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1. Introduction

Ever since the studies of epidemiology conducted by Kermack et al. [1] mathematical models have
become important tools for studying the spread and control of infectious diseases. For some
deterministic epidemic models, many researchers have studied the dynamical behaviors [1–6].
Moreover, Chen et al. [9] proposed that the coefficient of deterministic epidemic system may be
influenced by stochastic perturbation. Therefore, stochastic models have been studied to find out
impacts of stochastic fluctuation upon the infectious diseases [10, 11, 24, 29, 30]. For example, the
studies conducted by Zhao et al. [10] on the asymptotic behavior of a stochastic SIS epidemic model
with vaccination. Cai et al. [11] proves the existence of stationary distribution of a stochastic SIRS
epidemic model.

In fact, some parameters of the epidemic models may be influenced by the sudden changes such as
color noise which deems to be a random switching from one environment regime to another under the
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influence of such factors as temperature or rainfall [15, 17]. For the first equation of the SIV epidemic
model, the parameters are determined as follows:

dS (t) =

(
(1 − p)µ + αI(t) − (µ + u1)S (t) − βS (t)I(t)

)
dt − σS (t)I(t)dB(t), (1.1)

we assume that there are n regimes and the system obeys

dS (t) =

(
(1 − p(1))µ(1) + α(1)I(t) − (µ(1) + u1(1))S (t) − β(1)S (t)I(t)

)
dt

− σ(1)S (t)I(t)dB(t),
(1.2)

when it is in regime 1, while it obeys another stochastic model

dS (t) =

(
(1 − p(2))µ(2) + α(2)I(t) − (µ(2) + u1(2))S (t) − β(2)S (t)I(t)

)
dt

− σ(2)S (t)I(t)dB(t),
(1.3)

in regime 2 and so on. Therefore, the system obeys

dS (t) =

(
(1 − p(i))µ(i) + α(i)I(t) − (µ(i) + u1(i))S (t) − β(i)S (t)I(t)

)
dt

− σ(i)S (t)I(t)dB(t)
(1.4)

in regime i(1 ≤ i ≤ n). To best reveal the way the environment noise affects the epidemic systems,
we propose the application of continuous-time Markov chain to define this phenomenon [18–20]. It is
significant to study the effect of random switching of environmental regimes on the spread dynamic of
diseases.

As it is known that SIV epidemic model has drawn much attention. For instance, Liu et al. [26]
discussed the existence and uniqueness of the global positive solution of the system, and Lin et al.
[23] considered the asymptotic stability of the stochastic SIV epidemic model and the existence of a
stationary distribution. The above work done just focused on the studies of dynamic behaviors of SIV
system with quite few studies focusing on the optimal control for stochastic SIV models with Markov
chains. The study of optimal control of stochastic SIV epidemic model, therefore, becomes significant.

In addition, vaccination and treatment have become the most effective strategies in the control of the
epidemic transmission. We give priority to vaccinations to susceptible people. Vaccination duration
and effective treatment make it possible to curb the spread of diseases and cut the cost of vaccines.
For instance, Measles is a highly contagious disease that may result in serious illness in the early
childhood stage, and therefore the advance immunization is necessary [25]. The global Measles and
Rubella Strategic Plan 2012–2020, aims to reduce global measles mortality and to achieve measles
elimination by the end of the 2020 (http://www.measlesinitiative.org/). The most effective approach to
achieve this plan is vaccination. In view of this above, it is meaningful to carry out the research of a
stochastic SIV epidemic model with vaccination and saturated treatment to analyze the near-optimal
control with Markov chains.

According to the paper, the objective function is determined and constructed on the basis of an
optimal control problem with two control variables of vaccination and treatment. And the optimal
solution of the model is provided according to the objective function through analysis in the relevant
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optimal theories. Aiming at the stochastic SIV model with Markov chain, we carried out thorough
studies on the minimization of the number of infected individuals through the application of
prophylactic vaccination and saturated treatment. We also define the sufficient and necessary
conditions for the near-optimal control problems. The innovative ideas of the study are as follows:

• Provision of an innovative stochastic SIV epidemic model with vaccination, treatment and
Markov chains;
• Discussion of sufficient and necessary conditions of the near-optimal control for a stochastic SIV

model.

The remaining part of of the paper is so organized as: Section 2 preliminaries and introduction of
stochastic SIV model; Section 3 proof of the necessary condition for near-optimal control; Section 4,
institution of sufficient conditions for near-optimal control; Section 5 numerical simulations display to
confirm the results; and, Section 6, conclusions.

2. Preliminaries

In this section, we first introduce the following notations and definitions before we formulate the
model.

We define (Ω,F ,F0≤t≤T ,P) be a complete filtered probability space on a finite time horizon [0,T ].
We assume (Ft)0≤t≤T is the natural filtration and F = FT , Uad is the set of all admissible controls, fx

denotes the partial derivative of f with respect to x, | · | denotes the norm of an Euclidean space, XS

denotes the indicator function of a set S , X + Y is the set {x + y : x ∈ X, y ∈ Y} for any sets X and Y ,
C is the different parameters in the paper.

We establish the optimal problems on the basis of a stochastic SIV model was put forward by Safan
and Rihan et al. [14] as follows:


dS (t) = [(1 − p)µ + αI(t) − (µ + u1)S (t) − βS (t)I(t)]dt,

dI(t) = [βS (t)I(t) + (1 − e)βV(t)I(t) − (µ + α)I(t)]dt,

dV(t) = [pµ + u1S (t) − µV(t) − (1 − e)βV(t)I(t)]dt.

(2.1)

with initial conditions S (0) ≥ 0, I(0) ≥ 0, and V(0) ≥ 0. The population size is denoted by N(t)
with N(t) = S (t) + I(t) + V(t). The SIV model assume that recovered individuals may lose immunity
and move into the susceptible class again. Note that 0 ≤ p ≤ 1 and βS (t)I(t) is the incidence rate.
Vaccinated individuals can either die with rate µ or obtain infected with force of infection (1 − e)βI
where e measures the efficacy of the vaccine induced protection against infection. If e = 1, then
the vaccine is perfectly effective in preventing infection, while e = 0 means that the vaccine has no
effect. The following flux diagram (Figure 1) illustrating the transmission of susceptible, infected and
vaccinated. S, I and V represent susceptible, infected and vaccinated respectively. The continuous line
represents nonlinear transmission rate between different compartments.
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Figure 1. The flux diagram illustrating the SIV epidemic model of Equation 2.1.

We assume that stochastic perturbations in the environment will mainly affect the parameter β, as
in Tornatore et al. [27], so that β → β + σḂ(t), where B(t) is a standard Brownian motion with the
intensity σ2 > 0. All parameters in model (2.1) are assumed to be positive due to the physical meaning
and more precisely are listed in Table.1. By this way, the stochastic version corresponding to system
(2.1) be expressed by Liu et al. [26] as follows:

dS (t) = [(1 − p)µ + αI(t) − (µ + u1)S (t) − βS (t)I(t)]dt − σS (t)I(t)dB(t),
dI(t) = [βS (t)I(t) + (1 − e)βV(t)I(t) − (µ + α)I(t)]dt + σS (t)I(t)dB(t)

+ (1 − e)σV(t)I(t)dB(t),
dV(t) = [pµ + u1S (t) − µV(t) − (1 − e)βV(t)I(t)]dt − (1 − e)σV(t)I(t)dB(t).

(2.2)

Table 1. List of parameters, variables, and their meanings in model (2.2).

Parameters Biological meanings

p The proportion of population that get vaccinated immediately after birth
u1 Vaccinated rate
β Per capita transmission coefficient
µ Per capita natural death rate / birth rate
α Per capita recovery rate
σ The intensities of the white noise

S (t) Susceptible proportion in the total population
I(t) Infected proportion in the total population
V(t) Vaccinated proportion in the total population

According to [28], we know that the switching of the Markov chain is memoryless and the waiting
time for the next switch is subjected to an exponential distribution. In addition, we assume that there
are N regimes and the switching between them is governed by a Markov chain on the state space
S = {1, 2, ...,N}. Then as the sample path of Markov chain ξ(t) is right continuous step function almost
surely, its jump points have no accumulation point. Thus, there exists a stopping sequence {τk}k≥0 for
every w ∈ Ω, and a finite random constant k̄ = k̄(w) such that 0 = τ0 < τ1... < τk̄ = τ. Then when
k > k̄, we get that τk > τ and ξ(t) is a random constant in every intervals. That is to say, ξ(t) = ξ(τk)
for τk ≤ t ≤ τk+1.
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Let Rn
+ = {x ∈ Rn : xi > 0, i = 1, 2, ..., n}, and |x| =

√∑n
i=1 x2

i . Then Markov process (x(t), ξ(t)) ∈
Rn

+ ×S, making up a diffusion component x(t) and a jump component ξ(t), can be described as follows:dx(t) = f (x(t), ξ(t))dt + g(x(t), ξ(t))dB(t),
x(0) = x0 ∈ R

n
+, ξ(0) = w̄ ∈ S,

(2.3)

where B(t) is a d-dimensional Brownian motion, and f (·, ·) : Rn × S −→ Rn, g(·, ·) : Rn × S −→ Rn×d.
If for any twice continuously differentiable function V(x, k) ∈ C2(Rn × S), define linear operator L

by

LV(x, k) =

n∑
j=1

f j(x, i)
∂V(x, i)
∂x j

+
1
2

n∑
j,k=1

a jk(x, i)
∂2V(x, i)
∂xix j

+
∑
j,k∈S

qk j(x)(V(x, j) − V(x, k)),

where a(x, i) = g(x, i)g>(x, i) with the superscript T stands for the transpose of a matrix or vector.
Hypothesis. The following basic hypothesis need to be satisfied
(H1) For all 0 ≤ t ≤ T , the partial derivatives Lx1(t)(t, x(t); u(t)), Lx2(t)(t, x(t); u(t)), and

Lx3(t)(t, x(t); u(t)) are continuous, and there is a constant C such that

|A1 + A2| ≤ C (1 + |x1(t) + x2(t) + x3(t)|) .

(H2) Let x(t), x′(t) ∈ R3
+ and ui(t), u′i(t) ∈ Uad, i = 1, 2, then for any 0 ≤ t ≤ T , the function

L(t, x(t); u(t)) is differentiable in u(t), and there exists a constant C such that

|hx2(t)(x(t)) − hx′2(t)(x′(t))| ≤ C|x2(t) − x′2(t)|.

(H3) The control setUad is convex.
(H4) Assume that

Π =
∑
l∈M

πk

(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)
> 0, (2.4)

holds.
(H5) Assume that

K =
(1 − p(k))b(k)

x1(t)
−
β(k)x2(t)
1 + x2

2(t)
+
α(k)x3(t)

x1(t)
− u1(t) −

1
2
σ2

4(k)
x2

2(t)
(1 + x2

2(t))2

+
β(k)x1(t)
1 + x2

2(t)
−

1
2
σ2

4(k)
x2

1(t)
(1 + x2

2(t))2
+

p(k)b(k)
x3(t)

−
m(k)u2(t)

1 + η(k)x2(t)
+

u1(t)x1(t)
x3(t)

+
m(k)u2(t)x2(t)

(1 + η(k)x2(t))x3(t)
+
α(k)x2(t)

x3(t)
< 0,

(2.5)

holds. We introduce the treatment control u2(t) into the above model (2.2). With the help of
vaccination or treatment, the number of susceptible individuals increased, using S u represent it. In
fact, every community should have proper treatment ability. If investment in treatment is too large, the
community will pay unnecessary expenses. If it is too small, the community will have the risk of
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disease outbreaks. Therefore, it is very important to determine the right treatment ability. Following
Wang’s argument in [22], the advantage of using a saturated type treatment function is that it
generates near-linear treatment results. We assume that the treatment function is a function of u2(t)
and I(t). It is defined as T (u2(t), I(t)) =

mu2(t)I(t)
1+ηI(t) , where m > 0, η ≥ 0. Our new model is as follows:



dS (t) = ((1 − p)µ + αI(t) − (µ + u1(t))S (t) − βS (t)I(t)) dt − σS (t)I(t)dB1(t)

dI(t) =

(
βS (t)I(t) + (1 − e)βV(t)I(t) − (µ + α)I(t) −

mu2(t)I(t)
1 + ηI(t)

)
dt

− σS (t)I(t)dB2(t) + (1 − e)σV(t)I(t)dB4(t),

dV(t) =

(
pµ − µV(t) − (1 − e)βV(t)I(t) + u1(t)S (t) +

mu2(t)I(t)
1 + ηI(t)

)
dt

− (1 − e)σV(t)I(t)dB3(t).

(2.6)

where m is the cure rate, η in the treatment function measures the extent of delayed treatment given
to infected people. Let U ⊆ R be a bounded nonempty closed set. The control u(t) ∈ U is called
admissible, if it is an Ft-adapted process with values in U. The set of all admissible controls is denoted
byUad. In this optimal problem, we assume a restriction on the control variable such that 0 ≤ u1(t) ≤
0.9 [12], because it is impossible for all susceptible individuals to be vaccinated at one time. u2(t) = 0
represents no treatment, and u2(t) = 1 represents totally effective treatment.

For the sake of showing such sudden environmental abrupt shift in different regimes, we will
introduce the colored noise (i.e. the Markov chain) into the SIV epidemic model (2.6). Let ξ(t) be a
right-continuous Markov chain in a finite state space S = {1, 2, ...,N} with generator α = (qi j)N×N

given by

P{ξ(t + ∆t) = j|ξ(t) = i} =

qi j∆t + o(∆), i f j , i,

1 + qii∆t + o(∆), i f j = i,
(2.7)

where ∆t > 0 and qi j is the transition rate from state i to state j and qi j ≥ 0 if j , i while qii = −
∑

j,i qi j.
Then we can obtain the novel SIV epidemic model as follows:

dS (t) =

(
(1 − p(ξ(t)))µ(ξ(t)) + α(ξ(t))I(t) − (µ(ξ(t)) + u1(t))S (t) − β(ξ(t))S (t)I(t)

)
dt

− σ(ξ(t))S (t)I(t)dB1(t),

dI(t) =

(
β(ξ(t))S (t)I(t) + (1 − e)β(ξ(t))V(t)I(t) − (µ(ξ(t)) + α(ξ(t)))I(t)

−
m(ξ(t))u2(t)I(t)
1 + η(ξ(t))I(t)

)
dt − σ(ξ(t))S (t)I(t)dB2(t)

+ (1 − e)σ(ξ(t))V(t)I(t)dB4(t),

dV(t) =

(
p(ξ(t))µ(ξ(t)) + u1(t)S (t) − µ(ξ(t))V(t) − (1 − e)β(ξ(t))V(t)I(t)

+
m(ξ(t))u2(t)I(t)
1 + η(ξ(t))I(t)

)
dt − (1 − e)σ(ξ(t))V(t)I(t)dB3(t).

(2.8)

To simplify equations, we represent xi(t) = (x1(t), x2(t), x3(t))> = (S (t), I(t),V(t))>,
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u(t) = (u1(t), u2(t))> and the model (2.8) can be rewritten as

dx1(t) =

(
(1 − p(ξ(t)))µ(ξ(t)) + α(ξ(t))x2(t) − µ(ξ(t))x1(t) − β(ξ(t))x1(t)x2(t)

− u1(t)x1(t)
)
dt − σ(ξ(t))x1(t)x2(t)dB1(t)

≡ f1(x(t), u(t))dt − σ14(x(t))dB(t),

dx2(t) =

(
β(ξ(t))x1(t)x2(t) + (1 − e)β(ξ(t))x2(t)x3(t) − (µ(ξ(t)) + α(ξ(t)))x2(t)

−
m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
dt − σ(ξ(t))x1(t)x2(t)dB2(t)

+ (1 − e)σ(ξ(t))x2(t)x3(t)dB4(t)
≡ f2(x(t), u(t))dt − σ24(x(t))dB(t),

dx3(t) =

(
p(ξ(t))µ(ξ(t)) + u1(t)x1(t) − µ(ξ(t))x3(t) − (1 − e)β(ξ(t))x2(t)x3(t)

+
m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
dt − (1 − e)σ(ξ(t))x2(t)x3(t)dB3(t)

≡ f3(x(t), u(t))dt − σ34(x(t))dB(t),
x(0) =x0.

(2.9)

with the objective function

J(0, x0; u(t)) = E
( ∫ T

0
L(x(t), u(t))dt + h(x(T ))

)
, (2.10)

where x(t) = {x(t) : 0 ≤ t ≤ T } is the solution of model (2.9) on the filtered space (Ω,F , (Ft)0≤t≤T ,P).
For any u(t) ∈ Uad, model (2.9) has a unique Ft-adapted solution x(t) and (x(t), u(t)) is called an
admissible pair. The control problem is to find an admissible control which minimizes or nearly
minimizes the objective function J(0, x0; u(·)) over all u(·) ∈ Uad. The objective function J(0, x0; u(·))
represent a function that t = 0, x(t) = x0 with control variable u(·). The value function is as follows:

V(0, x0) = min
u(·)∈Uad

J(0, x0; u(·)).

Our goal is to minimize the total number of the infected and susceptible individuals by using
minimal control efforts. Refering to Lashari et al. [13], let the objective function in this paper is

J(0, x0; u(t)) = E
{ ∫ T

0

(
A1S (t) + A2I(t) +

1
2

(τ1u2
1(t) + τ2u2

2(t))
)

dt + h(x(T ))
}
, (2.11)

where τ1 and τ2 are positive constants,

L(x(t), u(t)) = A1S (t) + A2I(t) +
1
2

(τ1u2
1(t) + τ2u2

2(t)),

h(x(T )) = (0, I(T ), 0).

Definition 2.1. (Optimal Control) [7]. If u∗(·) or an admissible pair(x∗(t), u∗(t)) attains the minimum
of J(0, x0; u(·)), then an admissible control u∗(·) is called optimal.
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Definition 2.2. (ε-Optimal Control) [7]. For a given ε > 0, an admissible pair(x∗(t), u∗(t)) or an
admissible control uε(·) is called ε-optimal, if

|J(0, x0; uε(·)) − V(0, x0)| ≤ ε.

Definition 2.3. (Near-optimal Control) [7]. A family of admissible controls {uε(·)} parameterized by
ε > 0 and any element (x∗(t), u∗(t)) , or any element uε(·) in the family are called near-optimal, if

|J(0, x0; uε(·)) − V(0, x0)| ≤ δ(ε),

holds for a sufficiently small ε > 0, where δ is a function of ε satisfying δ(ε) → 0 as ε → 0. The
estimate δ(ε) is called an error bound. If δ(ε) = cεκ for some c, κ > 0, then uε(·) is called near-optimal
with order εκ.

Definition 2.4. [8]. Let Ξ ⊂ Rn be a region and u1 : Ξ −→ Rn be a locally Lipschitz continuous
function. The generalized gradient of φ at ξ ∈ Ξ is defined as

∂φ(ξ) =

{
ζ ∈ Rn|〈ζ, η〉 ≤ limy→ξ,y∈Ξ,m↓0

φ(y + mη) − φ(y)
m

}
.

Our next goal is to derive a set of necessary conditions for near-optimal controls.

3. Necessary conditions for near-optimal controls

In this section, we will introduce two lemmas at first, then we will obtain the necessary condition
for the near-optimal control of the model (2.8).

3.1. Some priori estimates of the susceptible, infected and recovered

Lemma 3.1. For all θ ≥ 0 and 0 < κ < 1 satisfying κθ < 1, and u(t), u′(t) ∈ Uad, along with the
corresponding trajectories x(t), x′(t), there exists a constant C = C(θ, κ) such that

3∑
i=1

E sup
0≤t≤T

|xi(t) − x′i(t)|
2θ ≤ C

2∑
i=1

d(ui(t), u′i(t))
κθ. (3.1)

Proof. We assume θ ≥ 1 and ∀r > 0, use the elementary inequality, and get

E sup
0≤t≤r

|x1(t) − x′1(t)|2θ

≤CE
∫ r

0

[ (
β2θ(ξ(t)) + σ2θ

4 (ξ(t))
) ∣∣∣∣∣∣ x1(t)x2(t)

1 + x2
2(t)
−

x′1(t)x′2(t)
1 + x′22 (t)

∣∣∣∣∣∣2θ
+

(
µ2θ

1 (ξ(t)) − σ2θ
2 (ξ(t))

)
|x1(t) − x′1(t)|2θ + α2θ(ξ(t))|x3(t) − x′3(t)|2θ

+ |u1(t)x1(t) − u′1(t)x′1(t)|2θ
]
dt

≤CE
∫ r

0

3∑
i=1

|xi(t) − x′i(t)|
2θdt + C

[
E

∫ r

0
χu1(t),u′1(t)(t)dt

]κθ
≤C

[
E

∫ r

0

3∑
i=1

|xi(t) − x′i(t)|
2θdt + d(u1(t), u′1(t))κθ

]
.

(3.2)
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If 0 < κ < 1, then θ ≥ 1, we apply Cauchy-Schwartz’s inequality and get

E

∫ r

0
χu1(t),u′1(t)(t)dt

≤C
(
E

∫ r

0
dt

)1−κθ

×

(
E

∫ r

0
χu1(t),u′1(t)(t)dt

)κθ
≤Cd(u1(t), u′1(t))κθ.

(3.3)

Similarly, we can get the following estimates for |xi(t) − x′i(t)|
2θ(i = 2, 3)

E sup
0≤t≤r

|x2(t) − x′2(t)|2θ ≤ C
[
E

∫ r

0

2∑
i=1

|xi(t) − x′i (t)|
2θdt + d(u2(t), u′2(t))κθ

]
,

E sup
0≤t≤r

|x3(t) − x′3(t)|2θ ≤ C
[
E

∫ r

0

3∑
i=2

|xi(t) − x′i (t)|
2θdt +

2∑
i=1

d(ui(t), u′i(t))
κθ
]
.

(3.4)

Then, summing up (3.2) and (3.4), we may obtain that

3∑
i=1

E sup
0≤t≤r

|xi(t) − x′i(t)|
2θ ≤ C

[ ∫ r

0

3∑
i=1

E sup
0≤t≤s
|xi(t) − x′i(t)|

2θds +

2∑
i=1

d(ui(t), u′i(t))
κθ
]
.

Now by considering 0 ≤ θ < 1, with the help of Cauchy-Schwartz’s inequality, we have

3∑
i=1

E sup
0≤t≤r

|xi(t) − x′i (t)|
2θ ≤

3∑
i=1

[
E sup

0≤t≤r
|xi(t) − x′i (t)|

2
]θ

≤ C
[ ∫ r

0

3∑
i=1

E sup
0≤t≤s
|xi(t) − x′i (t)|

2θds +

2∑
i=1

d(ui(t), u′i(t))
κ
]θ

≤ Cθ
[ 2∑

i=1

d(ui(t), u′i(t))
κθ
]
.

(3.5)

Therefore, the result is true by making use of Gronwall’s inequality.
The proof is completed.

Lemma 3.2. Let Hypotheses (H3) and (H4) hold. For all 0 < κ < 1 and 0 < θ < 2 satisfying
(1+κ)θ < 2, and u(t), u′(t) ∈ Uad, along with the corresponding trajectories x(t), x′(t), and the solution
(p(t), q(t)), (p′(t), q′(t)) of corresponding adjoint equation, there exists a constant C = C(κ, θ) > 0
such that

3∑
i=1

E

∫ T

0
|pi(t) − p′i(t)|

θdt +

3∑
i=1

E

∫ T

0
|qi(t) − q′i(t)|

θdt

≤C
2∑

i=1

d(ui(t), u′i(t))
κθ
2 .

(3.6)

Proof. Let p̂i(t) ≡ pi(t) − p′i(t), q̂ j(t) ≡ q j(t) − q′j(t)(i, j = 1, 2, 3). From the adjoint equation (4.5), we
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have

dp̂1(t) = −

[
−

(
(µ(ξ(t)) + u1(t))x1(t) + β(ξ(t))x2(t) + µ(ξ(t))

)
p̂1(t) + β(ξ(t))x2(t) p̂2(t) + u1(t) p̂3(t)

− σ(ξ(t))x2(t)̂q1(t) + σ(ξ(t))x2(t)̂q2(t) + f̂1(t)
]
dt + q̂1(t)dB(t),

dp̂2(t) = −

[
(α(ξ(t)) − β(ξ(t))x1(t))p̂1(t) +

(
β(ξ(t))x1(t) − (1 − e)β(ξ(t))x3(t) − (µ(ξ(t)) + α(ξ(t)))

−
m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
p̂2(t) −

(
(1 − e)β(ξ(t))x3(t) −

m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
p̂3(t) − σ(ξ(t))x1(t)̂q1(t)

+ (σ(ξ(t))x1(t) + (1 − e)σ(ξ(t))x3(t))̂q2(t) − ((1 − e)σ(ξ(t))x3(t))̂q3(t) + f̂2(t)
]
dt + q̂2(t)dB(t),

dp̂3(t) = −

[
((1 − e)β(ξ(t))x2(t)) p̂2(t) − (µ(ξ(t)) + (1 − e)β(ξ(t))x2(t) p̂3(t)

]
dt + ((1 − e)σ(ξ(t))x2(t))̂q2(t)

+ ((1 − e)σ(ξ(t))x2(t))̂q3(t) + f̂3(t) + q̂3(t)dB(t).

(3.7)

where

f̂1(t) =β(ξ(t))(x2(t) − x′2(t))(p′2(t) − p′1(t)) + σ(ξ(t))(x2(t) − x′2(t))(q′2(t) − q′1(t)),

f̂2(t) =β(ξ(t))(x1(t) − x′1(t))(p′2(t) − p′1(t)) + (1 − e)β(ξ(t))(x3(t) − x′3(t))(p′3(t) − p′2(t))

+ m(ξ(t))x
( u2(t)
(1 + η(ξ(t))x2(t))2 −

u′2(t)
(1 + η(ξ(t))x′2(t))2

)
(p′3(t) − p′2(t)) + σ(ξ(t))(x1(t) − x′1(t))(q′2(t) − q′1(t))

+ (1 − e)σ(ξ(t))(x3(t) − x′3(t))(q′3(t) − q′2(t)),

f̂3(t) =(1 − e)β(ξ(t))(x2(t) − x′2(t))(p′2(t) − p′3(t)) + (1 − e)σ(ξ(t))(x2(t) − x′2(t))(q′2(t) − q′3(t)),

We assume the solution of the following stochastic differential equation is φ(t) = (φ1(t), φ2(t), φ3(t))>.

dφ1(t) = −

[
((µ(ξ(t)) + u1(t))x1(t) + β(ξ(t))x2(t) + µ(ξ(t)))φ1(t) + (α(ξ(t)) − β(ξ(t))x1(t))φ2(t)

+ | p̂1(t)|θ−1sgn(p̂1(t))
]
dt +

[
(−σ(ξ(t))x2(t))φ1(t) + (−σ(ξ(t))x1(t))φ2(t)

+ |̂q1(t)|θ−1sgn(̂q1(t))
]
dB(t),

dφ2(t) =

[
β(ξ(t))x2(t)φ1(t) +

(
β(ξ(t))x1(t) − (1 − e)β(ξ(t))x3(t) − (µ(ξ(t)) + α(ξ(t)))

−
m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
φ2(t) + (1 − e)β(ξ(t))x2(t)φ3(t) + | p̂2(t)|θ(ξ(t))−1sgn( p̂2(t))

]
dt

+

[
σ(ξ(t))x2(t)φ1 + (σ(ξ(t))x1(t) + (1 − e)σ(ξ(t))x3(t))φ2 + (1 − e)σ(ξ(t))x2(t)φ3

+ |q̂2|
θ−1sgn(̂q2(t)

]
dB(t),

dφ3(t) =

[
u1(t)φ1 −

(
(1 − e)β(ξ(t))x3(t) −

m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
φ2 − (µ(ξ(t)) + (1 − e)β(ξ(t))x2(t))φ3

+ | p̂3(t)|θ−1sgn(p̂3(t))
]
dt +

(
(−(1 − e)σ(ξ(t))x3(t))φ1 + (−(1 − e)σ(ξ(t))x2(t))φ2

+ |̂q3(t)|θ−1sgn(̂q3(t))
)
dB(t),

(3.8)
where sgn(·) is a symbolic function.

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1348–1375.



1358

According to Hypothesis (H1), the definition of L and Lemma 4.2, the above equation admits a
unique solution. Meanwhile, Cauchy-Schwartz’s inequality indicates that

3∑
i=1

E sup
0≤t≤T

|φi(t)|θ1 ≤

3∑
i=1

E

∫ T

0
| p̂i(t)|θdt +

3∑
i=1

E

∫ T

0
|̂qi(t)|θdt, (3.9)

where θ1 > 2 and 1
θ1

+ 1
θ

= 1.
In order to obtain the above inequality (3.6), we define the function

V(x(t), p̂(t), φ(t), q̂(t), k) =

3∑
i=1

p̂i(t)φi(t) +

3∑
i=1

ln xi(t) + (w̄k + |w̄|)

= V1(x(t), p̂(t), φ(t), q̂(t)) + V2(x(t)) + V3(k),

(3.10)

where w̄ = (w̄1, w̄2, · · · , w̄N)>, |w̄| =
√

w̄2
1 + · · · + w̄2

N and w̄k(k ∈ S) are to be determined later and the
reason for |w̄| being is to make w̄k + |w̄| non-negative. Using Itô’s formula [4] yields

LV1(x(t), p̂(t), φ(t), q̂(t)) =

3∑
i=1

E | p̂i(t)|θ +

2∑
i=1

E |̂qi(t)|θ −
3∑

i=1

E f̂i(t)φi(t), (3.11)

LV2(x(t)) =
(1 − p(k))µ(k)

x1(t)
+
αx2(t)
x1(t)

− µ(k) − β(k)x2(t) − u1(t)

+ β(k)x1(t) + (1 − e)β(k)x3(t) − (µ(k) + α(k)) −
m(k)u2(k)

1 + η(k)x2(t)

+
p(k)µ(k)

x3(t)
+

u1(k)x1(t)
x3(t)

− µ(k) − (1 − e)β(k)x2(t) +
m(k)u2(k)x2(t)

(1 + η(k)x2(t))x3(t)

−
1
2
σ2(k)x2

2(t) +
1
2
σ2(k)x2

1(t) +
1
2

(1 − e)2σ(k)x2
3(t) −

1
2

(1 − e)2σ2(k)x2
2(t)

=K −
(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)
,

(3.12)

LV3(k) =
∑
l∈M

αklw̄l. (3.13)

We define a vector Ξ = (Ξ1,Ξ2, · · · ,ΞN)> with

Ξk = µ(k) +
1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k). (3.14)

Due to the generator matrix α is irreducible and Lemma 2.3 in [5], for Ξk there exists a solution

w̄ = (w̄1, w̄2, · · · , w̄N)>,

for the following poisson systems:

αw̄ − Ξk = −

N∑
j=1

π jΞ j.
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Thus, we obtain that

∑
l∈M

αklw̄l −

(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)

= −
∑
l∈M

πk

(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)

= − Π.

(3.15)

According to Hypotheses (H4) and (H5), we get that

LV(x(t), p(t), q(t), k)
=LV1(x(t), p̂(t), φ(t), q̂(t)) +LV2(x(t)) +LV3(k)

= − Π +

3∑
i=1

E | p̂i(t)|θ +

2∑
i=1

E |̂qi(t)|θ −
3∑

i=1

E f̂i(t)φi(t) + K

≤

3∑
i=1

E |p̂i(t)|θ +

2∑
i=1

E |̂qi(t)|θ −
3∑

i=1

E f̂i(t)φi(t).

(3.16)

Integrating both side of (3.16) from 0 to T and taking expectations, we get that

3∑
i=1

E

∫ T

0
| p̂i(t)|θdt +

2∑
i=1

E

∫ T

0
|̂qi(t)|θdt

=

2∑
i=1

E

∫ T

0
f̂i(t)φi(t)dt +

3∑
i=1

Ehxi(t)(x(T ))φi(T )

≤C
[ 2∑

i=1

(
E

∫ T

0
| f̂i(t)|θdt

) 1
θ
(
E

∫ T

0
|φi(t)|θ1 dt

) 1
θ1

+

3∑
i=1

(
E|hxi(t)(x(T ))|θ

) 1
θ
(
E|φi(T )|θ1

) 1
θ1
]
.

(3.17)

Substituting (3.9) into (3.17),

3∑
i=1

E

∫ T

0
|p̂i(t)|θdt +

2∑
i=1

E

∫ T

0
|̂qi(t)|θdt

≤ C
3∑

i=1

E

∫ T

0
| f̂i(t)|θdt +

3∑
i=1

E|hxi(t)(x(T )) − hx′i (t)(x′(T ))|θ.

(3.18)

We proceed to estimate the right side of (3.18). From Hypothesis (H3) and Lemma 4.1, it follows that

3∑
i=1

E|hxi(t)(x(T )) − hx′i (t)(x′(T ))|θ ≤ Cθ
3∑

i=1

E|xi(T ) − x′i(T )|θ ≤ C. (3.19)
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Application of Cauchy-Schwartz’s inequality, we obtain

E

∫ T

0
| f̂1(t)|θdt ≤CE

∫ T

0
|x2(t) − x′2(t)|θ

( 2∑
i=1

|p′i(t)|
θ +

2∑
i=1

|q′i(t)|
θ
)
dt

≤C
(
E

∫ T

0
|x2(t) − x′2(t)|

2θ
2−θ dt

)1− θ2 [( 2∑
i=1

E

∫ T

0
|p′i(t)|

2dt
) θ

2

+

( 2∑
i=1

E

∫ T

0
|q′i(t)|

2dt
) θ

2
]
.

(3.20)

Noting that 2θ
1−θ < 1, 1 − 1

θ
> κθ

2 and d(u(t), u′(t)) < 1, using Lemmas 4.2 and 3.1, we derive that

E

∫ T

0
| f̂1(t)|θdt ≤ Cd(u(t), u′(t))

κθ
2 . (3.21)

Applying the same method, we can get the same estimate, i.e.

3∑
i=2

E

∫ T

0
| f̂i(t)|θdt ≤ Cd(u(t), u′(t))

κθ
2 . (3.22)

Combining (3.18) with the above two estimates, the desired result then holds immediately.

3.2. Necessary conditions for near-optimal controls

Theorem 3.1. Let Hypotheses (H1) and (H2) hold. (pε(t), qε(t)) is the solution of the adjoint equation
(4.5) under the control uε(t). Then, there exists a constant C such that for any θ ∈ [0, 1), ε > 0 and any
ε-optimal pair (xε(t), uε(t)), it holds that

min
u(t)∈Uad

E

∫ T

0

(
u1(t)xε1(t)(pε3(t) − pε1(t)) +

m(ξ(t))u2(t)xε2(t)
1 + η(ξ(t))xε2(t)

(pε3(t) − pε2(t))

+
1
2

(τ1u2
1(t) − τ2u2

2(t))
)
dt

≥E

∫ T

0

(
uε1(t)xε1(t)(pε3(t) − pε1(t)) +

m(ξ(t))uε2(t)xε2(t)
1 + η(ξ(t))xε2(t)

(pε3(t) − pε2(t))

+
1
2

(τ1u2ε
1 (t) − τ2u2ε

2 (t))
)
dt −Cε

θ
3 .

(3.23)

Proof. The crucial step of the proof is to indicate that Hu(t)(t, xε, uε(t), pε(t), qε(t)) is very small and use
ε to estimate it. Let us fix an ε > 0. Define a new metric d as follows:

d(uε(t), ũε(t)) ≤ ε
2
3 , (3.24)

and
J̃(0, x0; ũε(t)) ≤ J̃(0, x0; u(t)) ∀u(t) ∈ Uad[0,T ], (3.25)

where the cost functional

J̃(0, x0; u(t)) = J(0, x0; u(t)) + ε
1
3 d(u(t), ũε(t)). (3.26)
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This implies that (x̃ε(t), ũε(t)) is optimal for state equations (2.9) with the cost functional (2.11). Then,
for a.e. t ∈ [0, 1], θ ∈ [0, 1), a stochastic maximum principle yields

H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t))

= min
u∈Uad

[H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t)) + ε
θ
3 |u(t) − ũε(t)|],

(3.27)

where (p̃ε(t), q̃ε(t)) is the solution of (4.5) with ũε(t).
For simplicity, let

W1(t) =H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t)) − H(t, xε(t), uε(t), pε(t), qε(t)),
W2(t) =H(t, x̃ε(t), u(t), p̃ε(t), q̃ε(t)) − H(t, xε(t), u(t), pε(t), qε(t)).

By virtue of (3.27) and elementary inequality, there exists a constant C such that

E

∫ T

0
H(t, xε(t), uε(t), pε(t), qε(t))dt

≤E

∫ T

0
H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t))dt + E

∫ T

0
|W1(t)|dt

=E

∫ T

0
min

u∈Uad

[H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t)) + ε
1
3 |u(t) − ũε(t)|]dt + E

∫ T

0
|W1(t)|dt

≤E

∫ T

0
min

u∈Uad

[H(t, x̃ε(t), ũε(t), p̃ε(t), q̃ε(t))]dt + E

∫ T

0
|W1|dt + Cε

θ
3

≤E

∫ T

0
min

u∈Uad

[H(t, xε(t), uε(t), pε(t), qε(t))]dt + E

∫ T

0
min

u∈Uad

|W2(t)|dt + E

∫ T

0
|W1(t)|dt + Cε

θ
3

≤ min
u∈Uad

E

∫ T

0
[H(t, xε(t), uε(t), pε(t), qε(t))]dt + min

u∈Uad

E

∫ T

0
|W2(t)|dt + E

∫ T

0
|W1(t)|dt + Cε

θ
3 .

From Hypothesis (H1) and the definition of L, Lemma 3.1 and 3.2, we get

min
u∈Uad

E

∫ T

0
|W2(t)|dt + E

∫ T

0
|W1(t)|dt ≤ Cε

θ
3 .

Thus, we get the result, i.e.

min
u(t)∈Uad

E

∫ T

0

(
u1(t)xε1(t)(pε3(t) − pε1(t)) +

m(ξ(t))u2(t)xε2(t)
1 + η(ξ(t))xε2(t)

(pε3(t) − pε2(t))

+
1
2

(τ1u2
1(t) − τ2u2

2(t))
)
dt

≥ E

∫ T

0

(
uε1(t)xε1(t)(pε3(t) − pε1(t)) +

m(ξ(t))uε2(t)xε2(t)
1 + η(ξ(t))xε2(t)

(pε3(t) − pε2(t))

+
1
2

(τ1u2ε
1 (t) − τ2u2ε

2 (t))
)
dt −Cε

θ
3 .

(3.28)

4. Sufficient conditions for near-optimal controls

4.1. Some priori estimates of the susceptible, infected and recovered

Lemma 4.1. For any θ ≥ 0 and u(t) ∈ Uad, we have

E sup
0≤t≤T

|x1(t)|θ ≤ C, E sup
0≤t≤T

|x2(t)|θ ≤ C, E sup
0≤t≤T

|x3(t)|θ ≤ C, (4.1)
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where C is a constant that depends only on θ.

Proof. First, we assume θ ≥ 1. The first equation of (2.9) can be rewritten as

x1(t) =EFt

[
x1(T ) +

∫ T

0

(
(1 − p(ξ(t)))µ(ξ(t)) + α(ξ(t))x2(t) − µ(ξ(t))x1(t)

− β(ξ(t))x1(t)x2(t) − u1(t)x1(t)
)
ds

]
.

Similarly,

x2(t) =EFt

[
x2(T ) +

∫ T

0

(
β(ξ(t))x1(t)x2(t) + (1 − e)β(ξ(t))x3(t)x2(t) − (µ(ξ(t)) + α(ξ(t)))x2(t)

−
m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
ds

]
,

x3(t) =EFt

[
x3(T ) +

∫ T

0

(
p(ξ(t))µ(ξ(t)) − µ(ξ(t))x3(t) − (1 − e)β(ξ(t))x3(t)x2(t)

+ u1(t)x1(t) +
m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

)
ds

]
,

where EFt[x] represent the conditional expectation of x with respect to Ft. Using the elementary
inequality, we can get

|m1 + m2 + m3 + m4|
n ≤ 4n(|m1|

n + |m2|
n + |m3|

n + |m4|
n),∀n > 0,

then we get

|x1(t)|θ ≤EFt

[
xθ1(T ) +

∫ T

0
|(1 − p(ξ(t)))µ(ξ(t)|θ + |α(ξ(t))x2(t)|θ − |µ(ξ(t))x1(t)|θ

− |β(ξ(t))x1(t)x2(t)|θ − |u1(t)x1(t)|θ
)
ds

]
.

(4.2)

|x2(t)|θ ≤EFt

[
xθ2(T ) +

∫ T

0

(
|β(ξ(t))x1(t)x2(t)|θ|(1 − e)β(ξ(t))x3(t)x2(t)|θ

− |(µ(ξ(t)) + α(ξ(t)))x2(t)|θ −
∣∣∣∣∣m(ξ(t))u2(t)x2(t)

1 + η(ξ(t))x2(t)

∣∣∣∣∣θ)ds
]
,

(4.3)

|x3(t)|θ ≤EFt

[
xθ3(T ) +

∫ T

0

(
|p(ξ(t))µ(ξ(t))|θ + |u1(t)x1(t)|θ − |µ(ξ(t))x3(t)|θ

− |(1 − e)β(ξ(t))x3(t)x2(t)|θ +

∣∣∣∣∣m(ξ(t))u2(t)x2(t)
1 + η(ξ(t))x2(t)

∣∣∣∣∣θ)ds
]
,

(4.4)

Summing up (4.2), (4.3) and (4.4), we can get

|x1(t)|θ + |x2(t)|θ + |x3(t)|θ ≤ CEFt

[ 3∑
i=1

xθi (T ) + 1 +

∫ T

0

(
|x1(t)|θ + |x2(t)|θ + |x3(t)|θ

)
ds

]
.
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Let t ∈ [T − ε,T ] with ε = 1
2C , we get

|x1(t)|θ +
1
2
|x2(t)|θ +

1
2
|x3(t)|θ ≤ CEFt

[ 3∑
i=1

xθi (T ) + 1 +

∫ T

0

(
|x1(t)|θ + |x2(t)|θ + |x3(t)|θ

)
ds

]
.

By Gronwall’s inequality, we can get that

E sup
0≤t≤T

|x1(t)|θ ≤ C, E sup
0≤t≤T

|x2(t)|θ ≤ C, E sup
0≤t≤T

|x3(t)|θ ≤ C,

when 0 < θ < 1.
Then, we can get

E sup
0≤t≤T

|x1(t)|θ ≤ (E1
2

2−θ )1− θ2 · (E( sup
0≤t≤T

|x1(t)|θ)
2
θ )

θ
2

≤ (E sup
0≤t≤T

|x1(t)|2)
θ
2

≤ C.

Similarly, we have
E sup

0≤t≤T
|x2(t)|θ ≤ C, and E sup

0≤t≤T
|x3(t)|θ ≤ C,

The proof is complete.

Next, we will draw into the adjoint equation [8] as follows:
dp1(t) = −b1(x(t), u(t), p(t), q(t))dt + q1(t)dB(t),
dp2(t) = −b2(x(t), u(t), p(t), q(t))dt + q2(t)dB(t),
dp3(t) = −b3(x(t), u(t), p(t), q(t))dt + q3(t)dB(t),
pi(T ) = hxi(x(T )), i = 1, 2, 3,

(4.5)

where

b1(x(t), u(t), p(t), q(t))

=

(
(µ(ξ(t)) + u1(t))x1(t) + β(ξ(t))x2(t) + µ(ξ(t))

)
p1(t) + β(ξ(t))x2(t)p2(t) + u1(t)p3(t)

− σ(ξ(t))x2(t)q1(t) + σ(ξ(t))x2(t)q2(t),
b2(x(t), u(t), p(t), q(t))

=(α(ξ(t)) − β(ξ(t))x1(t))p1(t) +

(
β(ξ(t))x1(t) + (1 − e)β(ξ(t))x3(t) − (µ(ξ(t)) + α(ξ(t)))

−
m(ξ(t))u2(t)

(1 + η(ξ(t))x2(t))2

)
p2(t) −

(
(1 − e)β(ξ(t))x3(t) −

m(ξ(t))u2(t)
(1 + η(ξ(t))x2(t))2

)
p3(t)

− σ(ξ(t))x1(t)q1(t) + (σ(ξ(t))x1(t) + (1 − e)σ(ξ(t))x3(t))q2(t) − (1 − e)σ(ξ(t))x3(t)q3(t),
b3(x(t), u(t), p(t), q(t))

=(1 − e)β(ξ(t))x2(t)p2(t) −
(
µ(ξ(t)) + (1 − e)β(ξ(t))x2(t)

)
p3(t) + (1 − e)σ(ξ(t))x2(t)q2(t)

− (1 − e)σ(ξ(t))x2(t)q3(t).
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Lemma 4.2. For any u(t), u′(t) ∈ Uad, we have

3∑
i=1

E sup
0≤t≤T

|pi(t)|2 +

3∑
i=1

E

∫ T

0
|qi(t)|2dt ≤ C, (4.6)

where C is a constant.

Proof. Integrating the first equation of both sides(4.5) from t to T , we obtain that

p1(t) +

∫ T

t
q1(s) dB(s) = p1(T ) +

∫ T

t
b1(x(s), u(s), p(s), q(s))ds. (4.7)

Squaring the equation above and making use of the second moments, taking note of x(t) ∈ α for all
t ≥ 0, we have

E|p1(t)|2 + E

∫ T

t
|q1(s)|2 ds

≤CE|p1(T )|2 + C(T − t)E
∫ T

t
|b1(x(s), u(s), p(s), q(s))|2ds

≤CE(1 + |p1(T )|2) + C(T − t)
3∑

i=1

E

∫ T

t
|pi(s)|2ds + C(T − t)

2∑
i=1

E

∫ T

t
|qi(s)|2ds.

(4.8)

Similarly,

E|p2(t)|2 + E

∫ T

t
|q2(s)|2 ds

≤CE(1 + |p2(T )|2) + C(T − t)
3∑

i=1

E

∫ T

t
|pi(s)|2ds + C(T − t)

2∑
i=1

E

∫ T

t
|qi(s)|2ds,

(4.9)

E|p3(t)|2 ≤E(1 + |p3(T )|2) + C(T − t)E
∫ T

t
|p1(s)|2ds + C(T − t)E

∫ T

t
|p3(s)|2ds

+ C(T − t)E
∫ T

t
|q3(s)|2ds.

(4.10)

Summing up (4.8), (4.9) and (4.10), we can get

3∑
i=1

E |pi(t)|2 +

2∑
i=1

E

∫ T

t
|qi(s)|2ds

≤

3∑
i=1

CE(1 + |pi(T )|2) + C(T − t)
3∑

i=1

E

∫ T

t
|pi(s)|2ds

+ C(T − t)
3∑

i=1

E

∫ T

t
|qi(s)|2ds.

(4.11)
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If t ∈ [T − ε,T ] with ε = 1
2C , we have

3∑
i=1

E |pi(t)|2 +
1
2

3∑
i=1

E

∫ T

t
|qi(s)|2ds

≤

3∑
i=1

CE(1 + |pi(T )|2) + C(T − t)
3∑

i=1

E

∫ T

t
|pi(s)|2ds.

(4.12)

From the above inequality and Gronwall’s inequality shows that

3∑
i=1

E sup
0≤t≤T

|pi(t)|2 ≤ C,
2∑

i=1

E

∫ T

t
|qi(s)|2ds ≤ C, for t ∈ [T − ε,T ]. (4.13)

Apply the same way to (4.8), (4.9) and (4.10) in [T − ε,T ], therefore, we see that (4.12) holds for all
t ∈ [T − 2ε,T ] by a finite number of iterations, Eq (4.7) can be recapped as follows:

p1(t) =p1(T ) +

∫ T

t
b1(x(s), u(s), p(s), q(s))ds −

∫ T

0
q1(s) dB(s) +

∫ t

0
q1(s) dB(s). (4.14)

According to the above equation, we have

|p1(t)|2 ≤C
[
1 + |p1(T )|2 +

∫ T

0

 3∑
i=1

|pi(t)|2 +

2∑
i=1

|qi(t)|3
 ds

+

(∫ T

0
q1(s) dB(s)

)2

+

(∫ t

0
q1(s) dB(s)

)2

.

(4.15)

Furthermore, using the same method in (4.14) yields similar results of the above inequality (4.15),
which combines with (4.15) and shows that

3∑
i=1

|pi(t)|2

≤C
[
1 +

3∑
i=1

|pi(T )|2 +

∫ T

0

 3∑
i=1

|pi(s)|2 +

3∑
i=1

|qi(s)|2
 ds

+

3∑
i=1

(∫ T

0
qi(s) dB(s)

)2

+

3∑
i=1

(∫ t

0
qi(s) dB(s)

)2

.

(4.16)

Taking expectation of equation (4.16) and using Burkholder-Davis-Gundy inequality (see Theorem
1.7.3 [4]), we get

3∑
i=1

E sup
0≤t≤T

|pi(t)|2 ≤C
( 3∑

i=1

E|pi(T )|2 +

3∑
i=1

E

∫ T

0
|pi(t)|2ds

+

3∑
i=1

E

∫ T

0
|qi(s)|2 ds

)
.

(4.17)

By Gronwall’s inequality in the above inequality to get our result (4.6).
The proof is complete
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We define a metric on the admissible control domainUad[0,T ] as follows:

d(u(t), u′(t)) = E[mes{t ∈ [0; T ] : u(t) , u′(t)}] ∀u(t), u′(t) ∈ Uad, (4.18)

where mes represents Lebesgue measure. Since U is closed, it can be shown similar to [7] thatUad is
a complete metric space under d.

Lemma 4.3. (Ekeland’s principle) [16]. Let (Q, d) be a complete metric space and F(·) : Q→ R be a
lower-semicontinuous and bounded from below. For any ε > 0, we assume that uε(·) ∈ Q satisfies

F(uε(·)) ≤ inf
u(·)∈Q

F(u(·)) + ε.

Then there is uλ(·) ∈ Q such that for all λ > 0 and u(·) ∈ Q,

F(uλ(·)) ≤ F(uε(·)), d(uλ(·), uε(·)) ≤ λ, and F(uλ(·)) ≤ F(u(·)) +
ε

λ
d(uλ(·), uε(·)).

4.2. Sufficient conditions for near-optimal controls

We define the Hamiltonian function [8] H(t, x(t), u(t), p(t), q(t)) : [0,T ]×R3
+ ×Uad ×R

3
+ ×R

3
+ → R

as follows:

H(t, x(t), u(t), p(t), q(t)) = f >(x(t), u(t))p(t) + σ>∗ (x(t))q(t) + L(x(t), u(t)), (4.19)

with

f (x(t), u(t)) =


f1(x(t), u(t))
f2(x(t), u(t))
f3(x(t), u(t))

 , σ∗(x(t)) =


σ14(x(t))
σ24(x(t))
σ34(x(t))

 ,
where fi(i = 1, 2, 3) and σi4(i = 1, 2, 3) are defined in (2.9), and L(x(t), u(t)) is defined in (2.11).

Theorem 4.1. Suppose (H1), (H2) and (H3) hold. Let (xε(t), uε(t)) be an admissible pair and
(pε(t), qε(t)) be the solutions of adjoint equation (4.5) corresponding to (xε(t), uε(t)). Assume
H(t, x(t), u(t), p(t), q(t)) is convex, a.s. For any ε > 0,

E

∫ T

0

(
u1(t)xε1(t)(pε3(t) − pε1(t)) +

m(ξ(t))u2(t)xε2(t)
1 + η(ξ(t))xε2(t)

(pε3(t) − pε2(t))

+
1
2

(τ1u2
1(t) − τ2u2

2(t))
)
dt

≥ sup
uε(t)∈Uad[0,T ]

E

∫ T

0

(
uε1(t)xε1(t)(pε3(t) − pε1(t)) +

m(ξ(t))uε2(t)xε2(t)
1 + η(ξ(t))xε2(t)

(pε3(t) − pε2(t))

+
1
2

(τ1u2ε
1 (t) − τ2u2ε

2 (t))
)
dt − ε,

(4.20)

then
J(0, x0; uε(t)) ≤ inf

u(t)∈Uad[0,T ]
J(0, x0; u(t)) + Cε

1
2 .
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Proof. To estimate the term Hu(t)(t, xε(t), uε(t), pε(t), qε(t)), we define a new metric d̃ on Uad: for any
ε > 0, any u(t), u′(t) ∈ Uad,

d̃(u(t), u′(t)) = E

∫ T

0
yε(t)|u(t) − u′(t)|dt, (4.21)

where

yε(t) = 1 +

3∑
i=1

|pεi (t)| +
3∑

i=1

|qεi (t)|. (4.22)

It is easy to find that d̃ is a complete metric as a weighted L1 norm.
According to Eq (2.11) and the definition of the Hamiltonian function H(t, x(t), u(t), p(t), q(t)), we

have
J(0, x0; uε(t)) − J(0, x0; u(t)) = I1 + I2 − I3, (4.23)

with

I1 =E

∫ T

0

[
H(t, xε(t), uε(t), pε(t), qε(t)) − H(t, x(t), u(t), pε(t), qε(t))

]
dt,

I2 =E
[
h(xε(T )) − h(x(T ))

]
,

I3 =E

∫ T

0

[
[ f >(xε(t), uε(t)) − f >(x(t), u(t))]pε(t) + [σ>∗ (xε(t)) − σ>∗ (x(t))]qε(t)

]
dt.

(4.24)

Due to the convexity of H(t, xε(t), uε(t), pε(t), qε(t)), we have

I1 ≤

3∑
i=1

E

∫ T

0
Hxi(t)(t, x

ε(t), uε(t), pε(t), qε(t))(xεi (t) − xi(t))dt

+

2∑
i=1

E

∫ T

0
Hui(t)(t, x(t), u(t), pε(t), qε(t))(uεi (t) − ui(t))dt.

(4.25)

Similarly,

I2 ≤

3∑
i=1

E
[
hxi(t)(xε(T ))(xεi (T ) − xi(T ))

]
. (4.26)

Now, we define V function:

V(x(t), p(t), q(t), k) =

3∑
i=1

pεi (t)(xεi (t) − xi(t)) +

3∑
i=1

ln xi(t) + (w̄k + |w̄|)

= V1(x(t), p(t), q(t)) + V2(x(t)) + V3(k),

(4.27)

where w̄ = (w̄1, w̄2, · · · , w̄N)>, |w̄| =
√

w̄2
1 + · · · + w̄2

N and w̄k(k ∈ S) are to be determined later and the
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reason for |w̄| being is to make w̄k + |w̄| non-negative. Using Itô’s formula [4] yields

LV1(x(t), p(t), q(t)) = −

3∑
i=1

Hxi(t)(t, x
ε(t), uε(t), pε(t), qε(t))(xεi (t) − xi(t))

+

3∑
i=1

pεi (t)| fi(xε(t), uε(t)) − fi(x(t), u(t))|

+

3∑
i=1

qεi (t)|σi4(xε(t)) − σi4(x(t))|,

(4.28)

LV2(x(t)) =
(1 − p(k))µ(k)

x1(t)
+
αx2(t)
x1(t)

− µ(k) − β(k)x2(t) − u1(t)

+ β(k)x1(t) + (1 − e)β(k)x3(t) − (µ(k) + α(k)) −
m(k)u2(k)

1 + η(k)x2(t)

+
p(k)µ(k)

x3(t)
+

u1(k)x1(t)
x3(t)

− µ(k) − (1 − e)β(k)x2(t) +
m(k)u2(k)x2(t)

(1 + η(k)x2(t))x3(t)

−
1
2
σ2(k)x2

2(t) +
1
2
σ2(k)x2

1(t) +
1
2

(1 − e)2σ(k)x2
3(t) −

1
2

(1 − e)2σ2(k)x2
2(t)

=K −
(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)
,

(4.29)

LV3(k) =
∑
l∈M

αklw̄l. (4.30)

We set a vector Ξ = (Ξ1,Ξ2, · · · ,ΞN)> with

Ξk = µ(k) +
1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k). (4.31)

Because of the generator matrix α is irreducible and Lemma 2.3 in [5], for Ξk there exists a solution

w̄ = (w̄1, w̄2, · · · , w̄N)>,

for the following poisson systems:

αw̄ − Ξk = −

N∑
j=1

π jΞ j.

Thus, we have

∑
l∈M

αklw̄l −

(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)

= −
∑
l∈M

πk

(
µ(k) +

1
2
σ2

1(k) + (µ(k) + α(k)) +
1
2
σ2

2(k) + (µ(k) + α(k)) +
1
2
σ2

3(k)
)

= − Π.

(4.32)
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From Hypotheses (H4) and (H5), we get that

LV(x(t), p(t), q(t), k)

=LV1(x(t), p(t), q(t)) +LV2(x(t)) +LV3(k)

= − Π −

3∑
i=1

Hxi(t)(t, x
ε(t), uε(t), pε(t), qε(t))(xεi (t) − xi(t))

+

3∑
i=1

pεi (t)( fi(xε(t), uε(t)) − fi(x(t), u(t))) +

3∑
i=1

qεi (t)(σi4(xε(t)) − σi4(x(t))) + K

≤ −

3∑
i=1

Hxi(t)(t, x
ε(t), uε(t), pε(t), qε(t))(xεi (t) − xi(t))

+

3∑
i=1

pεi (t)( fi(xε(t), uε(t)) − fi(x(t), u(t))) +

3∑
i=1

qεi (t)(σi4(xε(t)) − σi4(x(t))).

(4.33)

Integrating both side of (4.33) from 0 to T and taking expectations, we obtain that

3∑
i=1

E
[
hxi(t)(xε(T ))(xεi (T ) − xi(T ))

]
= −

3∑
i=1

E

∫ T

0
Hxi(t)(t, x

ε(t), uε(t), pε(t), qε(t))(xεi (t) − xi(t))ds

+

3∑
i=1

E

∫ T

0
pεi (t)| fi(xε(t), uε(t)) − fi(x(t), u(t))|ds

+

3∑
i=1

E

∫ T

0
qεi (t)|σi4(xε(t)) − σi4(x(t))|ds.

Hence,

I2 ≤

3∑
i=1

E
[
hxi(t)(xε(T ))(xεi (T ) − xi(T ))

]
+

3∑
i=1

E

∫ T

0
Hxi(t)(t, x

ε(t), uε(t), pε(t), qε(t))(xεi (t) − xi(t))ds.

(4.34)
Substitute (4.25), and (4.34) into (4.24), we have

J(0, x0; uε(t)) − J(0, x0; u(t)) ≤
2∑

i=1

E

∫ T

0
τuεi (t)(uεi (t) − ui(t))dt. (4.35)

According to the definition of Hamiltonian function (4.19), we have

E

∫ T

0
H(t, xε(t), u(t), pε(t), qε(t))dt

≥ sup
uε(t)∈Uad[0,T ]

E

∫ T

0
H(t, xε(t), uε(t), pε(t), qε(t))dt − ε.

(4.36)

Define a function F(·) : Uad → R

F(u(t)) = E

∫ T

0
H(t, xε(t), u(t), pε(t), qε(t))dt. (4.37)
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By means of Hypothesis (H2) and the definition of L, we learn that F(·) is continuous on Uad

concerning the metric d̃. Hence, from (4.36) and Lemma 4.3, if exists a ũε(t) ∈ Uad, then

d̃(uε(t), ũε(t)) ≤ ε
1
2 , and F (̃uε(t)) ≤ F(u(t)) + ε

1
2 d̃(u(t), ũε(t)), ∀u(t) ∈ Uad. (4.38)

This shows that

H(t, xε(t), ũε(t), pε(t), qε(t)) = min
u(t)∈Uad

[
H(t, xε(t), u(t), pε(t), qε(t)) + ε

1
2 yε(t)|u(t) − ũε(t)|

]
. (4.39)

Using Lemma 4.3 in [16], we can get

0 ∈ ∂u(t)H(t, xε(t), ũε(t), pε(t), qε(t))

⊂ ∂u(t)H(t, xε(t), ũε(t), pε(t), qε(t)) + [−ε
1
2 yε(t), ε

1
2 yε(t)].

(4.40)

Since the Hamiltonian function H is differentiable in u(t) with regard to Hypothesis (H2), (4.40) shows
that if exists a λε1(t) ∈ [−ε

1
2 yε(t), ε

1
2 yε(t)], then

2∑
i=1

τuεi (t) + λε1(t) = 0. (4.41)

Consequently, from (4.41) and Hypothesis (H2) and the definition of L, we get

|Hu(t)(t, xε(t), uε(t), pε(t), qε(t))|
≤|Hu(t)(t, xε(t), uε(t), pε(t), qε(t)) − Hu(t)(t, xε(t), ũε(t), pε(t), qε(t))|

+ |Hu(t)(t, xε(t), ũε(t), pε(t), qε(t))|
≤Cyε(t)|uε(t) − ũε(t)| + λε1(t)

≤Cyε(t)|uε(t) − ũε(t)| + 2ε
1
2 yε(t).

(4.42)

From the definition of d̃ of Lemma 4.2, we can obtain the conclusion according to (4.35), (4.42) and
Holder’s inequality.

In the above sections, we have give the sufficient and necessary conditions of the near-optimality
control of SIV epidemic model. Our next goal is to illustrate the theoretical results through the
numerical solution. In the following, we will give some figures to show the results.
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5. Numerical examples

Applying Milstein’s method referred to [25], we have the corresponding diffuse equation of state
equation (2.9) and adjoint equation (4.5) as follows:

S i+1 =S i +

[(
(1 − p(ξ(t)))µ(ξ(t)) + α(ξ(t))Ii − µ(ξ(t))S i − β(ξ(t))S iIi − u1(t)S i

)]
∆t

− σ(ξ(t))S iIi
√

∆tζi −
1
2
σ2S iIi(ζ2

i − 1)∆t,

Ii+1 =Ii +

[
β(ξ(t))S iIi + (1 − e)β(ξ(t))ViIi − (µ(ξ(t)) + α(ξ(t)))Ii −

m(ξ(t))u2(t)Ii

1 + η(ξ(t))Ii

]
∆t

+ σ(ξ(t))S iIi
√

∆tζi +
1
2
σ2S iIi(ζ2 − 1)∆t

+ (1 − e)σ(ξ(t))ViIi
√

∆tζi +
1
2
σ2(ξ(t))ViIi(ζ2 − 1)∆t,

Vi+1 =Vi +

[
p(ξ(t))µ(ξ(t)) − µ(ξ(t))Vi − (1 − e)β(ξ(t))ViIi + u1(t)S i +

m(ξ(t))u2(t)Ii

1 + η(ξ(t))Ii

]
∆t

− (1 − e)σViIi
√

∆tζi −
1
2

(1 − e)2σ2ViIi(ζ2
i − 1)∆t,

(5.1)



p1i =p1i+1 −

[(
(µ(ξ(t)) + u1(t))S i+1 + β(ξ(t))Ii+1

)
p1i+1 + β(ξ(t))Ii+1 p2i+1

+ u1(t)p3i+1 − σ(ξ(t))Ii+1q1i+1 + σ(ξ(t))Ii+1q2i+1

]
∆t − q1i+1

√
∆tζi+1 −

q2
1i+1

2
(ζ2

i+1 − 1)∆t,

p2i =p2i+1 −

[
(α(ξ(t)) − β(ξ(t))S i+1)p1i+1 +

(
β(ξ(t))S i+1 + (1 − e)β(ξ(t))Vi+1 − (µ(ξ(t))

+ α(ξ(t))) −
m(ξ(t))u2(t)

(1 + η(ξ(t))x2(t))2

)
p2i+1 −

(
(1 − e)β(ξ(t))Vi+1 −

m(ξ(t))u2(t)
(1 + η(ξ(t))x2(t))2

)
p3i+1

− σ(ξ(t))S i+1q1i+1 + (σ(ξ(t))S i+1 + (1 − e)σ(ξ(t))Vi+1)q2i+1 − (1 − e)σ(ξ(t))Vi+1q3i+1

]
∆t

− q2i+1

√
∆tζi+1 −

q2
2i+1

2
(ζ2

i+1 − 1)∆t,

p3i =p3i+1 +

[
(1 − e)β(ξ(t))Ii+1 p2i+1 −

(
µ(ξ(t)) + (1 − e)β(ξ(t))Ii+1

)
p3i+1 + (1 − e)σ(ξ(t))Ii+1q2i+1

− (1 − e)σ(ξ(t))Ii+1q3i+1

]
∆t.

(5.2)

where ζ2
i (i = 1, 2, ...) are not interdependent Gaussian random variables N(0, 1). At below, we will

present numerical simulation of the SIV model, let us assume that the Markov chain ξ(t) is on the state

space S = {1, 2} with the generator α =

(
−2 2
7 −7

)
and the following setting:

When ξ(t) = 1,
p(1) = 0.5, b(1) = 4.0, β(1) = 0.02, µ(1) = 0.04, η(1) = 1.03, m(1) = 0.01, α(1) = 0.001, α(1) =

0.8, σ = 0.035;
When ξ(t) = 2,

p(2) = 0.6, b(2) = 5.0, β(2) = 0.04, µ(2) = 0.05, η(2) = 1.05, m(2) = 0.02, α(2) = 0.002, α(2) =

0.9, σ = 0.036.

5.1. Vaccination control and treatment control case

We compare the results of calculations with and without control. In Figure 2, the three solution
curves represent susceptible, infected and vaccinated individuals at different intervals of time. As we
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can see that with the change of time, the susceptible people with control drops faster than that without
control. And the number of infected individuals with optimal vaccination and treatment control drops
faster than that without control. The application of vaccination and treatment control give rise to the
number of individuals vaccinated.
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Figure 2. The path of S (t), I(t) and V(t) for the stochastic SIV model (2.9) with initial
(S 0, I0,V0) = (0.2, 1.0, 0.1).

5.2. Near-optimal control case

As it is indicated in Figure 3 that all of p1, p2, and p3 tend to reach zero at last, which shows a
minimum value of cost function.
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Figure 3. The path of adjoint variables p1, p2, and p3 with respect to control parameters.
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6. Conclusion

In this paper, we study the near-optimal control for stochastic SIV epidemic model with
vaccination and saturated treatment using Markovian switching. We obtain the sufficient and
necessary conditions for near-optimality. According to the Hamiltonian function to approximate the
cost function, we reached the estimate of the error boundary of near-optimality. On the basis of the
proposed and relative sections, it is advised tom take immediate effective measures to control the
spread of epidemic diseases as this has great influence on infectious diseases. An illustrative
numerical simulations example is presented to interpret the influence of vaccination and treatment
control on dynamic behavior. Vaccination is another effective way to prevent individuals from getting
infected and can be also incorporated into the optimal control problem. Some interesting questions
deserve further investigation. It is worth studying more realistic but complex models, such as Lévy
noise and time delays [21]. We leave this for further consideration.
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