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Abstract: A new non-autonomous model incorporating diurnal temperature fluctuation is designed
to study the transmission dynamics of malaria. In particular, the model is used to assess the impact of
different microclimate condition on the population dynamics of malaria. The disease free state of the
model is seen to be globally asymptotically stable in the absence of disease induced mortality when
the associated reproduction number is less than unity. Also when the associated reproduction number
of the model is greater than unity, the disease persist in the population. Numerical simulations of the
time-averaged basic reproduction number show that neglecting the variation of indoor and outdoor
temperature will under-estimate the value of this threshold parameter. Numerical simulations of the
model show that the higher indoor temperature influences the efficacy of control measures as a higher
prevalence level is obtained when indoor and outdoor temperature variation is considered. It is further
shown that both where the mosquitoes rest and how long they rest there may determine the transmission
intensity.
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1. Introduction

Malaria is an infectious vector-borne disease caused by female Anopheles mosquitoes infected with
the Plasmodium parasite. It remains a major cause of mortality and morbidity in many tropical and
subtropical regions of the world [38]. Even with resolute disease control efforts advocated by several
health authorities, government and non-governmental organizations, the World Health Organization
(WHO) estimated that there were 216 million cases of malaria in 2016 in 91 countries globally, where
as there were 211 million cases in 2015 [39]. Also, there were roughly 445 thousand malaria deaths in
2016 [39]. Nigeria accounted for 27% of this global incidence and 24% of this global malaria deaths
[39].
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The dynamics and distribution of malaria have been shown to be strongly influenced by environ-
mental factors such as temperature, rainfall, relative humidity and their daily fluctuations [5, 30]. These
factors have been shown to have significant impact on a range of mosquito life history traits such as
the life cycle of mosquitoes as well as the development of sporogonic stages of the parasite within the
body of the mosquito and hence, malaria transmission [1, 21]. Since mosquitoes are highly sensitive to
environmental conditions, which can trigger their dynamics and as well affect disease spread [7], there
has been predictions that climate change will altar the transmission dynamics of malaria and also put
at risk previously unexposed populations [5, 7]. Thus, the understanding of the relationship between
the malaria vector and its environment is necessary for effective control of mosquito population and
disease prevention [7].

Particularly, the study by Paaijmans et al. [24] showed that fluctuations in temperature can
substantially alter the length of parasite incubation in mosquitoes and that temperature fluctuation
can reduce the impact of increases in mean temperature. In other words, fluctuations in temperature
can make possible malaria transmission at lower mean temperatures than currently predicted and
can potentially prevent transmission at higher mean temperatures than currently predicted [25]. The
study in [25] thus highlighted the need to incorporate the effects of daily temperature variation into
predictive models. Also, Blanford et al. [6] compared the effect of three measures of temperature;
mean monthly temperature, mean daily temperature, and hourly temperatures on estimates of the
extrinsic incubation period (EIP). They showed that under low temperature, using mean monthly
temperature underestimates the EIP and overestimates it under high temperature. Recently, Shapiro et
al. [32] used the Asian mosquito, Anopheles stephensi and the malaria parasite, Plasmodium falci-
parum to show how temperature affects a range of mosquito and parasite traits relevant to transmission.

In addition to daily temperature fluctuations, studies have shown the use of outdoor air temperature
in malaria risk models will fail to capture the important features of the actual microclimate experi-
enced by mosquitoes [28]. In particular, water temperature influences development rates of immature
mosquitoes whereas outdoor and indoor air temperature (as studies have reported the tendency of
mosquito species to be endophilic or exophilic or both) determines adult longevity as well as the rate
of parasite development within the adult mosquito [27]. Therefore, the need for incorporating the
variations of indoor and outdoor temperatures in the dynamics of malaria transmission is important
as endophilic mosquitoes, and parasites within them, will be exposed more to indoor temperatures
than the outdoor air temperature [27]. Hence, estimating malaria transmission intensity requires both
indoor as well as outdoor temperatures. This is so because indoor temperatures differ from outdoor
temperature [2, 27] and parasite development rate (extrinsic incubation period (EIP)) in endophilic
mosquitoes will be faster than predicted from ambient conditions. Also, this difference tend to become
larger at higher altitudes as indoor and outdoor temperatures become more divergent with increase in
altitude [27].

Many studies have explored the impact of climatic variables on the transmission dynamics of
malaria. A study by Mondzozo et al. [11], showed that a marginal change in temperature and
precipitation could lead to a significant change in malaria incidence in African countries. The study
in [11] made use of a semi-parametric econometric model that investigated the relationship between
malaria cases and climatic factors. Mordecai et al. [18], using a model which includes empirically
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derived nonlinear thermal responses, showed that the optimal malaria transmission occurs at 25◦C and
decreases for temperature greater than 28◦C. Agusto et al. [3] showed that for cities across different
regions in Sub-Saharan Africa, the malaria burden increases with increasing temperature in the range
(16◦C–28◦C). The work by Christiansen-Jucht et al. [8] showed that including age dependence in the
vector component of the mosquito-borne disease model may be important to predict (more reliably)
disease transmission dynamics. Ngarakana-Gwasira et al. [19] showed that as a result of climate
change, malaria burden is likely to increase in the tropics, the highland regions and East Africa.
Okuneye and Gumel [23] developed and analyzed a temperature and rainfall dependent mechanistic
malaria model and incorporated features such as host age structure, dynamics of immature mosquitoes
(with the egg, larva and pupa stages fused into one class) and reduced susceptibility to malaria
infection due to prior malaria infection. Beck-Johnson et al. [5] explored the effects of temperature
fluctuations on mosquito population dynamics in a stage-structured, delay-differential equation (DDE)
model using diurnal, annual, and a combined annual and diurnal sinusoidal temperature fluctuations.

The purpose of this current study is to design, and analyze, a non-autonomous model for assessing
the impact of the actual microclimates experienced by mosquitoes on the transmission dynamics of
malaria and its control. Specifically, the model will be used to study the impact of the differences in
indoor vs outdoor environments on the efficacy of control strategies. To the best of our knowledge,
there is no study that has used mathematical models to quantify the differential effects of indoor and
outdoor temperatures (explicitly) on the dynamics of malaria in a population. The model is formulated
in Section 2. The autonomous version of the model is analyzed in Section 3, while the non-autonomous
model will be analyzed in Section 4. Numerical simulations are considered in Section 5. The main
conclusions from this study are summarized in Section 6.

2. Materials and method

2.1. Model formulation

The total human population at time t, denoted by Nh(t), is split into sub-populations of susceptible
humans (S h(t)), exposed humans (Eh(t)), infectious humans (Ih(t)) and recovered humans (Rh(t)). Thus,
Nh(t) = S h(t) + Eh(t) + Ih(t) + Rh(t).

The total vector population, denoted by Nv(t), is divided into sub-populations of aquatic and adult
mosquitoes. The aquatic mosquito sub-population is denoted by Am(t). While the adult mosquito
population Nm(t), include outdoor susceptible mosquitoes ((S vo(t))), indoor susceptible mosquitoes
((S vi(t))), outdoor exposed mosquitoes ((Evo(t))), indoor exposed mosquitoes ((Evi(t))), outdoor infec-
tious mosquitoes ((Ivo(t))) and indoor infectious mosquitoes ((Ivi(t))), so that Nm(t) = S vo(t) + S vi(t) +

Evo(t) + Evi(t) + Ivo(t) + Ivi(t). Thus, Nv(t) = Am(t) + Nm(t).

The non-autonomous model for malaria transmission dynamics in a population is given by the
following system of deterministic non-linear differential equations (Table 1 describes the associated
state variables and parameters in the model (2.1) while Figure 1 gives the flow diagram of model
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(2.1).b and ε accounts for the efficacy of the bed-nets and door and window nets respectively.):

dS h

dt
= Λh − (λho(To) + λhi(Ti)(1 − b))S h − µhS h + σhRh,

dEh

dt
= (λho(To) + λhi(Ti)(1 − b))S h − (γh + µh)Eh,

dIh

dt
= γhEh − (τh + µh + δh)Ih,

dRh

dt
= τhIh − (µh + σh)Rh,

dAm

dt
= φv(To)

(
1 −

Am

kv(To)

)
Nm − (γa(Tw) + µa(Tw))Am,

dS vo

dt
= γa(Tw)Am − λvo(To)S vo + ρ(Td)(1 − ε)S vi − (µv(To) + α(Td)(1 − ε))S vo,

dS vi

dt
= α(Td)(1 − ε)S vo − λvi(Ti)(1 − b)S vi − (µv(Ti)(1 + b) + ρ(Td)(1 − ε))S vi,

dEvo

dt
= λvo(To)S vo + ρ(Td)(1 − ε)Evi − (µv(To) + γvo(To) + α(Td)(1 − ε))Evo,

dEvi

dt
= λvi(Ti, b)S vi + α(Td)(1 − ε)Evo − (µv(Ti)(1 + b) + γvi(Ti) + ρ(Td)(1 − ε))Evi,

dIvo

dt
= γvo(To)Evo + ρ(Td)(1 − ε)Ivi − (µv(To) + α(Td)(1 − ε))Ivo,

dIvi

dt
= γvi(Ti)Evi + α(Td)(1 − ε)Ivo − (µv(Ti)(1 + b) + ρ(Td)(1 − ε))Ivi,

(2.1)

where the forces of infection for humans (outdoor and indoor) and vectors (outdoor and indoor) are
given, respectively, by

λho = ρvhβo(To)
Ivo

Nh
, λhi = ρvhβi(Ti)

Ivi

Nh
,

λvo = ρhvβo(To)
Ih

Nh
, λvi = ρhvβi(Ti)

Ih

Nh
.

(2.2)
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Figure 1. Schematic diagram of the model (2.1) , where λho, λhi, λvo, and λvi are given in
(2.2).
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Table 1. Description of variables and parameters in the model (2.1).

Variable Description
S h Population of susceptible humans
Eh Population of exposed humans
Ih Population of infectious humans
Rh Population of recovered humans
Am Immature mosquito population
S vo Susceptible mosquitoes outdoor
S vi Susceptible mosquitoes indoor
Evo Exposed mosquitoes outdoor
Evi Exposed mosquitoes indoor
Ivo Infectious mosquitoes outdoor
Ivi Infectious mosquitoes indoor

Parameter Interpretation
Λh Recruitment rate for humans
µh Natural mortality rate for humans
βo(To) Outdoor biting rate of mosquitoes
βi(Ti) Indoor biting rate of mosquitoes
ρhv Probability of malaria transmission from infectious humans to susceptible mosquitoes
ρvh Probability of malaria transmission from infectious mosquitoes to susceptible humans
σh Rate of loss of immunity
γh Progression rate of exposed humans
τh Recovery rate for humans
δh Disease induced death rate for humans
b Efficacy of insecticide treated net
ε Efficacy of door and window nets
φv(To) Egg deposition rate
kv(To) Mosquito carrying capacity
γa(Tw) Maturation rate of immature mosquito
µa(Tw) Mortality rate of immature mosquito
α(Td) Outdoor to indoor movement rate of adult mosquitoes
ρ(Td) Indoor to outdoor movement rate of adult mosquitoes
µv(To) Outdoor mortality rate of adult mosquitoes
µv(Ti) Indoor mortality rate of adult mosquitoes
γvo(To) Outdoor progression rate of exposed mosquitoes
γvi(Ti) Indoor progression rate of exposed mosquitoes

2.1.1. Temperature-dependent parameters

The temperature-dependent parameters for mosquito egg deposition rate, the per-capita death rate of
the immature mosquitoes, maturation rate of immature mosquitoes, mosquito biting rate, natural mor-
tality rate for adult vectors and progression rate of exposed vectors of the model (2.1), (defined using
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the functions in [3, 23] where Tw, To, Ti denote water, outdoor and indoor temperature, respectively, at
time t), are given below:

φv(To) = −0.153T 2
o + 8.61To − 97.7, µa(Tw) =

1
8.560 + 20.654(1 + ( Tw

19.759 )6.827)−1
,

γa(Tw) = (−0.153T 2
w + 8.61Tw − 97.7)(−0.00924T 2

w + 0.453Tw − 4.77)

(−0.00094T 2
w + 0.049Tw − 0.552)

(
1

− ln(−0.000828T 2
w + 0.0367Tw + 0.522)

)
,

βo(To) = −0.00014T 2
o + 0.027To − 0.322, βi(Ti, b) = (−0.00014T 2

i + 0.027Ti − 0.322)(1 − b),
µvo(To) = − ln(−0.000828T 2

o + 0.0367To + 0.522), µvi(Ti) = − ln(−0.000828T 2
i + 0.0367Ti + 0.522),

γvo(To) = −0.00083T 2
o + 0.044To − 0.487, γvi(Ti) = −0.00083T 2

i + 0.044Ti − 0.487.
(2.3)

We used a temperature-dependent carrying capacity (kv(To)) modeled following [40] which assumed
that the carrying capacity increases for temperature values in the range (15oCto26.6oC) and begins to
decrease for temperature values above 26.6oC due to evaporation and low rainfall. To model mosquito
movement rates, it was shown in [21] that mosquitoes shift location from indoors to outdoors relative
to differences in indoor and outdoor temperature conditions. Therefore, the carrying capacity (kv(To)),
the outdoor to indoor (α(Td)) and indoor to outdoor (ρ(Td)) movements of mosquitoes are given as
follows

kv(To) = −64.36To2 + 3298To − 34193,
α(Td) = −0.0583Td + 0.55, ρ(Td) = 0.0583Td + 0.55 where Td = Ti − To.

(2.4)

Studies have shown that indoor temperatures are warmer than outdoors but show less variation [27]
(and other references therein). Water temperature has also been shown to be 4 − 6oC higher than
the mean air temperature through out most part of the day [26]. Therefore, the following sinusoidal
functions given below are used to explore in detail the dynamic consequences of variable temperatures
(where Tw, To and Ti denote water, outdoor and indoor temperature, respectively, at time t).

Tw(t) = 27 + 5 cos
(
2π(t − 15)

24

)
, To(t) = 24 + 7 cos

(
2π(t − 15)

24

)
,

Ti(t) = 25 + 4 cos
(
2π(t − 15)

24

)
.

(2.5)
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Figure 2. Profile of water, outdoor and indoor temperatures

The model (2.1) is an extension of numerous published malaria transmission models that inves-
tigated the impact of climatic variables such as temperature on the population dynamics of malaria.
(e.g., [3, 19, 23, 29]) inter alia:

(i) Including the role of indoor and outdoor temperature variations on the dynamics of malaria. None
of the works in [3, 19, 23, 29] or any other (to the best of our knowledge) considered the impact
of such variations.

(ii) Including control measures such as door and window nets as well as bed-net usage. The models
in [3, 19, 23, 29] did not include all such control measures put together.

(iii) Including outdoor and indoor movement of mature mosquitoes.

2.1.2. Basic properties

The basic properties of the non-autonomous model (2.1) will now be explored. Consider the rate of
change of the total human population N′h(t) and vector population N′v(t)

N′h(t) = Λh − µhS h − µhEh − µhIh − µhRh − δhIh ≤ Λh − µhNh, and (2.6)

N′v(t) = φv(t)
(
1 −

Am(t)
kv(t)

)
Nm(t) − µV(t)Nv(t), (2.7)

where µV(t) = min{µa(t), µv(t), µv(t)(1 + b)} and Nm(t) = S vo(t) + S vi(t) + Evo(t) + Evi(t) + Ivo(t) + Ivi(t)
is the total population of adult mosquitoes.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1414–1444.
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In a periodic environment, it is often assumed that the mosquito population stabilizes at a periodic
steady state [16]. It is then assumed that there exists a positive number no [16] such that

N′v(t) = φv(t)
(
1 −

Am(t)
kv(t)

)
Nm(t) − µV(t)L < 0 for all L ≥ no. (2.8)

Lemma 2.1. Consider the model (2.1) with non-negative initial conditions satisfying Nh(t) > 0 for
all t > 0. Then, the model has a unique non-negative solution in C([0],R11

+ ) and all solutions are
ultimately and uniformly-bounded.

Proof. Following [10], the non-autonomous model (2.1) can be written in the form

dY
dt

= E(Y)Y + G, (2.9)

with Y = (S h, Eh, Ih,Rh, Am, S vo, S vi, Evo, Evi, Ivo, Ivi), G = (Λh, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and E(Y) is a
11 × 11 matrix given as

E(Y) =



E1 0 0 σh 0 0 0 0 0 0 0
E2 −k1 0 0 0 0 0 0 0 0 0
0 γh −k2 0 0 0 0 0 0 0 0
0 0 τh −k3 0 0 0 0 0 0 0
0 0 0 0 −E3 − k4 0 0 0 0 0 0
0 0 0 0 γa(t) −E4 − k5 ρ(t)(1 − ε) 0 0 0 0
0 0 0 0 0 α(t)(1 − ε) −E5 − k6 0 0 0 0
0 0 0 0 0 E4 0 −k7 ρ(t)(1 − ε) 0 0
0 0 0 0 0 0 E5 α(t)(1 − ε) −k8 0 0
0 0 0 0 0 0 0 γvo(t) 0 −k5 ρ(t)(1 − ε)
0 0 0 0 0 0 0 0 γvi(t) α(t)(1 − ε) −k6


,

where

E1 = −ρvh
βo(t)Y10 + βi(t, b)Y11

Nh
− µh, E2 = ρvh

βo(t)Y10 + βi(t, b)Y11

Nh
,

E3 =
φv(t)(Y6 + Y7 + Y8 + Y9 + Y10 + Y11)

kv(t)
, E4 = ρhv

βo(t)Y3

Nh
, E5 = ρhv

βi(t, b)Y3

Nh
,

k1 =γh + µh, k2 = τh + µh + δh, k3 = µh + σh, k4 = γa(t) + µa(t) k5 = µv(t) + α(1 − ε),
k6 =µv(t)(1 + b) + ρ(1 − ε), k7 = µv(t) + α(1 − ε) + γvo(t), k8 = µv(t)(1 + b) + ρ(1 − ε) + γvi(t).

Now, using the fact that G ≥ 0 and that the matrix E(Y) is quasi-positive, it follows that the model (2.9)
is positively-invariant in C([0],R11

+ ). Furthermore, by the comparison theorem [14], the solutions of
(2.6) and (2.7) exist for all t ≥ 0. Moreover, from (2.6), we see that

Nh(t) ≤ Nh(0) exp(−µh(t)) +
Λh

µh
[1 − exp(−µh(t))], so that lim sup

t→∞
Nh(t) ≤

Λh

µh
.

The unique τ-periodic solution of (2.7) in C([0],R+)\{0} N∗v (t) is given by

N∗v (t) = exp
(
−

∫ t

0
µV(s)ds

)
×

∫ t

0

[
φv(s)

(
1 −

Am(s)
kv(s)

)
Nm(s) exp

(∫ s

0
µV(ζ)dζ

)]
ds

+ exp
(
−

∫ t

0
µV(s)ds

)
×

∫ τ

0
φv(s)

(
1 − Am(s)

kv(s)

)
Nm(s) exp

(∫ s

0
(µV(ω)dω)

)
ds(

exp
(∫ τ

0
µV(s)ds

)
− 1

) ,

(2.10)
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so that
lim sup

t→∞
(Am(t) + S vo(t) + S vi(t) + Evo(t) + Evi(t) + Ivo(t) + Ivi(t) − N∗v (t)) ≤ 0.

Hence all solutions of the model (2.1) are ultimately bounded. Moreover, it follows from (2.6) and
(2.8) that N′h(t) < 0 and N′v(t) < 0 whenever Nh(t) > Λh

µh
and Nv(t) > no, respectively. Thus all solutions

of the model (2.1) are uniformly bounded. �

2.2. Analysis of the autonomous model

It is important to analyze the dynamics of the autonomous version of the non-autonomous model
(2.1). Consider the case of the non-autonomous model (2.1) where all the temperature-dependent
parameters are constants, then the reduced model is denoted as the autonomous model. We define the
threshold quantity

Rv =
φvγa(g6 + α(1 − ε))

g4(g5g6 − αρ(1 − ε)2)
, (2.11)

to be the production rate of mosquitoes offsprings. It is a product of the egg deposition rate φv, proba-
bility that an egg becomes an adult γa

g4
and the duration spent in the adult stage µv(1+b)+(1−ε)(α+ρ)

µv(µv(1+b)+(1−ε)(α+ρ)) .

The autonomous model has two disease-free equilibria. We shall call them the trivial disease free
equilibrium (TDFE) and the realistic disease free equilibrium (RDFE), explained thus:

(i) If Rv ≤ 1, the autonomous model has a TDFE (where there are no mosquitoes). This is given as

To = (S o
h, E

o
h, I

o
h ,R

o
h, A

o
m, S

o
vo, S

o
vi, E

o
vo, E

o
vi, I

o
vo, I

o
vi) =

(
Λh

µh
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)
(ii) If Rv > 1, the autonomous model has a RDFE (where we have mosquitoes present) given as

Eo = (S ∗h, E
∗
h, I
∗
h,R

∗
h, A

∗
m, S

∗
vo, S

∗
vi, E

∗
vo, E

∗
vi, I

∗
vo, I

∗
vi) =

(
Λh

µh
, 0, 0, 0, Ām, S̄ vo, S̄ vi, 0, 0, 0, 0

)
,

where

Ām = kv

(
1 −

1
Rv

)
, S̄ vo =

g6γakv

g5g6 − αρ(1 − ε)2

(
1 −

1
Rv

)
, and

S̄ vi =
α(1 − ε)γakv

g5g6 − αρ(1 − ε)2

(
1 −

1
Rv

)
.

2.2.1. Asymptotic stability of disease-free equilibria

Global asymptotic stability of the trivial disease free equilibrium (TDFE)

Theorem 2.1. The TDFE of the autonomous version of the model (2.1), denoted by To, is globally
asymptotically stable (GAS) in C([0],R11

+ ) whenever Rv ≤ 1.

Proof. Following the approach in [10, 23], let Rv ≤ 1, so that only the TDFE (To) exist. Also, let
Y = X − T DFE. So that, dY

dt = B(Y)Y , where S h = Y1, Eh = Y2, Ih = Y3, Rh = Y4, Am =

Y5, S vo = Y6, S vi = Y7, Evo = Y8, Evi = Y8, Ivo = Y10, Ivi = Y11 and B(Y) is given as

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1414–1444.
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B(Y) =



B1 0 0 σh 0 0 0 0 0 −ρvhβo −ρvhβi(b)
B2 −g1 0 0 0 0 0 0 0 ρvhβo ρvhβi(b)
0 γh −g2 0 0 0 0 0 0 0 0
0 0 τh −g3 0 0 0 0 0 0 0
0 0 0 0 B3 − g4 φv φv φv φv φv φv
0 0 0 0 γa −B4 − g5 ρ(1 − ε) 0 0 0 0
0 0 0 0 0 α(1 − ε) −B5 − g6 0 0 0 0
0 0 0 0 0 B4 0 −g7 ρ(1 − ε) 0 0
0 0 0 0 0 0 B5 α(1 − ε) −g8 0 0
0 0 0 0 0 0 0 γvo 0 −g5 ρ(1 − ε)
0 0 0 0 0 0 0 0 γvi α(1 − ε) −g6


,

with

B1 = −ρvh
βoY10 + βiY11

Nh
− µh, B2 = ρvh

βoY10 + βiY11

Nh
,

B3 = −
φv(Y6 + Y7 + Y8(t) + Y9 + Y10 + Y11)

kv
, B4 = ρhv

βoY3

Nh
B5 = ρhv

βi(1 − b)Y3(t)
Nh

,

g1 = γh + µh, g2 = τh + µh + δh, g3 = µh + σh, g4 = γa + µa, g5 = µv + α(1 − ε),
g6 = µv(1 + b) + ρ(1 − ε), g7 = µv + α(1 − ε) + γvo, g8 = µv(1 + b) + ρ(1 − ε) + γvi.

Consider the Lyapunov function

V(Y) = 〈W,Y〉, with W = (1, 1, 1, 1,
µv

φv
, 1, 1, 1, 1, 1, 1). We then have that

V̇(Y) = 〈W,B(Y)Y〉 = −µh(Y1 + Y2 + Y3 + Y4) − δhY3 −
µv

kv
Y5(Y6 + Y7 + Y8 + Y9 + Y10 + Y11)

−bµv(Y7 + Y9 + Y11)−
g4µvY5

φv

[
1 −

µv(1 + b) + ρ(1 − ε) + α(1 − ε)(1 + b)
µv(1 + b) + ρ(1 − ε) + α(1 − ε)

Rv

]
.

It then follows that

V̇(Y) ≤ 0 if
µv(1 + b) + ρ(1 − ε) + α(1 − ε)(1 + b)

µv(1 + b) + ρ(1 − ε) + α(1 − ε)
Rv ≤ 1, which implies that

Rv ≤
µv(1 + b) + ρ(1 − ε) + α(1 − ε)

µv(1 + b) + ρ(1 − ε) + α(1 − ε)(1 + b)
.

It is easy to see that for 0 ≤ b ≤ 1, µv(1+b)+ρ(1−ε)+α(1−ε)
µv(1+b)+ρ(1−ε)+α(1−ε)(1+b) ≤ 1.

Hence, V̇ ≤ 0. Furthermore, it follow from LaSalle’s Invariance Principle (Theorem 6.4 of [15]) that
the maximal invariant set contained in {V|V̇(Y)} is the T DFEY . Thus, the transformed equilibrium
T DFEY is GAS in C([0],R11

+ ) if Rv ≤ 1. Hence, To is also GAS in C([0],R11
+ ) whenever Rv ≤ 1. �

Local asymptotic stability of the realistic disease free equilibrium (RDFE)
Let Rv > 1 so that the RDFE (Eo) exist. The local stability of Eo in C([0],R11

+ ) \ To can be established
using the next generation operator method on the autonomous version of the model (2.1) [9, 36]. Using
closely related notations in [36], the matrices F and V , for the new infection terms and the remaining
transfer terms are, respectively, given by

F =



0 0 0 0 ρvhβo ρvhβi(b)
0 0 0 0 0 0
0 ρhvβoS ∗vo

N∗h
0 0 0 0

0 ρhvβi(b)S ∗vi
N∗h

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, and
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V =



g1 0 0 0 0 0
−γh g2 0 0 0 0

0 0 g7 −ρ(1 − ε) 0 0
0 0 −α(1 − ε) g8 0 0
0 0 −γvo 0 g5 −ρ(1 − ε)
0 0 0 −γvi −α(1 − ε) g6


.

Hence it follows from [36] that the reproduction number of the autonomous version of the model (2.1)
is given by

RT =

√√√
ρvhρhvγaγhµhkv

(
1− 1
Rv

)
(β2

og6(γviαρ(1−ε)2+γvog6g8)+
βoβi(b)α(1−ε)(g5g6γvi+g6g8γvo+g6γvoρ(1−ε)+g7γviρ(1−ε))+βi(b)2α(1−ε)(γvoαρ(1−ε)2+g5g7γvi))

g1g2Λh(g5g6 − αρ(1 − ε)2)2(g7g8 − αρ(1 − ε)2)
, where

g1 = γh + µh, g2 = τh + µh + δh, g3 = µh + σh, g4 = γa + µa, g5 = µv + α(1 − ε),

g6 = µv(1 + b) + ρ(1 − ε), g7 = µv + α(1 − ε) + γvo, g8 = µv(1 + b) + ρ(1 − ε) + γvi,

(2.12)

and Rv is defined as

Rv =
φvγa(g6 + α(1 − ε))

g4(g5g6 − αρ(1 − ε)2)
.

It should be noted from (2.12) that RT is positive if and only if Rv > 1 (so that Eo exist). The result
below follows from Theorem 2 of [36].

Theorem 2.2. The RDFE, Eo, of the autonomous version of the model (2.1) is locally asymptotically
stable (LAS) in C([0],R11

+ ) \ To if RT < 1, and unstable if RT > 1.

The threshold quantity RT is the effective or control reproduction number for the autonomous ver-
sion of the model (2.1). It represents the average number of secondary malaria infections generated by
a typical infected individual in a completely susceptible population where there are control measures
are present [36]. By Theorem 2.2, biologically speaking, malaria can be eliminated from the popu-
lation when RT < 1 if the initial sizes of the population of the model are in the region of attraction
Eo.

2.2.2. Global Asymptotic Stability of the RDFE: special case

We now prove the global asymptotic stability of the RDFE of the autonomous version of the model
(2.1) for the special case when δh = 0, since it has been repeatedly shown in literature that the presence
of disease-induced mortality in humans can cause a backward bifurcation in vector-borne diseases
[12, 13, 22]. We claim the following result.

Theorem 2.3. The RDFE of the special case of the autonomous version of the model (2.1) with δh = 0
is globally asymptotically stable in C([0],R11

+ ) \ To if Rm
T ≤ 1 (with Rm

T given as)

Rm
T =

√√√
ρvhρhvγaγhΛhkv

(
1− 1
Rv

)
(β2

og6(γviαρ(1−ε)2+γvog6g8)+

βoβi(b)α(1−ε)(g5g6γvi+g6g8γvo+g6γvoρ(1−ε)+g7γviρ(1−ε))+βi(b)2α(1−ε)(γvoαρ(1−ε)2+g5g7γvi))

g1g2µh(g5g6 − αρ(1 − ε)2)2(g7g8 − αρ(1 − ε)2)
,

(2.13)
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Proof. Consider the following Lyapunov function:

L = L1
γhEh

g1g2
+ L1

Ih

g2
+ L2Evo + L3Evi + Rm

T
βog6 + α(1 − ε)βi(b)

g5g6 − αρ(1 − ε)2 Ivo + Rm
T
βoρ(1 − ε) + g5βi(b)
g5g6 − αρ(1 − ε)2 Ivi,

L1 =

ρhv(β2
oS ∗vo(αρ(1−ε)2γvi+g6g8γvo)+βi(b)βo(α(1−ε)S ∗vo(g5γvi+g8γvo)+
ρ(1−ε)S ∗vi(g7γvi+g6γvo))+β2

i (b)S ∗vi(g5g7γvi+αρ(1−ε)2γvo))

(g5g6 − αρ(1 − ε)2)(g7g8 − αρ(1 − ε)2)

L2 =
βo(αρ(1 − ε)2γvi + g6g8γvo) + α(1 − ε)βi(b)(g5γvi + g8γvo)

(g5g6 − αρ(1 − ε)2)(g7g8 − αρ(1 − ε)2)
Rm

T and

L3 =
ρ(1 − ε)βo(g7γvi + g6γvo) + βi(b)(g5g7γvi + αρ(1 − ε)2γvo)

(g5g6 − αρ(1 − ε)2)(g7g8 − αρ(1 − ε)2)
Rm

T .

with a Lyapunov derivative given by,

L̇ = L1
γhĖh

g1g2
+ L1

İh

g2
+ L2Ėvo + L3Ėvi + Rm

T
βog6 + α(1 − ε)βi(b)

g5g6 − αρ(1 − ε)2 İvo + Rm
T
βoρ(1 − ε) + g5βi(b)
g5g6 − αρ(1 − ε)2 İvi,

(2.14)

Substituting the expressions of the derivatives of Ėh İh Ėvo Ėvi İvo and İvi, from the au-
tonomous version of the model (2.1) with δh = 0, into (2.14) (and after some algebraic calculations)
leads to

L̇ ≤ (L1Ih + Rm
T βoIvo + Rm

T βiIvi)(Rm
T − 1).

Since all the parameters and variables of the mass action model of the autonomous version of the
model (2.1) are non-negative, it follows that L̇ ≤ 0 for Rm

T ≤ 1. Furthermore, L̇ = 0 if and only if
Eh = Ih = Evo = Evi = Ivo = Ivi = 0. Hence, L is a Lyapunov function. Thus, it follows, by LaSalle’s
Invariance Principle [15], that every solution to the equations in the autonomous version of the model
(2.1) with initial conditions in C([0],R11

+ ) \ To converges to the RDFE Eo as t → ∞. That is,
(Eh(t), Ih(t), Evo(t), Evi(t), Ivo(t), Ivi(t)) → (0, 0, 0, 0, 0, 0) as t → ∞. Substituting Eh = Ih = Evo =

Evi = Ivo = Ivi = 0 into the first, fifth, sixth, seventh eighth and ninth equations of the autonomous
version of the model (2.1) gives the following as t → ∞

(S h(t), Am(t), S vo(t), S vi(t))→ (S h(t)∗, Am(t)∗, S vo(t)∗, S vi(t)∗).

Thus the RDFE of the special case of the autonomous version of the model (2.1) with δh = 0 is globally
asymptotically stable in C([0],R11

+ ) \ To if Rm
T ≤ 1. �

2.3. Analysis of the non-autonomous model

Just like the autonomous version, the non-autonomous version has two disease free equilibria,
namely, the trivial disease free equilibrium and the realistic disease free equilibrium. We will how-
ever analyze only the realistic disease free equilibrium as the former is ecologically unrealistic. We
define the threshold quantity Rv(t) (the production rate of mosquitoes offsprings), given as

Rv(t) =
φv(t)γa(t)(k6 + α(t)(1 − ε))

k4(t)(k5(t)k6(t) − α(t)ρ(t)(1 − ε)2)
.
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The realistic disease free equilibrium (RDFE) is obtained by setting Eh = Ih = Rh = Evo = Evi = Ivo =

Ivi = 0 in the model (2.1),

E0N = (S a
h, 0, 0, 0, A

a
m, S

a
vo, S

a
vi, 0, 0, 0, 0) where S a

h =
Λh

µh
,

with (Aa
m, S

a
vo, S

a
vi) being the unique periodic solution (for Rv(t) > 1 f or all t ≥ 0), satisfying:

dAa
m(t)

dt
= φv(t)

(
1 −

Aa
m(t)

kv(t)

)
(S a

vo(t) + S a
vi(t)) − (γa(t) + µa(t))Aa

m(t),

dS a
vo(t)
dt

= γa(t)Aa
m(t) − λvo(t)S a

vo(t) + ρ(t)(1 − ε)S a
vi(t) − (µv(t) + α(t)(1 − ε))S a

vo(t),

dS a
vi(t)

dt
= α(t)(1 − ε)S a

vo(t) − λvi(t, b)S a
vi(t) − (µv(t, b) + ρ(t)(1 − ε))S a

vi(t).

2.3.1. Local asymptotic stability of RDFE (E0N)

The basic reproduction ratio associated with the non-autonomous model (2.1) will now be computed
using the the approach in [37]. The next generation matrix FN(t) (of the new infection terms) and the
M-Matrix VN(t) (of the remaining transfer terms), associated with non-autonomous model (2.1), are
given respectively by

FN(t) =



0 0 0 0 ρvhβo(t) ρvhβi(t, b)
0 0 0 0 0 0
0 ρhvβo(t)S a

vo(t)
Na

h
0 0 0 0

0 ρhvβi(t,b)S a
vi(t)

Na
h

0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, and

VN(t) =



k1 0 0 0 0 0
−γh k2 0 0 0 0

0 0 k7 −ρ(t)(1 − ε) 0 0
0 0 −α(t)(1 − ε) k8 0 0
0 0 −γvo(t) 0 k5 −ρ(t)(1 − ε)
0 0 0 −γvi(t) −α(t)(1 − ε) k6


.

Following [23, 37], let ΦM be the monodromy matrix of the linear τ-periodic system

dZ
dt

= M(t)Z.

Also, let ρ(ΦM(τ)) be the spectral radius of ΦM(τ) and Y(s, t), t = s, be the evolution operator of
the linear τ-periodic system dy

dt = −VN(t)y. So that for each s ∈ R, the associated 6 × 6 matrix Y(t, s)
satisfies [37]

dY(t, s)
dt

= −VN(t)Y(t, s)∀t ≥ s,Y(s, s) = I.

Furthermore, let φ(s) (τ − periodic in s) be the initial distribution of infectious individuals.
Thus,FN(s)φ(s) is the rate at which new infections are produced by infected individuals who were
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introduced into the population at time s [37]. Since t = s, it follows that Y(t, s)FN(s)φ(s) represents the
distribution of those infected individuals who were newly infected at time s, and remain infected at time
t. Hence,the cumulative distribution of new infections at time t, produced by all infected individuals
(φ(s)) introduced at a prior time s = t, is given by

Ψ(t) =

∫ t

−∞

Y(t, s)FN(s)φ(s)ds =

∫ ∞

0
Y(t, t − a)FN(t − a)φ(t − a)da.

Let Cτ be the ordered Banach space of all τ − periodic functions from R to R6, equipped with a
maximum norm ‖ . ‖ and positive cone

C+
τ {φ ∈ Cτ : φ(t) ≥ 0,∀t ∈ R}.

Define a linear-operatorL : Cτ → Cτ [37]

(Lφ)(t) =

∫ ∞

0
Y(t, t − a)FN(t − a)φ(t − a)da∀t ∈ R, φ ∈ Cl

The basic reproduction number RT (t) is then given as the spectral radius of L, denoted by ρ(L). The
proof that the model (2.1) satisfies the conditions A1-A7 in [37, 4] is given in Appendix A. The result
below follows from Theorem 2.2 in [37].

Theorem 2.4. The RDFE of the non-autonomous model (2.1) is locally asymptotically stable if RT (t) <
1 (given that Rv(t) > 1) and unstable if RT (t) > 1.

2.3.2. Global asymptotic stability of RDFE (E0N)

The global stability of the realistic disease free equilibrium of the non-autonomous model (2.1) will
now be explored for the special case where δh = 0. We claim the following result, with the proof in
Appendix B.

Theorem 2.5. Consider the special case of the non-autonomous model (2.1) with δh = 0 so that
N∗h(t) → Λh

µh
as t → ∞. The RDFE of the resulting model is GAS in C([0],R11

+ ) \ To if Rm
T (t) =

RT (t)|δh=0 < 1

The proof of Theorem 2.5 , based on using comparison theorem [34], is given in Appendix B.
The epidemiological implication of Theorem 2.5 is that malaria can be effectively controlled(if not
eliminated) if the reproduction threshold Rm

T (t) can be brought to as well as maintained at a value less
than unity.

2.3.3. Uniform persistence of the disease

We now explore the possibility of the existence of a positive periodic equilibrium for the model
(2.1) using the uniform persistence theory. Let EN(t) be any arbitrary positive periodic equilibrium of
the model (2.1). Following [16, 17, 23], it is convenient to define the following sets:

X = C([0],R11
+ ),

X0 = {φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11) ∈ X : φi(0) > 0
∀i ∈ {2, 3, 4, 8, 9, 10, 11}}.

We claim the following result, with the proof in Appendix C.
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Theorem 2.6. Consider the non-autonomous model (2.1). Suppose that RT (t) > 1 and Rv(t) > 1 for
all t ≥ 0. Then the model has at least one positive periodic equilibrium, and there exists a q > 0 such
that any equilibrium Φt(φ) of the model with initial value φ ∈ X0 satisfies

lim inf
t→∞

(Eh(t), Ih(t),Rh(t), Evo(t), Evi(t), Ivo(t), Ivi(t)) ≥ (q, q, q, q, q, q, q)

The proof of Theorem 2.6, based on using the approach in [16, 23], is given in Appendix C. The
epidemiological implication of Theorem 2.6 is that malaria will persist in the population whenever
RT (t) > 1 and Rv(t) > 1, for all t ≥ 0.

3. Results: Numerical simulations of the model (2.1)

The model (2.1) is simulated numerically to investigate the impact of the variation in indoor and
outdoor conditions on the transmission of malaria using parameter values given in Table 2.

Table 2. Parameter value of temperature independent parameters in the model (2.1).

Parameter Baseline value Range Reference
Λh 62.3979/day (41.8066 − 82.9892)/day Estimated
µh 5.1752 × 10−5/day (3.4674 × 10−5 − 6.8830 × 10−5)/day Estimated
ρhv 0.25/day (0.072 − 0.64)/day [23]
ρvh 0.013/day (0.027 − 0.64)/day [23]
b 0.4 (0 − 1) variable
σh 0.000017/day (5.5 × 10−5 − 1.1 × 10−2)/day [3]
γh 0.083/day (0.0067 − 0.2)/day [20]
τh 0.00032338/day (0.0001 − 0.023)/day [16]
ε 0.5 (0 − 1) variable
δh 0.0003233/day (0.00001 − 0.0004)/day [23, 22]

3.1. Numerical simulation of the reproduction number

The time-averaged basic reproduction number ([RT (t)]) of the model (2.1) is simulated for two
different scenarios namely Ti , To and Ti = To. In Figure 3, it is seen that the reproduction threshold
is under-estimated when Ti = To (i.e when the variation between indoor and outdoor conditions are
not incorporated). This is may be due to the higher progression rate experienced by indoor vectors
(see Figure 4) as studies have shown that the extrinsic incubation period (EIP) is highly temperature
dependent and affects the basic reproduction number in an exponential manner (as it influences the
number of infected mosquitoes that become infections) [6, 24] (and other references therein).
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Figure 3. Simulation of the time-averaged basic reproduction number of the model (2.1) to
assess the impact indoor and outdoor temperature variation.

2 4 6 8 10 12 14 16 18 20 22 24
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Time (hours)

P
ro

g
re

ss
io

n
 r

at
e 

o
f 

ex
p
o
se

d
 v

ec
to

rs

 

 

γ
vo

 (outdoor)

γ
vi

 (indoor)

Figure 4. Simulations of the progression rate of exposed mosquitoes. Parameters and ranges
used are as in Table 2.
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3.2. Numerical Investigation of the impact of indoor and outdoor temperature variation

We now investigate the effect of variability in outdoor and indoor microclimates on the transmission
dynamics of malaria. Figure 5 shows the impact of the difference between indoor and outdoor tem-
perature on the number of infectious humans as well as the cumulative incidence. Results from Figure
5(a) show that the model under-estimates the number of infectious humans when indoor temperature
is assumed to be equal to outdoor temperature. In the same vein, this finding is supported by results
from Figure 5(b) when the cumulative incidence (outdoor and indoor) is used instead of the number of
infectious humans.
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Figure 5. Simulations of the model (2.1) to assess the impact of variation in indoor and
outdoor conditions. Parameters and ranges used are as in Table 2.

3.3. Numerical Investigation of the impact of indoor and outdoor temperature variation on efficacy of
controls

Investigating the effect of the differences in indoor and outdoor temperature on the efficacy (b) of
bed-net, it is seen from Figure 8 that the cumulative incidence are higher when Ti , To (Figures 6(a),
6(c) and 6(e)) for the different values of b than when indoor temperature is assumed to be equal to
outdoor temperature i.e Ti = To (Figures 6(b), 6(d) and 6(f)). These results therefore indicate that
differences in the micro habitats where mosquitoes rest can impact on the transmission dynamics of
malaria as well as efficacy of control measures.
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(a) Ti = 25 + 4 cos(2π(t−15)/24) and To = 24 + 7 cos(2π(t−15)/24)
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(b) Ti = To = 24 + 7 cos(2π(t − 15)/24)
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(c) Ti = 25 + 4 cos(2π(t−15)/24) and To = 24 + 7 cos(2π(t−15)/24)
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(d) Ti = To = 24 + 7 cos(2π(t − 15)/24)
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(e) Ti = 25 + 4 cos(2π(t−15)/24) and To = 24 + 7 cos(2π(t−15)/24)
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(f) Ti = To = 24 + 7 cos(2π(t − 15)/24)

Figure 6. Simulations of the model (2.1) to assess the impact the variation in indoor and
outdoor conditions on the efficacy of control measure b. Parameters and ranges used are as
in Table 2.

Again, Figure 7 clearly shows that the differences in indoor and outdoor environment impacts on
the efficacy (ε) of the door and window nets. It is seen that the cumulative incidences that occur both
outside and inside a human dwelling for various values of ε when Ti = 25 + 4 cos(2π(t − 15)/24)
and To = 24 + 7 cos(2π(t − 15)/24) (Figures 7(a), 7(c) and 7(e)) are higher than in the case when
Ti = To = 24 + 7 cos(2π(t − 15)/24) (Figures 7(b), 7(d) and 7(f)).

Additionally, we can see from Figures 6(c) and 6(d) that the use of indoor bed-nets significantly
affects the outdoor dynamics. This is a pointer to how much malaria transmission intensity can be
affected by indoor conditions.
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(a) Ti = 25 + 4 cos(2π(t−15)/24) and To = 24 + 7 cos(2π(t−15)/24)
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(b) Ti = To = 24 + 7 cos(2π(t − 15)/24)
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(c) Ti = 25 + 4 cos(2π(t−15)/24) and To = 24 + 7 cos(2π(t−15)/24)
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(d) Ti = To = 24 + 7 cos(2π(t − 15)/24)
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(e) Ti = 25 + 4 cos(2π(t−15)/24) and To = 24 + 7 cos(2π(t−15)/24)
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(f) Ti = To = 24 + 7 cos(2π(t − 15)/24)

Figure 7. Simulation of model (2.1) to assess the impact the variation in indoor and outdoor
conditions on the efficacy of control measure ε. Parameters and ranges used are as in Table
2.

Furthermore, we can observe from Figures 7(a)and 7(e) that increasing ε leads to a decrease in the
indoor cumulative incidence as well as the cumulative incidence comprising both outdoor and indoor
incidences. However, there is an increase in the outdoor cumulative incidence when ε is increased
(Figure 7(c)). This leaves us with a very interesting finding of how much the indoor environment
affects the transmission intensity. So, although an increase in ε (a situation that does not just prevent
indoor entry of mosquitoes and allow for increase in outdoor transmission intensity but also prevents
the exit of indoor mosquitoes) led to an increase in the outdoor cumulative incidence, there is however
a far more significant reduction in the indoor incidence that results in a decrease in total cumulative
incidence (indoor and outdoor). This reduction in the total cumulative incidence may be due to the
efficacy of the indoor bed nets which repel or kill indoor mosquitoes and so reduces the population
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of infectious vectors. It might also be as a result of the outdoor conditions which makes for a longer
extrinsic incubation period (see Figure 4) and further reduces the number of infectious vectors.
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(a) Total outdoor vectors with b = 0
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(b) Total indoor vectors with b = 0
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(c) Infectious outdoor vectors with b = 0
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(d) Infectious indoor vectors with b = 0
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(e) Infectious outdoor vectors with b = 0.4
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(f) Infectious indoor vectors with b = 0.4

Figure 8. Simulations of the model (2.1) to assess the impact the variation in indoor and
outdoor conditions and the efficacy of bed-nets on the vector population. Parameters and
ranges used are as in Table 2.

Considering the cases above, we set b = 0 and investigate how ε effects the dynamics of the vector
population. From Figures 8(a) and 8(b) we observe that when ε = 0.9 results in a larger vector
population oudoor. However, we observe that though we have more vectors outdoor, the number of
infectious vectors indoor is grater than the number of infectious vectors outdoor (Figures 8(c) and 8(d)).
The faster progression rate experienced by vectors indoor (due to the different indoor microclimate)
may account for this rise in the number of infectious vectors in the absence of an indoor control while
the slower progression rate of the outdoor vectors account for the lower number of infectious vectors
outdoor though we had more mosquitoes outdoor. Both cases are shown to be true as seen from
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Figures 8(e) and 8(f). Therefore, the use of the bed-net reduces though more significantly the number
of infectious vectors indoors, it also reduces the number of infectious mosquitoes outdoor (Figures
8(e) and 8(f)) and thereby decreases the total population of infectious vectors. Generally, we see that
if there is no indoor control, the transmission intensity would significantly increase.

3.4. Numerical Investigation of the interaction between the controls

Numerical results from Figure 9 show the interaction between the controls. If there is an indoor
control, putting more mosquitoes outdoor will result in a decrease in the number of infectious humans
this is so because the a higher percentage of infectious vectors which are indoor will have contact with
the bed-nets as seen in Figure 9(b). On the other hand, if there is no indoor control, having ε = 0.1 will
result in less disease prevalence. In summary, we can say that the impact of the indoor environment on
the transmission intensity is felt most in the absence of any form of indoor control.
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(a) Number of infectious humans with b = 0
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(b) Number of infectious humans with b = 0.4

Figure 9. Simulation of model (2.1) to assess the impact of the efficacy of control measures
b and ε. Parameters and ranges used are as in Table 2.

4. Discussion

A new mathematical model for the transmission dynamics of malaria in a community is designed
(and rigorously analyzed) and used to assess the impact of indoor and outdoor temperature variations
in a population where control measures are in place (like indoor bed-nets and door and window nets).
Some of the theoretical findings are given below.

(1) The autonomous version of the model (2.1) has a trivial disease free equilibrium (TDFE)(when
there are no mosquitoes in the population) as well as a realistic disease free equilibrium
(RDFE)(when mosquitoes are present). The trivial disease free equilibrium is globally asymptoti-
cally stable whenever the thresholdRv is less than unity while the realistic disease free equilibrium
is locally asymptotically stable whenever the associated reproduction number is less than unity.
Also, the RDFE is globally asymptotically stable in the absence of disease induced mortality for
humans whenever the associated reproduction number is less than unity.

(2) The model (2.1) has a globally asymptotically stable realistic disease free equilibrium in the
absence of disease induced mortality for humans whenever the associated reproduction number
is less than unity (RT (t) < 1). The model (2.1) has at least a periodic solution whenever the
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associated reproduction number is greater than unity (RT (t) > 1). In this case, the disease persist.

Results from the numerical simulations of the model (2.1) are given below.

(1) When the variation of the indoor and outdoor temperatures are taken into consideration, i.e. To =

24 + 6 cos(2π(t− 15)/24) and Ti = 23 + 3 cos(2π(t− 15)/24), the bed-net efficacy needed to bring
the time averaged basic reproduction number [RT (t)] below unity is greater than when Ti = To =

24 + 6 cos(2π(t − 15)/24). Also, having a 100% bed-net efficacy (b) results in 58.69% reduction
in the time averaged basic reproduction number [RT (t)] when the variation of the indoor and
outdoor temperatures are taken into consideration. However, if indoor and outdoor temperatures
are assumed to be the same, having a 100% bed-net efficacy results in 61.93% reduction. This
shows that the differences in indoor and outdoor conditions impacts on the efficacy of the bed-nets
and hence on malaria transmission.
It is interesting to state that Paaijmans and Thomas [27], reported that small differences in indoor
and outdoor temperatures can have significant impact on the length of the (EIP) and consequently
on the basic reproduction number as the EIP is one of the most influential parameters that deter-
mines disease reproduction threshold. Clearly our results support this finding reported in [27] as
seen from Figures 3 and 4. Therefore, Thomas et al. [35] concluded that since the actual mi-
croclimates experienced by mosquitoes in different microhabitants play a significant role in most
mosquito and parasite life history traits, appropriate characterization of the local microclimate
conditions is important in understanding transmission intensity.

(2) When indoor temperature is assumed to be the same as outdoor temperature, the model underesti-
mates the number of infectious humans as well the cumulative incidence of the disease. This again
strongly agrees with the results in [27] which reported that better knowledge of endophilic and ex-
ophilic behaviours of mosquitoes (resting behaviour) and the associated microclimate is needed to
fully understand malaria transmission intensity. This study ([27]) stated that differences in micro-
climate of places where mosquitoes rest translate to increases in transmission risk. Furthermore,
it was reported in [28] that models that use outdoor air temperatures only will underestimate the
speed of processes such as parasite development, blood meal digestion and egg-production of
endophilic mosquitoes.

(3) In the absence of an indoor control measure having ε = 0.1 (a conditions that allows for higher
movement rate of mosquitoes in and out of a human dwelling) may be more helpful. However,
when we an indoor control measure restricting vector movement (i.e. having ε = 0.9) may be of
a better advantage. This may be as a result of the different temperature conditions experienced
by the vectors in the different micro niches as they move in and out of a human dwelling since
temperature has been shown to altar the length of the extrinsic incubation period (EIP). This study
may be pointing to the fact that both the mosquito resting behaviour and how long it rest there
may determine the transmission intensity. This may be due to the fact that having ε = 0.9 does
not just prevent indoor entry but also prevents exit of indoor vectors so vectors are confined to a
particular microclimate for a longer period. When ε = 0.1 the movement rate (α and ρ) are higher
and so vectors are exposed to variable microclimate from time to time as they move in and out of a
human dwelling. Therefore, if mosquitoes spend a greater parts of their adult life resting indoors
(in a population without any form of indoor control measures), this may lead to a considerable
increase in transmission risk as [27] reported that that mosquitoes that rest indoor could transmit
malaria between 0.3 and 22.5 days earlier than outdoor-resting counterparts.
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5. Conclusion

This study has shown the significance of including the variation between outdoor and indoor
temperatures on the dynamics of malaria in a given population as the difference between indoor and
outdoor temperatures is expected to alter temperature-related estimates of transmission intensity. This
agrees with the findings in [28] where indoor and outdoor temperature data from a study carried
out in Tanzania were used to assess the effects of these different microclimate on the extrinsic
incubation period of the parasite as well as the gonotrophic cycle length of mosquitoes. This study
has confirmed that warmer indoor temperatures result in faster parasite development as well as leads
to an increase in the transmission intensity. Also, both where the mosquitoes rest and how long they
rest there may determine the the population of the infectious vectors and thus the transmission intensity.

In this work, the variations in indoor temperature due to house design and construction materials
and relative humidity were not considered. However, since indoor temperature has been shown to vary
considerably depending on house design, construction materials, housing density, adjacent vegetation
cover and altitude as noted in [27, 35], it would be interesting to study the impact of this on malaria
dynamics. Moreover, it would be interesting to study the combined impact of microclimate variables
like temperature and relative humidity on the transmission dynamics of malaria.
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Appendix A: Verification of assumptions A1 − A7 in [37]

Verification of the Assumptions A1-A7 in [37, 4]. Following [31] and using the notation in [37],
the model (2.1) can be written as:

d
dt

x(t) = F (t, x(t)) −V(t, x(t)) = f (t, x(t)),

where,

x =



S h(t)
Eh(t)
Ih(t)
Rh(t)
Am(t)
S vo(t)
S vi(t)
Evo(t)
Evi(t)
Ivo(t)
Ivi(t)



, F =



0
(λho(t) + λhi(t))S h(t)

γhEh(t)
0
0
0
0

λvo(t)S vo(t)
λvi(t)S vi(t)
γvoEvo(t)
γviEvi(t)



,

and

V = V− −V+ =



−Λh + λhoS h + λhiS h + µhS h − σhRh

k1Eh(t)
k2Ih(t)

−τhIh(t) + k3Rh(t)
−φv(t)(1 −

Am(t)
kv(t) )(S vo + S vi + Evo + Evi + Ivo + Ivi) + k4Am(t)

−γaAm(t) + λvo(t)S vo(t) − ρ(t)(1 − ε)S vi(t) + k5S vo(t)
−α(t)(1 − ε)S vo(t) + λvi(t)S vi(t) + k6S vi(t)

−ρ(t)(1 − ε)Evi(t) + k7Evo(t)
−α(t)(1 − ε)Evo(t) + k8Evi(t)
−ρ(t)(1 − ε)Ivi(t) + k5Ivo(t)
−α(t)(1 − ε)Ivo(t) + k6Ivi(t)



.

The functions F ,V− andV+ satisfy the following conditions in [37].

(A1) For each 1 ≤ i ≤ 11, Fi(t, x), V+
i (t, x) and V−i (t, x) are non-negative, continuous on R × R11

+ and
continuously differentiable with respect to x.

(A2) There is a real number ω > 0 such that for each 1 ≤ i ≤= 11, the functions Fi(t, x), V+
i (t, x) and

V−i (t, x) are τ-periodic in t.
(A3) If xi = 0, thenV−i = 0 for i = 2, 3, 4, 8, 9, 10, 11
(A4) Fi = 0 for i = 1, 5, 6, 7.
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(A5) Define Xs = x ≥ 0 : xi = 0 f or i = 2, 3, 4, 8, 9, 10, 11. It is clear that if x ∈ Xs, then
Fi = V+

i = 0 for i = 2, 3, 4, 8, 9, 10, 11. The model (2.1) has RDFE given by E0N =

(S ∗h, 0, 0, 0, A
∗
m, S

∗
vo, S

∗
vi, 0, 0, 0, 0). Define a 5 × 5 matrix

M(t) =
(

∂ fi(t,x∗)
∂x j

)
i, j=1,4,5,6,7

.

It follows from [31], and the definitions of the matrices F andV, that

M(t) =


−µh σh 0 0 0

0 −k3 0 0 0

0 0 −φv(t) 1
kv (t) (S ∗vo + S ∗vi) − k4 φv(t)(1 − A∗m (t)

kv (t) ) φv(t)(1 − A∗m (t)
kv (t) )

0 0 γa(t) −k5 ρ(t)(1 − ε)
0 0 0 α(t)(1 − ε) −k6


(A6) Since M(t) is a diagonalize matrix with negative eigenvalues, then ρ(ΦM(τ)) < 1.
(A7) Similarly, −V(t) is a diagonalize matrix with negative eigenvalues. Hence, ρ(Φ−v(τ)) < 1.

Therefore, the model (2.1) satisfies the conditions A1 − A7 in [37].

Appendix B: Proof of Theorem 2.5

Consider the model (2.1) where δh = 0 with Rv(t) > 1 for all t ≥ 0. Let Rm
T (t) < 1. The proof

is based on the comparison theorem [34]. Using the fact that S h(t) ≤ Λh
µh

, Am(t) ≤ kv(t)(1 − 1
Rv(t) ),

S vo(t) ≤ kv(t)γa(t)k6
k5k6−αρ(1−ε)2) (1 −

1
Rv(t) ) and S vi(t) ≤

kv(t)γa(t)α(t)(1−ε)
k5k6−αρ(1−ε)2) (1 − 1

Rv(t) ), for all t ≥ 0 in C([0],R11
+ ) \ To. We

can then re-write the non-autonomous model (2.1) as

dEh

dt
≤ ρvhβo(t)Ivo + ρvhβi(t, b)Ivi − (γh + µh)Eh,

dIh

dt
= γhEh − (τh + µh)Ih,

dRh

dt
= τhIh − (σh + µh)Rh,

dEvo

dt
≤
ρhvβo(t)µhIh

Λh

kv(t)γa(t)k6

k5k6 − αρ(1 − ε)2)
(1 −

1
Rv(t)

) + ρ(t)(1 − ε)Evi − k7Evo,

dEvi

dt
≤
ρhvβi(t, b)µhIh

Λh

kv(t)γa(t)α(t)(1 − ε)
k5k6 − αρ(1 − ε)2)

(1 −
1
Rv(t)

) + α(t)(1 − ε)Evo − k8Evi,

dIvo

dt
= γvo(t)Evo + ρ(t)(1 − ε)Ivi − k5Ivo,

dIvi

dt
= γvi(t)Evi + α(t)(1 − ε)Ivo − k6Ivi.

The equations with equalities used in place of inequalities can be written in terms of the next generation
matrices F (t) andV(t) following [37]

dW(t)
dt

= [F (t) −V(t)]W(t) (5.1)

There exist a positive τ-periodic function w(t) = (Eh(t), Ih(t), Evo(t), Evi(t), Ivo(t), Ivi(t)), (following
lemma 2.1 in [41]) such that W(t) = expθt w(t) with θ = 1

τ
ln ρ[φF−V(τ)] is a solution of the linearized

system (5.1). Furthermore, the assumption that Rm
T (t) < 1 implies that ρ[φF−V(τ)] < 1. Hence, θ is a

negative constant. Thus, W(t)→ 0 as t → ∞.
The unique realistic disease free solution of the linear system (5.1) given by W(t) = 0, is GAS. For

any non-negative initial condition (Eh(0), Ih(0), Evo(0), Evi(0), Ivo(0), Ivi(0)) of the system (5.1) there
exists a sufficiently large M∗ > 0 such that
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((Eh, Ih, Evo, Evi, Ivo, Ivi)(0))T ≤ M∗((Eh, Ih, Evo, Evi, Ivo, Ivi)(0))
Thus, it follows by comparison theorem that (Eh(t), Ih(t), Evo(t), Evi(t), Ivo(t), Ivi(t)) ≤ M∗W(t) for all

t > 0 where M∗W(t) is also a solution of the model (5.1). Hence,
((Eh(t), Ih(t), Evo(t), Evi(t), Ivo(t), Ivi(t)))→ (0, 0, 0, 0, 0, 0) as t → ∞.
It also follows that S h(t)→ Λh

µh
as t → ∞ and (Am(t), S vo(t), S vi(t)) satisfy for (Rv(t) > 1 for all t)

Ȧm(t) = φv(t)(1 −
Am(t)

kv
)(S vo(t) + S vi(t)) − k4Am(t),

Ṡ vo(t) = γa(t)Am(t) + ρ(t)(1 − ε)S vi(t) − k5S vo(t)
Ṡ vi(t) = α(t)(1 − ε)S vo(t) − k6S vi(t).

Thus for Rm
T (t) < 1, (S h, Eh, Ih,Rh, Am, S vo, S vi, Evo, Evi, Ivo, Ivi)→ E0N as t → ∞

Appendix C: Proof of Theorem 2.6

Consider the non-autonomous model (2.1) with Rv(t) > 1 and RT (t) > 1 for all t ≥ 0. Both
conditions are needed to ensure that mosquitoes are present in the population and that the realistic
disease free solution is unstable. The proof of Theorem 2.6 is based on using the technique of in [16].
Define the sets

X = C([0],R11
+ ),

X0 = {φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10, φ11) ∈ X : φi(0) > 0
∀i ∈ {2, 3, 4, 8, 9, 10, 11}}.

∂X0 = X\X0 = {φ ∈ X : φi(0) = 0 f or some i ∈ {2, 3, 4, 8, 9, 10, 11}}

Let u(t, φ) be the unique solution of the model (2.1) (through the initial condition u(0, φ) = φ). Define
Φ(t)ϕ = u(t, ϕ),the flow generated by the model (2.1) with respect to ϕ.

Let P : X → X be the poincaré map associated with the model (2.1). That is P(φ) = u(τ, φ) for all
φ ∈ X. Then using the approach in the proof of lemma 2.1 in [16], it can be shown that X0 is a positively
invariant and compact set with respect to the model (2.1). Since the model’s solutions are uniformly
bounded, it follows that P is point-dissipative.[16, 23]. Furthermore, it follows from theorem 1.1.2 in
[42] that in X, P admits a global attractor.

Next, we show that P is uniformly persistent with respect to (X0, ∂X0). It is convenient to define
where Pn(φ), n ≥ 0, are the periodic points of the poincaré map [16]:

K∂ = {φ ∈ ∂X0 : Pn(φ) ∈ ∂X0, n ≥ 0},
D1 = {φ ∈ X : φi(0) = 0 for alli ∈ {5, 6, 7, 8, 9, 10, 11}},
D2 = {φ ∈ X : φi(0) = 0 for alli ∈ {2, 3, 4, 8, 9, 10, 11}}.

(5.2)

It follows from (5.2) that

D1 ∪ D2 = {φ ∈ X : φi(0) = 0 for all i ∈ {5, 6, 7, 8, 9, 10, 11}} or φi(0) = 0 for all
i = {2, 3, 4, 8, 9, 10, 11}},

∂X0 \ (D1 ∪ D2) = {φ ∈ X : φi(0) ≥ 0 for some i ∈ {2, 3, 4, 8, 9, 10, 11}}.
(5.3)

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1414–1444.



1443

In the case where 0 is a solution, of the equation (2.10) for the total mosquito population N∗v (t). We
claim the following

Lemma 5.1. K∂ = D1 ∪ D2.

Proof. We can define the set K∂ and D1 ∪ D2 as given below

K∂ = {(S h(0), Eh(0), Ih(0),Rh(0), Am(0)S vo(0), S vi(0), Evo(0), Evi(0), Ivo(0), Ivi(0)) ∈ ∂X0 :
Pn(S h(0), Eh(0), Ih(0),Rh(0), Am(0)S vo(0), S vi(0), Evo(0), Evi(0), Ivo(0), Ivi(0)) ∈ ∂X0, n ≥ 0}

D1 ∪ D2 = {(
Λh

µh
, 0, 0, 0, A∗m, S

∗
vo, S

∗
vi, 0, 0, 0, 0) :

Λh

µh
> 0, A∗m > 0, S ∗vo > 0, S ∗vi > 0}

(5.4)

By the definition of ∂X0, {(Λh
µh
, 0, 0, 0, A∗m, S

∗
vo, S

∗
vi, 0, 0, 0, 0) : Λh

µh
> 0, S vs > 0, S vr > 0} ⊂ K∂. Therefore,

D1 ∪ D2 ⊂ K∂.

Let (S h(0), Eh(0), Ih(0),Rh(0), Am(0), S vo(0), S vi(0), Evo(0), Evi(0), Ivo(0), Ivi(0)) ∈ ∂X0\D1 ∪ D2.
If Eh(0) = 0, Ih(0) = 0, Rh(0) = 0, Evo(0) = 0, Evi(0) = 0, Ivo(0) > 0 and Ivi(0) > 0, then S h(0) > 0,
S vo(0) > 0, S vi(0) > 0, Ivo(0) > 0 and Ivi(0) > 0.
It follows from the second equation in (2.1) that

E′h(0) > ρvh(βo(t)Ivo(0) + βi(t, b)Ivi(0))
S h(0)
Nh(0)

> 0, I′h(0) > γhEh(0) > 0,

R′h(0) > τhIh(0) > 0, E′vo(0) > ρhvβo(t)Ih(0)S vo(0) + ρ(t)(1 − ε)Evi(0) > 0,
E′vi(0) > ρhvβi(t, b)Ih(0)S vi(0) + α(t)(1 − ε)Evo > 0,
I′vo(0) > γvoEvo(0) + ρ(t)(1 − ε)Ivi(0) > 0 and I′vi(0) > γviEvi(0) + α(t)(1 − ε)Ivo > 0.

Similarly, the above result holds for other cases such as Eh(0) > 0, Ih(0) = 0, Rh(0) = 0, Evo(0) > 0,
Evi(0) > 0, Ivo(0) = 0 and Ivi(0) = 0, then S h(0) > 0, Am(0), S vo(0) > 0, S vi(0) > 0, Eh(0) > 0,Evo(0) >
0 and Evi(0) > 0.
Therefore, (S h(0), Eh(0), Ih(0),Rh(0), Am(0), S vo(0), S vi(0), Evo(0), Evi(0), Ivo(0), Ivi(0)) < ∂X0 for all 0 <
t � 1.
Hence, K∂ ⊂ D1 ∪ D2. Thus, it then follows that K∂ = D1 ∪ D2. �

From 5.3, it can be verified that Pn(φ), n ≥ 0 contains two disease free states namely T0 and E0N .
The sets T0 and E0N disjoint, compact, and isolated invariant sets for the poincaré map P in K∂ and⋃

φ∈K∂
ω(φ) = {T0,E0N} [16]. No subset of {T0, E0N} forms a cycle of in K∂ and hence in ∂X0 [16]. In

addition, it follows from the proof of Theorem 3.2 in [16] that since N∗v (t) is a positive periodic solution
with respect to X0 then, there exist a δ > 0 and an ε > 0 such that limt→∞ sup |Φ(nτ)φ − T0| ≥ δ and
limt→∞ sup |Φ(nτ)φ − E0N | ≥ ε for all φ ∈ X0.

Define the sets A1 := T0 and A2 := E0N . In view of the claims above, it follows that A1 and A2 are
isolated invariant sets for P in X, and W s(Ai)∩ X0 = ∅, for all i = 1, 2 where W s(Ai) is the stable set of
Ai for P [16]. In the case where 0 is not a solution of the equation (2.10), we can show that K∂ = D2 in
a similar manner. It then follows that A2 is the only compact invariant set for P in K∂ [16].

Hence, every solution in K∂ converges to either A1 or A2 and A1 or A2 are acyclic in K∂ [42]. It
then follows from Theorem 1.3.1 in [42] that P is uniformly persistent with respect to X0. Thus, from
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Theorem 3.1.1 in [42] the periodic semiflow Φ(t) : X → X is also uniformly-persistent to X [16] where
Φ(t)ϕ = u(t, ϕ). It then follows from Theorem 4.5 in [17] that the non-autonomous model (2.1) has a
positive periodic solution denoted by E∗N(t) = Φ(t)φ with φ ∈ X0.

It again follows from Theorem 4.5 in [17] that P : X0 → X0 has a compact global attractor, denoted
by A0. Hence, A0 is invariant for P (that is A0 = P(A0) = Φ(τ)A0). Also, using the notation in
[43], let A∗0 :=

⋃
t∈[0,τ] Φ(t)A0. Then, ψi(0) > 0 for all ψ ∈ A∗0, i ∈ [1, 11] [16]. Since Φ(t)φ ∈ X0,

for all t ≥ 0 and φ ∈ X0 (as X0 is invariant), it follows that Φ(t)X0 ⊂ X0. Thus, A∗0 ⊂ X0 and
lim supt→∞ d(Φ(t)φ,A∗0) = 0 for all φ ∈ X0 [16, 43]. Also, it follows from the continuity of Φ(t)φ for
all (t, φ) ∈ [0,∞)×X0 and the compactness of [0, τ]×A0 [43], thatA∗0 is compact in X0 [16, 43]. Thus,
infφ∈A∗0 d(φ, ∂X0) > 0 [16, 43]. Consequently, there exist q > 0 such that

lim inf
t→∞

min(S h(t, φ), Eh(t, φ), Ih(t, φ),Rh(t, φ), Am(t, φ), S vo(t, φ), S vi(t, φ),

Evo(t, φ), Evi(t, φ), Ivo(t, φ), Ivi(t, φ)) = lim inf
t→∞

d(φ, ∂X0) ≥ q, for all φ ∈ X0

In particular, lim inft→∞min(Φ(t)φ∗) ≥ q, and hence, ui(t, φ) > 0, 1 ≤ i ≤ 11 for all t ≥ 0.
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