, 0.6 ≤ x ≤ 1

−5
2 x + 3.5, 1 ≤ x ≤ 1.4

(4.9)

From (4.8), we get

[A]α =

[
0.9 +

3
10
α, 1.5 −

3
10
α

]
, [1̃]α =

[
0.7 +

3
10
α, 1.3 −

3
10
α

]
, α ∈ (0, 1]. (4.10)

From (4.9), we get

[B]α =

[
0.4 +

1
5
α, 0.8 −

1
5
α

]
, [x0]α =

[
0.6 +

2
5
α, 1.4 −

2
5
α

]
, α ∈ (0, 1]. (4.11)

Therefore, it follows that

⋃
α∈(0,1]

[A]α = [0.9, 1.5],
⋃
α∈(0,1]

[1̃]α = [0.7, 1.3],
⋃
α∈(0,1]

[B]α = [0.4, 0.8],
⋃
α∈(0,1]

[x0]α = [0.6, 1.4]. (4.12)

From (4.1), it results in a coupled system of difference equation with parameter α,

Ln+1,α =
Ar,αRn,α

1̃r,α + Br,αRn,α
, Rn+1,α =

Al,αLn,α

1̃l,α + Bl,αLn,α
, α ∈ (0, 1]. (4.13)

It is clear that (3.33) is satisfied and initial values x0 are positive fuzzy numbers, so from Theorem
3.3, Eq.(4.1) has a unique positive equilibrium x = (0.333, 0.3548, 0.3793). Moreover every positive
solution xn of Eq.(4.1) converges the unique equilibrium x with respect to D as n → ∞. (see Figre
4–Figure 6)
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Figure 4. The dynamics of system (4.13).
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Figure 5. The solution of system (4.13) at α = 0 and α = 0.25.
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Figure 6. The solution of system (4.13) at α = 0.75 and α = 1.

5. Conclusion

In this work, according to a generalization of division (g-division) of fuzzy number, we study the
fuzzy discrete time Beverton-Holt population model xn+1 = Axn

1̃+Bxn
. The existence of positive solution

and qualitative behavior to (1.1) are investigated. The main results are as follows
(1) Under Case I, the positive solution is bounded and persists if Al,α > 1̃l,α, Ar,α > 1̃r,α, α ∈ (0, 1].

Every positive solution xn tends to the unique equilibrium x as n→ ∞.
(2) Under Case II, the positive solution is bounded and persists if Al,α > 1̃l,α, Ar,α > 1̃r,α, and

Bl,α

Br,α
≤

Al,α−1̃l,α

Ar,α−1̃r,α
, α ∈ (0, 1]. Every positive solution xn tends to the unique equilibrium x as n→ ∞.
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