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Abstract: Cell polarity refers to spatial differences in the shape and structure of cells, which leads
to the generation of diverse cell types playing different roles in biological processes. Cell polarization
usually involves the localization of some specific signaling molecules to a proper location of the cell
membrane. Recent studies proposed that delayed negative feedback may be important for maintaining
the robustness of cell polarization and the observed oscillating behavior of signaling cluster. However,
the fundamental mechanisms for achieving cell polarization under negative feedback remain controver-
sial. In this paper, we formulate the cell polarization system as a non-local reaction diffusion equation
with positive and delayed negative feedback loops. Through the Turing stability analysis, we identify
the parameter conditions, including the range of the time delay constant, for achieving cell polarization
without any inhomogeneous spatial cues. Also, our numerical results support that by controlling the
length of the time delay in negative feedback and the magnitude of positive feedback, the oscillating
behavior of signaling cluster can be observed in our simulations.
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1. Introduction

Cell polarity refers to the asymmetric organization in the structure of cells and can enable cells
to carry out specialized functions such as differentiation, migration and tissue development [1–3].
Disruption of cell polarity may lead to dysfunctionality of cells, which is usually a hallmark of human
cancers [4, 5]. Cell polarity always involves the localization of some specific signaling molecules to a
proper location of the cell membrane [1, 6], but the mechanism for achieving the localization remains
controversial.

The budding yeast Saccharomyces cerevisiae has been developed as an attractive model system to
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study cell polarization as its generation time is short and useful experimental tools are available in
this system [1]. The axis of polarized growth is regulated by budding location at where a newborn
cell emerges from the original cell. The polarization event of budding yeast involves a key polarity
protein, Cdc42 GTPase, which is highly conserved from yeasts to humans and is critical in polarity
establishment [7,8]. Cdc42 localizes at a site of polarized growth on the plasma membrane and interacts
with several proteins to trigger downstream processes, resulting in the emergence and growth of a
bud [1]. In a wild-type cell, the Cdc42 localization generally occurs in response to spatial cues that
is dependent on cell type. However, yeast cells can still bud in the absence of spatial cues, but the
bud site is selected at a fully random manner, so-called symmetry breaking [9, 10]. A lot of previous
experimental works have studied polarization in the absence of Rsr1, which connects the spatial cue
and the downstream polarization pathway [9, 11–13].

Several mathematical models have been proposed to understand the mechanisms of achieving sym-
metry breaking in cell polarity [9, 14–17]. More recently, in the geometric representation of a cell,
studies [17, 29] present bulk-surface reaction diffusion systems which incorporate cell membrane as
surface and cytoplasm as bulk to investigate cell polarity in high dimensions. With the bulk-surface
reaction diffusion models, classical linear stability analysis has been performed in literatures [17, 30]
and more recent approach, the local perturbation analysis, is also proposed [19,29]. Reaction-diffusion
equation was always applied to model the budding process in yeast systems [14–16]. By the fact that
the ratio of the diffusion rates of the cytoplasmic and membrane-bound Cdc42 is large, the Turing-type
system became a possible mechanism for achieving symmetry breaking [14, 16, 18]. The key compo-
nent of the Turing-type mechanism is the positive feedback loop in the cycle of Cdc42 and this concept
was supported by a number of theoretical studies [14, 16–19].

Some experimental and theoretical studies indicated that negative feedback regulation exists dur-
ing the formation of Cdc42 cluster [20–24]. Recent studies in [22, 23, 25] proposed that a delayed
negative feedback may be important for maintaining the robustness of Cdc42 localization and the os-
cillating behavior of Cdc42 cluster during the process. However, cell polarization system with delayed
negative feedback has not been studied with mathematical analysis in detail. In this paper, we first
formulate a partial differential equation with positive and delayed negative feedback loops for studying
cell polarization system. Then the Turing stability analysis is applied to identify the parameter con-
ditions for achieving symmetry breaking during the process [14, 26]. Our theoretical study provides
us with several conditions for achieving a signaling cluster and simultaneously, these conditions in-
clude the constraint for the time delay in negative feedback loop. Numerical simulations are used to
support our theoretical study and provide a full picture to understand the dynamics of cell polarization
process. Also, our results support that the oscillating behavior of signaling cluster can be achieved by
controlling the length of the time delay in negative feedback and the magnitude of positive feedback.

This paper is organized as follows. In Section 2, we present a reaction-diffusion model of cell
polarization with positive and delayed negative feedbacks. In Section 3, we perform the Turing stability
analysis to the model proposed in Section 2 to derive the conditions for which cell polarity may emerge.
Section 4 contains the studies of our numerical simulations. Finally, the conclusion is presented in
Section 5.
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2. Mathematical model for cell polarization with delayed negative feedback

Here we consider a partial differential equation describing the dynamics of a polarized signaling
molecule on the cell membrane (Figure 1). A recent study [29] of bulk-surface reaction diffusion mod-
els suggested that the geometry of the cell may affect the dynamics of polarized signaling molecules
but here we assume that the cell is a sphere which is consistent with the situation of budding yeast.
Under the assumption applied in [9, 22], we consider that all cytoplasmic signaling molecules are in-
active and all membrane-bound signaling molecules are active. The variable we consider here is the
membrane-bound active form of the signaling molecules and the cytoplasmic inactive form of this
molecule is modeled implicitly through the conservation of total molecules. This type of model was
well applied to study Cdc42-GTPase cycle in budding yeast [9, 22]. Most of the GTPase cycles have
a common feature that enables them to switch between their active and inactive forms. The activation
process is usually initiated by hydrolysis and can be reversed by Guanine nucleotide exchange factors
(GEFs), which cause the GDP to dissociate from the GTP. For the membrane-bound form, GDIs re-
lease the GDP from the cell membrane to the cytoplasm through binding to the GTPase and it can also
be reversed through the action of GDI displacement factors.

Figure 1. The spatial domains and feedback systems in the cell polarization model. A) Two-
dimensional domain, represents the cell membrane, and simplified one-dimensional domain,
represents the cross section of the cell membrane; B) System with a non-local positive feed-
back and delayed negative feedback. (←→): lateral diffusion; (y): positive feedback; (7−→):
negative feedback; (−→): molecule transportation.

The spatial domain in our model is the membrane of a cell of radius R µm denoted by M, which is a
sphere (two-dimensional domain), or, for simplicity, we can only consider the cross section of the cell
membrane, which is a circle (one-dimensional domain) (shown in Figure 1A). We use a variable a to
represent the particle fractions of the membrane-bound active signaling molecules [9]. The dynamic
of a is governed by a reaction-diffusion equation with the feedback functions F(·, ·) and G(·):

∂a(t, x)
∂t

= Dm∇
2a(t, x) + F(a(t, x), â2(t))(1 − â(t))

−G(a(t − τ, x))a(t, x), (2.1)

with â(t) =
∫

M
a(t, x) dS x/|M| and â2(t) =

∫
M

a2(t, x) dS x/|M|, respectively representing the average
values of a and a2 over the cell membrane, and |M| equals to the total area of the domain M. The
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first term of the right-hand side represents the diffusion of signaling molecules with the lateral surface
diffusion rate coefficient Dm and the Laplace operator ∇2 on the cell membrane.

In our model, we assume that the total number of signaling molecules in the whole cell is conserved.
With the fact that â represents the total fractions of the membrane bound species, we obtain

N = (̂a + Fracc)N, (2.2)

where Fracc is the fraction of cytoplasmic inactive signaling molecules and N is the total number of
signaling molecules, including active and inactive forms, in the whole cell. Hence, by (2.2), Fracc = 1−
â. Due to the fast cytoplasmic diffusion, we assume that signaling molecules are uniformly distributed
throughout the cytoplasm. By assuming the activation rate is proportional to the fraction of cytoplasmic
signaling molecules, the term F(a, â2)(1 − â) in (2.1) is applied to model the activation process in the
system.

In budding yeast, there is a positive feedback loop to promote Cdc42 activation [9, 22]. Here we
assume that the activation rate is positively regulated by the active molecules a and thus the function F
is an increasing function of a (Figure 1B). In this paper, we define the feedback function as

F(a, â2) = kon
k1 + k2a2

1 + k1 + k2â2
. (2.3)

This feedback function models multi-step cooperative interactions which has been used in several
biological Turing type systems [26]. The nonlinear cooperativity is modeled by the term a2, the degree
of cooperativity is 2 [22]. The function form in (2.3) depends on a non-local term â2 and the local
density a. The feedback is mediated through a special type of molecules initially uniformly distributed
in the cytoplasm, such as the Bem1 complex in the Cdc42 cycle of budding yeast [18,27]. The detailed
derivation of this feedback function can be found in A.1.

The observed oscillation and fluctuation of Cdc42 cluster support that the delayed negative feedback
is involved in the cell polarization system of budding yeast [22]. We assume that the deactivation
function G depends on the value of a(t−τ, x) with a delay time of τ, as the deactivation rate varies with
the activation level of Rga1, which may be regulated by the level of Cdc42 in budding yeast (Figure
1B). Here we apply a linear function to model the deactivation rate G in (2.1):

G(a(t − τ, x)) = g1 + g2a(t − τ, x). (2.4)

The studies in [11] show that the necessary condition for achieving Cdc42 localization is that the rate
of activation grows faster with the increase in active Cdc42 than the rate of deactivation, so that the
linear function is used here instead of higher order functions.

3. Linear stability analysis

In this section, the Turing stability analysis is applied to figure out the conditions of the parameters
to achieve spontaneous cell polarization [26]. The analysis in this section can be applied for the system
with general feedback functions F(a, â2) and G(a(t − τ, x)).

For studying the stability of a homogeneous steady state solution, we first study a homogeneous
steady state solution a0 of the system (2.1). Since a0 is homogeneous over space, â2

0 = a2
0 and the
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solution a0 satisfies the following equation:

0 = F(a0, a2
0)(1 − a0) −G(a0)a0. (3.1)

Since F and G are positive functions, the right-hand side of (3.1) is negative when a0 = 1; the
right-hand side of (3.1) is positive when a0 = 0. By the intermediate value theorem, at least one
homogeneous positive steady state solution a0 exists between 0 and 1.

Here we define a(t, x) as slightly perturbed functions from the homogeneous steady state a0:

a(t, x) = a0 + εa1(t, x), (3.2)

where the perturbation amplitude ε � 1 is much smaller than the value of a0. After substituting (3.2)
into Eq. (2.1) and applying Taylor expansion around a0, the leading terms satisfy the following system:

∂a1

∂t
= Dm∇

2a1 + (FX1(a0, a2
0)a1 + 2a0â1FX2(a0, a2

0))(1 − a0)

−G(a0)a1 −GX(a0)a0a∗1 − F(a0, a2
0)â1, (3.3)

where a∗1 = a1(t − τ, x); FX1 and FX2 denote the partial derivatives of F with respect to the first and the
second arguments, respectively; GX denotes the first derivative of G. When the feedback functions (2.3)
and (2.4) are considered, we obtain that FX1 is positive, FX2 is negative and GX is positive. A particular
spatially periodic perturbation function, a1(t, x) = αeλtEw(x), is considered here. In the function, α is
a nonzero parameters, w is a non-negative integer and Ew(x) is the w-th non-zero eigenfunction of the
Laplace operator. Eq. (3.3) becomes

λ = −σwDm + (FX1 + 2a0FX2δ(w))(1 − a0) −G −GXa0e−λτ − Fδ(w), (3.4)

where

δ(w) =

1 if w = 0,
0 if w > 0,

and the eigenvalue

σw =

w2/R2 for the one-dimensional domain;
2w2/R2 for the two-dimensional domain,

where R is the radius of the circle; FX1 , FX2 , F,G,GX are evaluated at (a0, a2
0).

The emergence of cell polarity usually depends on the instability of the homogeneous steady state,
which requires two conditions [16, 26]:

(1) If the perturbation is spatially homogeneous (w = 0), the homogeneous steady state a0 is linearly
stable. This condition is equivalent to that the real parts of all eigenvalues λ are negative when
the wave number w is zero. This condition ensures that a homogeneous solution starting from a
constant initial condition close to a0 will finally tend to a0.

(2) The homogeneous steady state a0 is linearly unstable under a perturbation with a positive wave
number w. This condition is equivalent to that there exists a positive integer w such that at least
one λ satisfying (3.4) has a positive real part.
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These two conditions imply that the random perturbed homogeneous steady state are moving toward
another inhomogeneous steady state for and only for positive wave lengths.

Eq. (3.4) has a form
λ = Aw + Be−λτ, (3.5)

where
Aw = −σwDm + (FX1 + 2a0FX2δ(w))(1 − a0) −G − Fδ(w)

and
B = −GXa0.

According to [28], we can determine the signs of all possible λ by the following theorem:

Theorem 1 (Theorem 4.7 from [28]). For Eq. (3.5), we have

(a) If Aw + B > 0, then there exists at least one λ with positive real part;

(b) If Aw + B < 0 and Aw − B ≤ 0, then all λ have negative real parts;

(c) If Aw + B < 0 and Aw − B > 0, then there exists

τ∗ = (B2 − A2
w)−1/2 cos−1(−Aw/B) > 0

such that (1) all λ have negative real parts for 0 < τ < τ∗, and (2) there exists at least one λ with
positive real part for τ > τ∗.

Condition (1)

By Theorem 1, the condition (1) is equivalent to that when w = 0, we have

Theorem 1(b): A0 + B < 0 and A0 − B ≤ 0;

or

Theorem 1(c): A0 + B < 0, A0 − B > 0

and 0 ≤ τ < (B2 − A2
0)−1/2 cos−1(−A0/B),

where A0 = (FX1 + 2a0FX2)(1 − a0) −G − F and B = −GXa0.
Since B is always negative, we have A0 − B > A0 + B and |B| = −B so

A0 − B ≤ 0 implies A0 + B < 0

and
A0 + B < 0 and A0 − B > 0 if and only if |A0| < |B|.

So the two situations for satisfying the condition (1) can be simplified as the following two cases:

Case (1a): A0 − B ≤ 0

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1392–1413
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or

Case (1b): |A0| < |B| and 0 ≤ τ < (B2 − A2
0)−1/2 cos−1(−A0/B).

From Cases (1a) and (1b), we can see that if the time delay τ is large and A0 − B > 0, the homoge-
neous steady state is not stable for a homogeneous perturbation. Under this situation, the steady state
does not satisfy the condition (1) of Turing instability. For studying this situation, we consider the
spatial homogeneous system from the model (2.1):

dā
dt

= kon
k1 + k2ā2

1 + k1 + k2ā2 (1 − ā) − (g1 + g2ā(t − τ))ā.

It is easy to show that the solution ā is bounded between 0 and 1 with ā(0) ∈ (0, 1). If all steady states
of ā are not stable for a large time delay τ, the solution is under oscillation around some homogeneous
steady states. Hence, for the original system (2.1), the instability for some positive wave number
w > 0 may still contribute to achieve inhomogeneous pattern when the condition (2) is satisfied and
the solution is close to the homogeneous steady state. Our simulation results shown in the later section
will demonstrate that, with a large time delay, a cluster of signaling molecules can be formed from
a homogeneous steady state with a small inhomogeneous perturbation even though all homogeneous
steady state is not stable for w = 0.

Condition (2)

By Theorem 1, the condition (2) is equivalent to the situation that for some positive integers w > 0,
we have

Theorem 1(a): Aw + B > 0;

or

Theorem 1(c): Aw + B < 0, Aw − B > 0 and τ > (B2 − A2
w)−1/2 cos−1(−Aw/B),

where Aw = −σwDm + FX1(1 − a0) −G and B is defined above.
Since Aw is decreasing with respect to w for w ≥ 1, the two cases can be simplified to the situation

only for w = 1:

Case (2a): A1 + B > 0

or

Case (2b): |A1| < |B| and τ > (B2 − A2
1)−1/2 cos−1(−A1/B).

where A1 = −σ1Dm + FX1(1 − a0) −G.
To obtain Turing instability, at least one of Cases (2a) and (2b) has to be satisfied. The following

two propositions provide the necessary conditions for obtaining at least one of Cases (2a) and (2b).

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1392–1413
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Proposition 2. For the system (2.1) with the feedback forms (2.3) and (2.4), Case (2a) is satisfied only
if

konk2 > g2. (3.6)

Proof. Case (2a) can be written as

A1 + B = kon
2k2a0

1 + k1 + k2a2
0

(1 − a0) − (g1 + 2g2a0) − σ1Dm > 0. (3.7)

Since
kon

2k2a0

1 + k1 + k2a2
0

(1 − a0) − (g1 + 2g2a0) − σ1Dm < 2(konk2 − g2)a0,

Case (2a) implies konk2 > g2. �

Proposition 3. For the system (2.1) with the feedback forms (2.3) and (2.4), Case (2a) or Case (2b) is
satisfied only if

konk2 >
1
2

(g1 + σ1Dm). (3.8)

Proof. If Case (2a) or Case (2b) is true, we have A1 − B > 0 which can be written as

A1 − B = kon
2k2a0

1 + k1 + k2a2
0

(1 − a0) − g1 − σ1Dm > 0. (3.9)

Since
kon

2k2a0

1 + k1 + k2a2
0

(1 − a0) − g1 − σ1Dm < 2konk2 − g1 − σ1Dm,

the inequality (3.9) implies konk2 >
1
2 (g1 + σ1Dm). �

The two propositions show that konk2 has to be large enough for achieving Turing instability. Other
than the necessary conditions, the following theorem provides a sufficient condition for determining a
range of parameters in which Case (2a) is satisfied:

Theorem 4. Assume that σ1Dm < konk1. For the system (2.1) with the feedback forms (2.3) and (2.4),
Case (2a) is satisfied if

1 −
1

2kon

g2

k2
+

√
g2

2

k2
2

+
(g1 + σ1Dm)2

k1k2

 > 0 (3.10)

and

k1g2
k2

+

√
k2

1g2
2

k2
2

+
(g1+σ1Dm)2k1

k2

< (g1 − σ1Dm)


√

(kon+g1)2

4g2
2

+ kon
g2

(
1 − 1

2kon

(
g2
k2

+

√
g2

2
k2

2
+

(g1+σ1Dm)2

k1k2

))
−

kon+g1
2g2

]
. (3.11)
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The proof of Theorem 4 is based on the method used in [14] and the detailed proof is presented
in A.2. It is worth noting that the necessary and sufficient conditions can be obtained by the formula
for the roots of quadratic equation but the formula is too complicated and not applicable for parameter
estimation.

The conditions obtained in Theorem 4 provide a good insight on the range of parameters for achiev-
ing Case (2a). For example, Theorem 4 implies that there exist a constant k∗ > 0 such that Case (2a)
is satisfied if kon > k∗. Figure 2 displays the numerical results for determining how close between
the conditions in Theorem 4 and the exact range for achieving Case (2a). In the figure, we consider
1000 sets of different (k2, g2) generated uniformly within [1, 100] × [1, 10], and choose the remaining
parameters within the ranges: σ1Dm = [0.025, 0.225]/min, kon ∈ [1, 5]/min, k1 = 1, g1 = 1/min, which
are based on some previous works [22, 27].

Although the conditions in Theorem 4 (the brown regions in Figure 2A) are just sufficient conditions
for Case (2a), they still have a good agreement with the exact range for Case (2a) (the brown regions
in Figure 2B) and the difference appears only in a few sets of parameters (Figure 2C). The numerical
results in Figure 2 show that the difference between the conditions in Theorem 4 and the exact region
for Case (2a) can be minimized by reducing the membrane-bound diffusion coefficient Dm which is
usually small (< 0.5µm2/min) in budding yeast system [22, 27].
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Figure 2. The stability diagrams for the system (2.1) with the feedback forms (2.3) and
(2.4) with different kon and σ1Dm. A) The ranges of the parameters that satisfy the condi-
tions provided in Theorem 4. Brown region represents the ranges that satisfy the conditions;
Green region represents the ranges that do not satisfy the conditions. B) The ranges of the
parameters that satisfy Case (2a). Brown region represents the ranges that satisfy Case (2a);
Green region represents the ranges that do not satisfy Case (2a). C) The difference between
the ranges obtained in (A) and (B). Brown region represents the ranges that the results in (A)
and (B) are not consistent; Green region represents the ranges that the results in (A) and (B)
are consistent.
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4. Numerical simulations

Linear stability analysis only focuses on the local behavior near the homogeneous steady state. Here
we apply numerical simulations to study the long-term behavior of the system under different stability
conditions studied in the previous section.

First, we use a computational simulation for one-dimensional model to study the ranges of the
parameters for satisfying the two stability conditions (1) and (2). 10,000 sets of different (k2, g2) are
uniformly generated within the region [1, 100] × [1, 100]. Other parameters are set as follows: Dm =

0.1µm2/min, kon ∈ [1, 5]/min, k1 = 1, g1 = 1/min, τ ∈ [0.1, 1]min. Here Dm was obtained by
the smallest value of σ1Dm (σ1Dm = 0.025/min and σ1 = 1/R2) in Figure 2 which has given the
conclusion that smaller Dm can reduce the difference between conditions in Theorem 4 and the exact
region for Case (2a). Figure 3 displays the stability diagrams for kon = 1/min, 3/min and 5/min and
τ = 0.1min, 0.5min and 1min. Figure 3A shows the ranges of the parameters that satisfy the condition
(1) (the stability condition for homogeneous perturbation with w = 0); Figure 3B shows the ranges
of the parameters that satisfy the condition (2) (the stability condition for inhomogeneous perturbation
with w = 1).
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Figure 3. The stability diagrams for the system (2.1) with the feedback forms (2.3) and (2.4)
with different kon values and τ values. A) The ranges of parameters that satisfy the condition
(1). B) The ranges of parameters that satisfy the condition (2). Brown region represents the
ranges that satisfy the condition; Green region represents the ranges that do not satisfy the
condition.

According to the results in Figure 3, different combinations of parameters are chosen under different
stability conditions. Here we fix the parameters Dm = 0.1µm2/min, kon = 3/min, k1 = 1 and g1 = 1/min
[22, 27]. For other parameters, we choose within the ranges k2 ∈ [1, 100], g2 ∈ [1, 100]/min and
τ ∈ [0.1, 1]min. Under this parameter setting, the system has a unique homogeneous steady state
solution a0. In all the simulations throughout this paper, the initial conditions are the homogeneous
steady states with spatial perturbation (±10% perturbation):

a(t, x) = a0(1 + 0.1η(x)), for − τ ≤ t ≤ 0,

where η(x) is a function of uniformly distributed random number between -1 and 1. If the perturbation

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1392–1413



1402

is large, the initial condition may be larger than 1. Within the ranges of the parameters we tested,
we have verified that 1.1a0 < 1. In some cases, larger perturbation (±20%) is also considered for
further study and the results are consistent with what we observed here. We apply the second-order
central difference approximation for the diffusion term, periodic boundary conditions for two end sides,
Riemann sum for the definite integrals and the built-in function dde23 in the MATLAB for the temporal
simulation with the constant time delay τ. For the spatial discretization, the number of spatial points is
300 with uniform distribution and the radius of the circle is R = 2µm.
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Figure 4. The simulations for the one-dimensional model with weak negative feedback,
g2 = 5/min. In the simulations, we set Dm = 0.1µm2/min, kon = 3/min, k1 = 1, g1 = 1/min,
k2 ∈ [20, 100], τ = 0.1min (in A), 0.5min (in B). The horizontal axis represents time evolution
and the vertical axis represents membrane position (shown in the left panel).

Figure 4 demonstrates the simulations for g2 = 5/min which represents the cases that the magnitude
of negative feedback is low. When τ = 0.1min (short time delay) and k2 = 20 (weak positive feedback),
the system does not satisfy the condition (2) and the numerical simulation in Figure 4A shows that the
concentration of a rapidly returns back to the homogeneous steady state. When the magnitude of
positive feedback (k2) increases to 50 or higher, the system satisfies the two conditions (1) and (2) and
inhomogeneous patterns can be always observed in the simulation (Figure 4A). Figure 4B shows that
when τ is increased to be 0.5min, a cluster of signaling molecules does not exist if the condition (2) is
not satisfied, such as k2 = 20 (weak positive feedback). When k2 increases to 50 or higher, a cluster of
signaling molecules appears but is not stable at a certain location. In this case, the signaling cluster is
traveling with constant speed and keeps moving until the end.

For stronger negative feedback (g2 = 50/min or 100/min) with large enough time delay and positive
feedback, a cluster of signaling molecules can appear but may not be stable at a certain location.
Figure 5A demonstrates that when τ = 0.1min and the system does not satisfy the condition (2), the
concentration of a rapidly returns back to the homogeneous steady state even under a strong positive
feedback.

Figures 5B-D show that how the dynamics of the signaling clusters change when the magnitude of
the positive feedback increases from 5 to 50. Interestingly, when k2 ≥ 15, Case (2b) is satisfied and an
inhomogeneous pattern is observed: for k2 = 15, the concentration of a signaling cluster is oscillating
during the process; when k2 increases to 50, a traveling signaling cluster appears. In Figure 5D, when
k2 = 50, both Case (1a) and Case (1b) are not satisfied so the homogeneous steady state is unstable
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Figure 5. The simulations for the one-dimensional model with strong negative feedback,
g2 = 50/min (in A-C) and g2 = 100/min (in D). In the simulations, we set Dm = 0.1µm2/min,
kon = 3/min, k1 = 1, g1 = 1/min, k2 ∈ [15, 100], τ = 0.1min (in A), 0.5min (in B), 1min (in C-
D). The horizontal axis represents time evolution and the vertical axis represents membrane
position (as in Figure 4).

for a homogeneous perturbation w = 0. The simulation shows that a signaling cluster can be obtained
in this case even though the homogeneous steady state is not stable when w = 0. But this situation is
usually with larger time delay constant so the signaling cluster may not be stable at a certain location.

Figure 6 summarizes the simulation results for studying how the long-term behavior of the system
depends on the values of k2 and τ with two different levels of negative feedback, g2 = 5/min, 50/min.
The results are consistent with our previous stability analysis. From this result, we observe that suitable
ranges of the magnitude of positive feedback and time delay are important for achieving an oscillation
of signaling cluster, observed in experiments [22]. It is worth noting that although the numerical
results obtained here only focused on a simplified domain (the one-dimensional domain for the cross
section of the cell), we can apply the results onto the the two-dimensional spherical surface. Figure 7
displays three examples of the simulations on the two-dimensional spherical surface. For the spatial
discretization, the number of spatial points is 4098 with uniform distribution and the radius of the circle
is R = 2µm. These three simulations are corresponding to the one-dimensional simulations shown in
Fig 4A and Figures 5B and C. In Figure 7A, a stable cluster is formed until the end; in Figures 7B, C,
the concentration of the signaling cluster is oscillating during the process. The results in these three
cases are consistent with what observed in the one-dimensional simulations.
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Figure 6. The long-term behavior of the system with different values of k2, τ and g2. A)
Weak negative feedback, g2 = 5/min. Blue region: no cluster is formed; green region: a
traveling signaling cluster is observed; yellow region: a stable signaling cluster is formed. B)
Strong negative feedback, g2 = 50/min. For the simulations, 100 sets of different (k2, τ) are
uniformly generated within the region [1, 50] × [0.1, 0.5]. Blue region: no cluster is formed;
green region: a traveling signaling cluster is observed; yellow region: an oscillating cluster
is observed.

5. Conclusion

Recent experimental studies demonstrated that delayed negative feedback regulation may play an
important role in robustness of Cdc42 localization and the oscillating behavior of Cdc42 cluster during
cell polarization [22]. However, detailed mathematical analysis is not well studied for this system.

In this paper, we have built a simple model of reaction-diffusion equation for cell polarization
system which is regulated by positive and delayed negative feedback together. Our model involves
general forms of positive and negative feedbacks. We have applied Turing stability analysis to analyze
the conditions that can give rise to spontaneous cell polarization. Moreover, our numerical studies
reveal that Cdc42 cluster can form but may not be spatially stable when the time delay τ is large.
Also, our numerical results support that the oscillating behavior of Cdc42 cluster can be achieved by
controlling the length of time delay and the magnitude of positive feedback.

The results in this paper provide parameter conditions for the existence of polarized solutions in
the cell polarization system with delayed negative feedback. Furthermore, the analysis of the feedback
can be easily extended to higher dimensional domain and provides insights to understand other similar
biological systems in which cell polarity is established. Also, like the study in [22], our results can be
used to study how the spatial cue level and the time delay affect the oscillating behavior by involving a
spatial cue function kcue in the positive feedback term:

F(x, a, â2) = kcue(x) + kon
k1 + k2a2

1 + k1 + k2â2
, (5.1)

where

kcue(x) =

C0 if x ∈ [π − 0.25, π + 0.25],
0 otherwise.
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Figure 7. Time-dependent solutions of a for the two-dimensional model. In the simulations,
Dm = 0.1µm2/min; kon = 3/min; k1 = 1; k2 = 50 (in A), 15 (in B, C); g1 = 1/min; g2 = 5/min
(in A), 50/min (in B, C); τ = 0.1min (in A), 0.5min (in B), 1min (in C).

In the future work, our model can be combined with a moving boundary system for cell shape change
during budding, then we can extend our study of Cdc42 localization to cell morphogenesis.
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Supplementary

A. Derivation of the positive feedback function and the proof of the theorem

A.1. Derivation of the positive feedback function

We assume that the feedback molecules, as shown in Figure 1B, are initially uniformly distributed
in the cytoplasm and then the active signaling molecules will recruit them to the cell membrane. On
the other hand, the activation rate of the signaling molecules is proportional to the density of the
membrane-bound feedback molecules. Therefore, we obtain the following equation for c:

∂c
∂t

= (h1 + h2a2)(1 − ĉ) − ho f f c, (A.1)

where (h1 + h2a2) and ho f f are the recruitment rate and the dissociation rate of the feedback molecules,
respectively; (1 − ĉ) is the fraction of the cytoplasmic feedback molecules ( ĉ is the average value of c
over the membrane).

We know that the dynamics of the feedback molecules is much faster than that of the signaling
molecules [18,27], the variable c can be approximated by the solution of the quasi steady state equation

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1392–1413



1408

of Eq. (A.1):
(h1 + h2an)(1 − ĉ) − ho f f c = 0.

By integrating the above equation over the membrane, we can obtain the value of ĉ. After substituting
ĉ back into the equation, we have

c =
k1 + k2an

1 + k1 + k2ân
,

where k1 and k2 equal to h1/ho f f and h2/ho f f , respectively. We assume that the feedback strength is
linearly proportional to the value of c, then we obtain the feedback function (2.3).

A.2. Proof of the theorem

A.2.1. Proofs of lemmas

Here we will state two lemmas, which will be used in Section A.2.2 for the proofs of Theorems 4.
First, we define a function fy(a) used in the lemmas:

fy(a) = (γ1 + γ2a2)(1 − γ3y − γ4y2) − γ5a − γ6a2 − D(a − y). (A.2)

where γ1, γ2, γ4, γ5, γ6 > 0, γ3 ≥ 1 and 0 ≤ D < γ1γ3.

Lemma 5. Assume that γ2 > γ6 and y ∈ [0, y∗] where γ2(1 − γ3y∗ − γ4y2
∗) − γ6 = 0. The function fy in

(A.2) has the following properties:

1. min
a≥0

fy(a) equals to

γ1 − (γ1γ3 − D)y − γ1γ4y2 −
(γ5 + D)2

4(γ2(1 − γ3y − γ4y2) − γ6)
,

which is strictly decreasing with respect to y for y ∈ (0, y∗).
2. For each y, there exist at most two solutions in {a|a ≥ 0} satisfying fy(a) = 0.
3. There exists a number ym in [0, y∗) such that two smooth functions a1(y), a2(y) can be well defined

in the domain [ym, y∗) and the following properties hold:

(a) min
a≥0

fy(a) ≤ 0 for any y ∈ [ym, y∗);

(b) fy(a1(y)) = fy(a2(y)) = 0 for any y ∈ [ym, y∗);
(c) a1(y) > a2(y) ≥ 0 for any y ∈ (ym, y∗);
(d) a′1(y) > 0 and a′2(y) < 0 for any y ∈ (ym, y∗);
(e) lim

y→y∗
a1(y) = ∞ and lim

y→y∗
a2(y) = 0;

(f) d fy
da

∣∣∣a=a1(y) > 0 and d fy
da

∣∣∣a=a2(y) < 0 for any y ∈ (ym, y∗);
(g) if there is at least one solution in a ≥ 0 for f0(a) = 0, then ym = 0;
(h) if there is no solution in a ≥ 0 for f0(a) = 0, then a1(ym) = a2(ym), d fym

da

∣∣∣a=a1(ym) =
d fym
da

∣∣∣a=a2(ym) = 0 and min
a≥0

fym(a) = 0.

Proof. 1. First we consider the first and second derivatives of fy,

d fy(a)
da

= 2γ2a(1 − γ3y − γ4y2) − γ5 − 2γ6a − D, (A.3)
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d2 fy(a)
da2 = 2γ2(1 − γ3y − γ4y2) − 2γ6. (A.4)

By Eq. (A.4), we show that d2 fy(a)
da2 > 0 for y ∈ [0, y∗) and the minimum point in {a|a ≥ 0} is at

a =
γ5 + D

2γ2(1 − γ3y − γ4y2) − 2γ6

with

min
a≥0

fy(a) = γ1 − (γ1γ3 − D)y − γ1γ4y2 −
(γ5 + D)2

4(γ2(1 − γ3y − γ4y2) − γ6)
.

By the given condition D < γ1γ3, we can show that min
a≥0

fy(a) is strictly decreasing with respect to y.

2. Suppose that y is a fixed number. If min
a≥0

fy(a) > 0, there is no solution a ≥ 0 satisfying fy(a) = 0.

If min
a≥0

fy(a) = 0, the minimum point

ā =
γ5 + D

2γ2(1 − γ3y − γ4y2) − 2γ6

is one of the roots for fy(a). As d fy(a)
da > 0 for a > ā and d fy(a)

da < 0 for 0 ≤ a < ā, fy(a) > fy(ā) for any
a , ā, and therefore ā is the only solution of fy(a) = 0.

If min
a≥0

fy(a) < 0, by the fact that fy(0) > 0, lim
a→∞

fy(a) > 0 and the intermediate value theorem, we

can show that there are at least two solutions satisfying fy(a) = 0. As d fy(a)
da > 0 for a > ā and d fy(a)

da < 0
for 0 ≤ a < ā, fy(a) > fy(ā) for any a , ā. So there are only two roots of fy(a): one is in [0, ā), and the
other is in (ā,∞).

3. By the result of part 1, min
a≥0

fy(a) tends to −∞ as y is close to y∗. If min
a≥0

fy(a) > 0 for y =

0, according to the intermediate value theorem, we can find ym such that min
a≥0

fym(a) equals zero; if

min
a≥0

fy(a) ≤ 0 for y = 0, we define ym = 0.

Since min
a≥0

fy(a) is strictly decreasing with respect to y, and according to the results of part 2, fy(a) =

0 has two solutions a for any y ∈ (ym, y∗), so we can define two functions a1(y) and a2(y) that satisfy
fy(a1(y)) = fy(a2(y)) = 0 and a1(y) > a2(y) for any y ∈ (ym, y∗), that is,

a1(y) = max{a ≥ 0| fy(a) = 0}, a2(y) = min{a ≥ 0| fy(a) = 0}.

The derivative of fy(a) with respect to y is −(γ1 + γ2a2)(γ3 + 2γ4y) + D, which is always negative due
to γ1γ3 > D, and fy(a) is a smooth function with respect to y and a, and therefore we can apply the
inverse function theorem to show that a1(y) and a2(y) are smooth functions. By the definitions and the
proof of part 2, it is easy to verify the properties (a,b,c,f,g,h).

By property (b), we have fy(a1(y)) = 0 and fy(a2(y)) = 0. By differentiating these two equations
with respect to y on both sides, we have −(γ1 + γ2a1(y)2)(γ3 + 2γ4y) + D +

d fy
da (a1(y))a′1(y) = 0 and

−(γ1 + γ2a2(y)2)(γ3 + 2γ4y) + D +
d fy
da (a2(y))a′2(y) = 0. Hence we obtain

a′1(y) = −
−(γ1 + γ2a1(y)2)(γ3 + 2γ4y) + D

d fy
da (a1(y))

,
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a′2(y) = −
−(γ1 + γ2a2(y)2)(γ3 + 2γ4y) + D

d fy
da (a2(y))

.

By property (f) and γ1γ3 > D, we proved that a′1(y) > 0 and a′2(y) < 0, which completes the proof of
property (d).

From the proof of part 2, we have a2 ∈ [0, ā) and a1 ∈ (ā,∞). So we know that a1(y) tends to infinity
as y goes to y∗. Since a = 0 is the solution for fy∗(a) = 0, we have lim

y→y∗
a2(y) = 0, which completes the

proof of property (e). �

Lemma 6. Let Ω be a solution of

−
(γ5 + D)2

4(γ2(1 − γ3Ω − γ4Ω2) − γ6)
+ γ1(1 − γ3Ω − γ4Ω

2) = 0, (A.5)

and assume that Ω > 0 and γ2 > γ6. If

2γ1(1 − γ3Ω − γ4Ω
2) + (D − γ5)Ω < 0 (A.6)

is satisfied, then
d fa0
da

∣∣∣a=a0 > 0 holds for any solution a0 satisfying fa0(a0) = 0.

For the proofs of Lemmas 6, we define two functions S 1, S 2 in the domain [ym, 1/γ3):

S 1(y) = a1(y) − y,

S 2(y) = a2(y) − y,

where a1, a2 and ym are defined in Lemma 5.

Proof. There are two parts in the proof:

1. Prove that if S 1(ym) < 0,
d fa0
da

∣∣∣a=a0 > 0 holds for any solution a0 ≥ 0 satisfying fa0(a0) = 0.
2. Prove that condition (A.6) implies S 1(ym) < 0.

By combining these two results, we can prove that if the condition (A.6) is satisfied, then
d fa0
da

∣∣∣a=a0 > 0
holds for any solution a0 ≥ 0 satisfying fa0(a0) = 0.
Proof of part 1: Suppose that S 1(ym) < 0. Since a1(y) ≥ a2(y), we get S 2(ym) ≤ S 1(ym) < 0. By
a′2(y) < 0 (Lemma 5(3c)), we have S ′2 < 0, which means that S 2 is a decreasing function. Since
S 2(ym) < 0 and S 2 is a decreasing function, S 2(y) < 0 for all y ∈ [ym, y∗), and there is no solution to
S 2(y) = 0.

According to Lemma 5 and the definitions of S 1 and S 2, all solutions a0 ≥ 0 for fa0(a0) = 0 have
to satisfy S 1(a0) = 0 or S 2(a0) = 0. Since S 1(ym) < 0 implies that there is no solution satisfying
S 2(y) = 0, all solutions a0 ≥ 0 for fa0(a0) have to satisfy S 1(a0) = 0 and therefore

d fa0
da

∣∣∣a=a0 > 0
according to Lemma 5(3f).
Proof of part 2: Suppose that condition (A.6) is satisfied, by Lemma 5(1), we have

min
a≥0

fy(a) = γ1 − (γ1γ3 − D)y − γ1γ4y2 −
(γ5 + D)2

4(γ2(1 − γ3y − γ4y2) − γ6)
.
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If 0 < y < Ω, we have

−
(γ5 + D)2

4(γ2(1 − γ3y − γ4y2) − γ6)
+ γ1(1 − γ3y − γ4y2) > 0

−
(γ5 + D)2

4(γ2(1 − γ3y − γ4y2) − γ6)
+ γ1(1 − γ3y − γ4y2) + Dy > 0 (A.7)

min
a≥0

fy(a) > 0.

Lemma 5(3a) implies that min
a≥0

fym(a) > 0 so ym is larger than Ω > 0. Then we apply Lemma 5(3h)

to show that there is no solution with a ≥ 0 such that f0(a) = 0.
By Lemma 5(3b, h), we know that (ym, a1(ym)) satisfies the following two equations:

fym(am) = (γ1 + γ2a2
m)(1 − γ3ym − γ4y2

m) − γ5am

−γ6a2
m − D(am − ym) = 0, (A.8)

d fym

da

∣∣∣a=am = 2γ2am(1 − γ3ym − γ4y2
m) − γ5 − 2γ6am − D = 0, (A.9)

where am = a1(ym).
After multiplying (A.8) and (A.9) by n and am, respectively, we have

2(γ1 + γ2a2
m)(1 − γ3ym − y4y2

m)
−2γ5am − 2γ6a2

m − 2D(am − ym) = 0, (A.10)
2γ2a2

m(1 − γ3ym − γ4y2
m)

−γ5am − 2γ6a2
m − Dam = 0. (A.11)

Subtracting (A.10) by (A.11), we obtain

2γ1(1 − γ3ym − γ4y2
m) − γ5am + 2Dym − Dam = 0,

which leads to

am =
2

γ5 + D
(γ1(1 − γ3ym − γ4y2

m) + Dym). (A.12)

By substituting (A.12) into S 1(ym), we obtain

S 1(ym) = am − ym =
1

γ5 + D
(2γ1(1 − γ3ym − γ4y2

m) + (D − γ5)ym). (A.13)

By applying ym > Ω > 0, D < γ1γ3 and condition (A.6),

2γ1(1 − γ3ym − γ4y2
m) + (D − γ5)ym < 0

which, coupled with (A.13), implies that S 1(ym) < 0. �

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1392–1413



1412

A.2.2. Proof of Theorem 4

Proof. First, we set γ1 = konk1, γ2 = konk2, γ3 =
kon+g1

kon
> 1, γ4 =

g2
kon

, γ5 = g1, γ6 = g2 and D = σ1Dm

used in the lemmas.
Solving (A.5) in Lemma 6, we obtain

Ω =


√√√√

(kon + g1)2

4g2
2

+
kon

g2

1 − 1
2kon

g2

k2
+

√
g2

2

k2
2

+
(g1 + σ1Dm)2

k1k2


 − kon + g1

2g2


By the condition (3.10) of Theorem 4

1 −
1

2kon

g2

k2
+

√
g2

2

k2
2

+
(g1 + σ1Dm)2

k1k2

 > 0

we have Ω > 0 and γ2 = konk2 > γ6 = g2. Also the other condition (3.11) of Theorem 4

k1g2
k2

+

√
k2

1g2
2

k2
2

+
(g1+σ1Dm)2k1

k2

< (g1 − σ1Dm)


√

(kon+g1)2

4g2
2

+ kon
g2

(
1 − 1

2kon

(
g2
k2

+

√
g2

2
k2

2
+

(g1+σ1Dm)2

k1k2

))
−

kon+g1
2g2


implies the condition (A.6). By Lemma 6, we have

2konk2a0

(
1 −

kon + g1

kon
a0 −

g2

kon
a2

0

)
− (g1 + 2g2a0) − σ1Dm > 0 (A.14)

holds for any a0 satisfying

kon(k1 + k2a2
0)

(
1 −

kon + g1

kon
a0 −

g2

kon
a2

0

)
− (g1 + g2a0)a0 = 0. (A.15)

Eq. (A.15) implies that

kon(k1 + k2a2
0) (1 − a0) − (1 + k1 + k2a2

0)(g1 + g2a0)a0 = 0

kon
k1 + k2a2

0

1 + k1 + k2a2
0

(1 − a0) − (g1 + g2a0)a0 = 0 (A.16)

Now we get that a0 is a homogeneous steady state solution for a in system (2.1) with the feedback
forms (2.3) and (2.4) if and only if a0 satisfies (A.15).

Also, (A.16) and (A.15) imply that

1
1 + k1 + k2a2

0

(1 − a0) = 1 −
kon + g1

kon
a0 −

g2

kon
a2

0

and then combining (A.14), we have

kon
2k2a0

1 + k1 + k2a2
0

(1 − a0) − (g1 + 2g2a0) − σ1Dm > 0

which is equivalent to Case (2a). �
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