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1. Introduction

Mosquito-borne diseases, such as malaria [24] and dengue fever [31], have become a considerable
public health concern all over the world. These diseases are transmitted between human beings by
blood-feeding mosquitoes. According to the latest World Malaria Report [38] released in November
2017, there were 216 million cases of malaria in 2016, up from 211 million cases in 2015, and estimated
445,000 people died in 2016 due to this mosquito-borne disease. An effective way to control the
spread of diseases is to control or reduce mosquitoes. Among control measures, the sterile insect
technique (SIT) has proven to be an important and environmentally-friendly way to control mosquito-
borne diseases. Knipling [20, 21, 22] proposed control measures by subjecting insects to gamma
radiation in order to block reproduction and sterilize them, and then releasing them into the wild
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population. The released insects are preferably male, because female mosquitoes may damage crops
by laying eggs or take blood from humans. A wild female mosquito that mates with a sterile male
mosquito will either not reproduce, or produce eggs but the eggs will not hatch, thus reducing the size
of the next generation mosquito population. Although SIT has been conducted in the laboratories,
questions such as the assessment of the effects of releasing sterile mosquitoes into the field of wild
mosquito populations are still keeping challenging [15, 22, 34, 39].

To gain insight into such challenging questions, mathematical models considering the sterile
mosquitoes [3, 4, 5, 6, 7, 9, 13, 15, 17, 24, 26, 28, 36] are adopted more and more when it comes
to study in population dynamics or epidemiology. In particular, dynamics of the interactive wild and
sterile mosquitoes with different strategies of releasing sterile mosquitoes have been explored in sev-
eral studies such as [9, 26, 27, 28]. Cai et al. [9] formulated continuous-time mathematical models
for the interactive dynamics of the wild and sterile mosquitoes with different releasing strategies and
the mosquito population had been assumed to be homogeneous without distinguishing their gender.
Moreover, all mosquitoes go through four distinct stages (e.g., egg, pupa, larva, and adult) during their
whole lifetime. The first three stages occur in water, but the adult are active in the air. Only the female
mosquitoes bite and feed on the blood of human beings or other animals. Li et al. [27] divided the
mosquito population into only two classes (the larvae and the adult) and formulated stage-structured
mosquito population models with different strategies for releasing the sterile mosquitoes. Soon af-
terwards, Li [26] revised the models studied in [27] and formulated new models which considered
the density dependence on the newborns survivals. In recent years, several interesting mathematical
models have also been developed to investigate the dynamics of sterile mosquitoes, for instance, the
discrete models in [29], the delayed models in [8], and the stage-structured discrete models in [30].
Discrete-time models for releases of sterile mosquitoes with Beverton-Holt-type of survivability were
formulated by Y. Li and J. Li in [29]. In these discrete models, complexity in fact may not be created by
the interaction of the wild and sterile mosquitoes but is from the Ricker type nonlinearity [28]. A sim-
ilar technique by utilizing bacterial symbiont Wolbachia has also been applied to prevent and control
Dengue Fever and Zika transmissions. Mathematical models, including those based on delay differ-
ential equations [19, 40], have been formulated recently to study the mosquito suppression dynamics.
While these existing studies in the literature focused on applications of SIT to mosquitoes control have
made significant progress to help us answer those challenging questions, most of them have assumed
homogeneous populations or populations with stage structures without distinguishing the genders of
mosquitoes.

Because the next generations of mosquitoes are produced by sexual reproduction and we only re-
lease sterile male mosquitoes into the environment, sex structure needs to be considered in mathemati-
cal models. Esteva et al. [15] proposed a sex-structured model to assess the effectiveness of SIT applied
to the Aedes aegypti mosquito population. They divided the life cycle of an insect into two stages: the
immature (eggs, larvae and pupae) and the adult (females before mating, mating fertilized females,
mating unfertilized females, males). For the disadvantages of that study, theoretical analysis for the
global asymptotic stability of the equilibria was not carried out. Recently, a sex-structured model was
developed for a mosquito population infected with Wolbachia [16]. The model captured the key ef-
fects of Wolbachia infection including cytoplasmic incompatibility and male killing. The conditions
for the existence and local stability of equilibria, including boundary equilibria, were obtained. As the
progress on sexual structure mosquitoes populations has been made in those studies, the focus was on
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other control measures than SIT, and the transmission mechanism for SIT is different.
In this paper, we include sexual structure in models for interactive wild and sterile mosquitoes fol-

lowing the line in [9, 26], and concentrate on the dynamics of the sex-structured models in the absence
or presence of sterile mosquitoes and explore the impact of different strategies of releasing sterile
mosquitoes on the model dynamics. We first consider the mosquito population with distinguishing
male and female individuals in the absence of sterile mosquitoes, and the cases with or without Allee
effects [1, 12] are both considered in the model formulation in Section 2. Complete mathematical anal-
ysis is performed. Then, we formulate a two-sex model in the presence of sterile mosquitoes, where
the release rate of sterile mosquitoes is constant in Section 3. To have a more optimal and economically
effective strategy [2, 32] in an area where the population size of wild mosquitoes is relatively small,
we establish a model with the release rate of sterile mosquitoes proportional to the population size of
the wild male mosquitoes in Section 4. Since it is possibly difficult for mosquitoes to find mates in an
area with small population size, we incorporate the Allee effects in the model formulation. We pro-
vide complete mathematical analysis and numerical simulations to show the complexity of the model
dynamics as well. We finally give brief discussions in Section 5.

2. In the absence of sterile mosquitoes

We first consider, in the absence of sterile mosquitoes, two different situations where the wild
mosquito population size is sufficiently large or relatively small so that the Allee effects need to be
included or not.

2.1. Without Allee effects

Let F and M be the wild female and male mosquito populations. If no Allee effect is included, the
model equations are given by

F′ = αCF
(
1 −

F + M
K

)
− µF F,

M′ = (1 − α)CF
(
1 −

F + M
K

)
− µM M.

(2.1)

where α is the fraction of female newborns, C is the number of wild offspring produced per unit time,
per female mosquito through all mating [2, 10, 14, 18, 35, 37], and µF and µM are the deaths rates of
the wild female and male mosquito respectively. Notice that the M-axis is an invariant set of system
(2.1). Then the set

Ω1 := {(F,M) : 0 ≤ F + M ≤ K}

is a positively invariant and attracting set for the flows of (2.1) in the nonnegative quadrant.
The origin is an equilibrium, and the Jacobian matrix of system (2.1) at the origin is(

αC − µF 0
· −µM

)
=

(
µF(r0 − 1) 0
· −µM

)
,

where
r0 :=

αC
µF

(2.2)
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is the intrinsic growth rate, which is the difference between an average birth rate and an average death
rate. As the mosquito population persistently exists in nature, we assume r0 > 1. Under this assump-
tion, it is easy to prove that the origin is unstable.

We next consider positive equilibria of system (2.1) which we denote as (F∗,M∗). A positive equi-
librium satisfies

αC
(
1 −

F∗ + M∗

K

)
= µF ,

(1 − α)CF∗
(
1 −

F∗ + M∗

K

)
= µM M∗.

(2.3)

It follows from (2.3) that

F∗ =
αµM

(1 − α)µF
M∗ := PM∗. (2.4)

Substituting (2.4) into (2.3), we have

F∗ = PM∗, M∗ =

(
αC
µF
− 1

)
KµF

αC(1 + P)
= (r0 − 1)

KµF

αC(1 + P)
. (2.5)

Then there exists a unique positive equilibrium E∗0 := (F∗,M∗) if and only if r0 > 1.
The Jacobian matrix at E∗0 has the form

J0 :=


−
αC
K

F∗ −
αC
K

F∗

(1 − α)C
(
1 −

2F∗ + M∗

K

)
−

(1 − α)C
K

F∗ − µM

 .
Then

trJ0 = −
C
K

F∗ − µM < 0,

and

det J0 =
αC
K

F∗
(
(1 − α)C

(
1 −

F∗ + M∗

K

)
+ µM

)
> 0,

Thus E∗0 is locally asymptotically stable.
Write the right-hand side of system (2.1) as f1 and f2, respectively. Then it follows from

∂

∂F

(
f1

F

)
+

∂

∂M

(
f2

F

)
< 0,

for F > 0 and M > 0, that system (2.1) has no closed orbits.
In summary, we have the following results.

Theorem 2.1. For the system (2.1), the origin (0, 0) is globally asymptotically stable if r0 ≤ 1 and
unstable if r0 > 1. There exists a unique positive equilibrium E∗0 given by (2.5) if and only if r0 > 1 and
this unique positive equilibrium is globally asymptotically stable if it exists.
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2.2. With Allee effects

We now incorporate the Allee effect [33] to account for the difficulty and stochasticity of finding
mates when the population of mosquitoes is small. Then we consider the following model equations

F′ = αCF
M

γ + M

(
1 −

F + M
K

)
− µF F,

M′ = (1 − α)CF
M

γ + M

(
1 −

F + M
K

)
− µM M,

(2.6)

where γ > 0 is a parameter to characterize the Allee effects.
Clearly, set Ω1 is also a positively invariant and attracting set for the flows of (2.6) in the nonnegative

quadrant.
The origin (0, 0) is an equilibrium and the eigenvalues of the Jacobian at it are −µF and −µM. Thus

it is always locally asymptotically stable.
We then investigate the existence of positive equilibria which satisfy

αC
M

γ + M

(
1 −

F + M
K

)
= µF ,

(1 − α)C
F

γ + M

(
1 −

F + M
K

)
= µM.

(2.7)

Similarly as in (2.4), we have F = PM. Substituting it into the first equation in (2.7), we have

αCM(K − (1 + P)M) = µF K(γ + M), (2.8)

or, equivalently, the following quadratic equation

αC(1 + P)M2 + K(µF − αC)M + µF Kγ = 0. (2.9)

Then there exists no, one positive equilibrium (F,M) = (PM,M) with

M =
K(αC − µF)
2αC(1 + P)

,

or two positive equilibria (PM−,M−) and (PM+,M+) where

M∓ =
K(αC − µF) ∓

√
∆

2αC(1 + P)
(2.10)

with
∆ := K2(µF − αC)2 − 4αCµF Kγ(1 + P), (2.11)

if ∆ < 0, ∆ = 0, or ∆ > 0, respectively.
We next determine the stability of the positive equilibria as follows.
The Jacobian matrix of system (2.6) at an equilibrium has the form

J1 :=


−

αCFM
K(γ + M)

µFγF
M(γ + M

−
αCFM

K(γ + M)
µM M

F
−

(1 − α)CFM
K(γ + M)

−
µM M
γ + M

−
(1 − α)CFM

K(γ + M)

 . (2.12)
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It is clear that trJ1 < 0 and

det J1 =
αCµMFM2

K(γ + M)2 +
α(1 − α)C2F2M2

K2(γ + M)2

−
µFµMγ

γ + M
+
αCµM M2

K(γ + M)
+

(1 − α)CµFγF2

K(γ + M)2 −
α(1 − α)C2F2M2

K2(γ + M)2

=
αCµMFM2

K(γ + M)2 −
µFµMγ

γ + M
+
αCµM M2

K(γ + M)
+

(1 − α)CµFγF2

K(γ + M)2 ,

that is, (
K(γ + M)2) det J1 = αCµMFM2 + (1 − α)CµFγF2 +

(
αCµM M2 − KµFµMγ

)
(γ + M)

= αCµMPM3 + (1 − α)CµFγP2M2 + αCµM M3

+ αCµMγM2 − µFγK(γ + M)µM.

It then follows from (2.8) that(
K(γ + M)2) det J1 = αCµM

(
1 + P

)
M3 + Cγ

(
(1 − α)µF P2 + αµM

)
M2

− αCγM(K − (1 + P)M)µM,

that is,

K(γ + M)2

CM
det J1 = αµM(1 + P)M2 + γ

(
(1 − α)µF P2 + αµM + αµM(1 + P)

)
M

− αµMγK.
(2.13)

Write the right-hand side of (2.13) as quadratic function H(M). Then the unique positive root of
H(M) is

Mc :=

√
γ2((1 − α)µF P2 + αµM + αµM(1 + P)

)2
+ 4α2µ2

Mγ(1 + P)K

2αµM(1 + P)

−
γ
(
(1 − α)µF P2 + αµM + αµM(1 + P)

)
2αµM(1 + P)

.

(2.14)

It follows from
P =

αµM

(1 − α)µF

that

(1 − α)µF P2 + αµM + αµM(1 + P) = αµMP + αµM + αµM(1 + P)
= 2αµM(1 + P).

(2.15)

Thus

γ2((1 − α)µF P2 + αµM + µMα(1 + P)
)2

+ 4α2µ2
Mγ(1 + P)K

= γ2(2αµM(1 + P))2 + 4α2µ2
Mγ(1 + P)K

=
(
2αµM)2γ(1 + P) (γ(1 + P) + K) ,

(2.16)
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and hence

Mc =

√
γ(1 + P) (γ(1 + P) + K)

1 + P
− γ =

√
γ
(
γ +

K
1 + P

)
− γ. (2.17)

Suppose ∆ > 0 such that there exist two positive equilibria M∓. Notice that H(0) = −αµMK < 0
and H(Mc) = 0. If M− < Mc and M+ > Mc, and thus

H(M−) =
K(γ + M−)2

CM−
det J1|M− < 0, H(M+) =

K(γ + M+)2

CM+
det J1|M+ > 0,

then equilibrium (PM−,M−) is unstable and (PM+,M+) is locally asymptotically stable.
To this end, we first consider

αC(1 + P)(M− − Mc)(M+ − Mc) = Q(Mc). (2.18)

Then, it is clear that to show M− < Mc and M+ > Mc is equivalent to show Q(Mc) < 0.
It follows from (2.9) that

Q(Mc) = αC(1 + P)M2
c + K(µF − αC)Mc + µF Kγ

= αC(1 + P)

√γ
(
γ +

K
1 + P

)
− γ

2

+ K(µF − αC)

√γ
(
γ +

K
1 + P

)
− γ

 + µF Kγ

= αC(1 + P)

γ (
2γ +

K
1 + P

)
− 2

√
γ
(
γ +

K
1 + P

)
+ K(µF − αC)

√γ
(
γ +

K
1 + P

)
− γ

 + µF Kγ

= 2αC(1 + P)γ2 + 2αCKγ − 2αC(1 + P)γ

√
γ
(
γ +

K
1 + P

)
+ K(µF − αC)

√
γ
(
γ +

K
1 + P

)
.

Thus Q(Mc) < 0 if and only if

2αCγ ((1 + P)γ + K) < (2αC(1 + P)γ + K(αC − µF))

√
γ
(
γ +

K
1 + P

)
. (2.19)

By squaring both sides of (2.19), it is equivalent to

(1 + P)(2αC)2γ2 ((1 + P)γ + K)2 < (2αC(1 + P)γ + K(αC − µF))2 γ
(
1 + P)γ + K

)
,

which leads to

(1 + P)(2αC)2γ ((1 + P)γ + K) < (2αC(1 + P)γ + K(αC − µF))2 ,
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that is,

(2αC)2 (1 + P)2γ2 + (2αC)2(1 + P)Kγ < (2αC(1 + P)γ + K(αC − µF))2

=
(
2αC(1 + P)γ

)2
+ (2αC)2(1 + P)Kγ − 4αC(1 + P)γKµF + K2(αC − µF)2,

or

0 < −4αC(1 + P)γKµF + K2(αC − µF)2 = ∆.

Hence, if ∆ > 0 such that there exist two positive equilibria M∓, equilibrium (PM−,M−) is unstable
and (PM+,M+) is locally asymptotically stable.

Moreover, write the right-hand side of system (2.6) as g1 and g2, respectively, and D :=
γ + M
FM

for
FM > 0. Then it follows from

∂ (g1D)
∂F

+
∂ (g2D)
∂M

< 0,

for F > 0 and M > 0, that system (2.6) has no closed orbits.
The existence and stability of all equilibria of system (2.6) can be summarized as follows.

Theorem 2.2. For system (2.6) with Allee effects, we have the following results with ∆ given in (2.11).

1. System (2.6) has no closed orbits.
2. If ∆ < 0, there exists no positive equilibrium and the origin (0, 0) is globally asymptotically stable.
3. If ∆ = 0, there exists one positive equilibrium (F,M) = (PM,M) which is an unstable saddle-node

and the origin (0, 0) is locally asymptotically stable.
4. If ∆ > 0, there exist two positive equilibria (PM−,M−) and (PM+,M+) where M∓ are given in

(2.10). The origin (0, 0) is locally asymptotically stable, equilibrium (PM−,M−) is unstable and
equilibrium (PM+,M+) is locally asymptotically stable.

3. Constant releases of sterile mosquitoes

Let M̃ be the sterile mosquito population and µ2 be the death rate of the sterile mosquitoes. We now
assume that sterile mosquitoes are released constantly into the wild mosquito field. Since, in this case,
mosquitoes should always be able to find mates, Allee effects need not be included. Then the model
equations for the wild mosquitoes are based on (2.1) and the interactive dynamics are governed by the
system

F′ = αCF
M

M + βM̃

(
1 −

F + M
K

)
− µF F,

M′ = (1 − α)CF
M

M + βM̃

(
1 −

F + M
K

)
− µM M,

M̃′ = b − µ2M̃,

(3.1)

where β measures the competition between wild and sterile male mosquitoes for female mates.
The equation for M̃′ is decoupled from the first two equations in (3.1) and it is clear that lim

t→∞
M̃ =

b
µ2

:= M̃0. Then since the F- and M-axes both are an invariant set of system (3.1), the planar set

Ω2 := {(F,M, M̃) : 0 ≤ F + M ≤ K, M̃ = M̃0}
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is a positively invariant and attracting set for the flows of (3.1) in the nonnegative octant. Moreover,
write the right-hand sides of the first two equations in (3.1) as h1 and h2, respectively. Then it follows
from

∂(h1L)
∂F

+
∂(h2L)
∂M

= −
αC

K(M + βM̃)
−

(1 − α)C
(M + βM̃)2

(
1 −

F + M
K

)
−

(1 − α)C
K(M + βM̃)

< 0,

where L = 1
FM , that system (3.1) has no closed orbits in the interior of Ω2.

System (2.6) has a boundary equilibrium E0 := (0, 0, M̃0) with M̃0 := b/µ2, and the eigenvalues of
the Jacobian at E0 are −µF , −µM, and −µ2. Thus boundary equilibrium E0 is always locally asymptoti-
cally stable.

We then investigate the existence of positive equilibria which satisfy

αC
M

M + βM̃

(
1 −

F + M
K

)
= µF ,

(1 − α)C
F

M + βM̃

(
1 −

F + M
K

)
= µM,

b = µ2M̃.

(3.2)

At a positive equilibrium, M̃ = M̃0. Substituting it into the first two equations in (3.2) and letting
γ = βM̃0 in system (2.7), we can immediately obtain, from (2.11), the existence threshold

∆c = K2(µF − αC)2 − 4αCµF KβM̃0(1 + P) = K2(µF − αC)2 − 4αCµF Kβ(1 + P)
b
µ2
,

and then define the threshold value for the sterile mosquito release rate as

bc :=
K2(µF − αC)2µ2

4αCµF Kβ(1 + P)
=

K(µF − αC)2µ2(1 − α)
4αCβ(αµM + (1 − α)µF)

. (3.3)

Thus there exists no, one positive equilibrium (F,M, M̃0) = (PMc,Mc, M̃0) where

Mc =
K(αC − µF)
2αC(1 + P)

,

or two positive equilibria E−c := (PM−
c ,M

−
c , M̃0) and E+

c := (PM+
c ,M

+
c , M̃0) where

M∓
c =

K(αC − µF) ∓ 2
√
αCµF Kβ(1 + P)

µ2

√
bc − b

2αC(1 + P)

=
Kµ2(αC − µF) ∓ 2

√
αCµFµ2Kβ(1 + P)(bc − b)

2αCµ2(1 + P)
,

(3.4)

if b > bc, b = bc, or b < bc, respectively.
In the case of b > bc, there is no positive equilibrium and then the only boundary equilibrium E0

is globally asymptotically stable. If b < bc, because of the attractability of region Ω2, it follows again
from Section 2.2 that equilibrium E−c is unstable and E+

c is locally asymptotically stable. In summary,
we have the following results.
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Theorem 3.1. Define threshold bc in (3.3) for the releases of sterile mosquitoes for system (3.1). Then

1. System (3.1) has no closed orbits.
2. If b > bc, there is no positive equilibrium and the boundary equilibrium E0 is globally asymptoti-

cally stable.
3. If b = bc, there is one positive equilibrium (F,M, M̃) which is an unstable saddle-node, and the

boundary equilibrium E0 is locally asymptotically stable.
4. If b < bc, there are two positive equilibrium E−c and E+

c . Equilibrium E−c is unstable and E+
c is

locally asymptotically stable.

To confirm our theoretical results, a numerical example for the constant release of sterile mosquitoes
is given below.

Example 1. Parameters are given as

α = 0.5,C = 10, µF = 0.5, µM = 0.5, µ2 = 0.6,K = 6, β = 0.5 (3.5)

such that the release threshold is bc = 7.29. For b = 8 > bc, there exists no positive equilibrium.
All solutions approach boundary equilibrium E0 = (0, 0, 13.33), as shown in the upper left figure
in Figure 1. For b = 7 < bc, there exist two positive equilibria E−c = (1.0902, 1.0902, 11.67) and
E+

c = (1.6098, 1.6098, 11.67). Equilibrium E−c is an unstable saddle and E+
c is a stable node. Solutions

approach either the boundary equilibrium or E+
c depending on their initial values, as shown in the upper

right figure in Figure 1. (The trajectories versus time t are also provided in the lower figures in Figure
1.) The wild mosquitoes may be wiped out, or the two types of mosquitoes may coexist, depending on
the initial sizes of the wild and sterile mosquitoes in this case.

4. Releases proportional to the wild male mosquito population

In this section, we assume that the release rate of sterile mosquitoes is proportional to the wild male
mosquito population size. Considering the sterile mosquitoes compete with the wild male mosquitoes
and the sex ratio remains a constant at the positive equilibria, we establish the model with the release
rate proportional to only the wild male mosquito population size, which will have little bearing on the
result. Moreover, as stated in [2], the effectiveness of SIT is related to the ratio of released sterile males
to wild fertile males. In the case where both the wild mosquito population density and the initial sterile
mosquito population density are small, mosquitoes may have difficulty finding mates. Then, Allee
effects are included in the model, and the model equations for the wild mosquitoes are based on (2.6)
and the interactive dynamics are governed by the following system:

F′ = αCF
M

1 + M + βM̃

(
1 −

F + M
K

)
− µF F,

M′ = (1 − α)CF
M

1 + M + βM̃

(
1 −

F + M
K

)
− µM M,

M̃′ = bM − µ2M̃,

(4.1)

where, similarly, β measures the competition between wild and sterile male mosquitoes for female
mates.
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Figure 1. Parameters are given in (3.5) and the release threshold is bc = 7.29. For b =

8 > bc, there exists no positive equilibrium. All solutions approach boundary equilibrium
E0 = (0, 0, 13.33), as shown in the upper left figure. For b = 7 < bc, there exists two positive
equilibria E−c = (1.0902, 1.0902, 11.67) and E+

c = (0.6098, 1.6098, 11.67), as provided in the
right-side figure. Equilibrium E−c is an unstable and E+

c is a stable node. Solutions approach
either boundary equilibrium E0 or E+

c depending on their initial values. The trajectories
versus time t are also provided in the two lower figures, where solutions approach E0 as on
the left figure and approach E+

c as on the right figure.
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In the nonnegative octant, it is clear that the MM̃- and FM̃- planes are both an invariant set of
system (4.1). On the FM- plane, M̃′ ≥ 0. Hence the set

Ω3 :=
{

(F,M, M̃) : 0 ≤ F + M ≤ K, 0 ≤ M̃ ≤
bK
µ2

}
is a positively invariant and attracting set for the flows of (4.1) in the nonnegative octant.

System (4.1) now has the origin (0, 0, 0) as a trivial equilibrium and the eigenvalues of the Jacobian
at it are −µF , −µM, and −µ2. Thus the origin (0, 0, 0) is always locally asymptotically stable. It follows
from the third equation in system (4.1) that if M = 0, then M̃ = 0 and F = 0; if M̃ = 0, then M = 0 and
F = 0; and if F = 0, then M = 0 and M̃ = 0. Hence there exists no boundary equilibrium for system
(4.1).

We then investigate the existence of positive equilibria which satisfy

αC
M

1 + M + βM̃

(
1 −

F + M
K

)
= µF ,

(1 − α)C
F

1 + M + βM̃

(
1 −

F + M
K

)
= µM,

M̃ =
bM
µ2

.

(4.2)

Substituting M̃ into the first two equations in (4.2), we have

αC
M

1 +

(
1 +

bβ
µ2

)
M

(1 −
F + M

K
) = µF ,

(1 − α)C
F

1 +

(
1 +

bβ
µ2

)
M

(1 −
F + M

K
) = µM.

(4.3)

Let
γ̄ =

µ2

µ2 + bβ
, C̄ := Cγ̄.

Then system (4.3) becomes

αC̄
M

γ̄ + M

(
1 −

F + M
K

)
= µF ,

(1 − α)C̄
F

γ̄ + M

(
1 −

F + M
K

)
= µM.

(4.4)

Based on the results of system (2.7) and equation (2.9), the corresponding quadratic equation is

αC̄(1 + P)M2 + K(µF − αC̄)M + µF Kγ̄ = 0, (4.5)

and the threshold value of sterile mosquito releases has the form

∆p = K2(αC̄ − µF)2 − 4αC̄µF Kγ̄(1 + P)

= K2
(
αCµ2

µ2 + bβ
− µF

)2

− 4αCµF K
(

µ2

µ2 + bβ

)2
αµM + (1 − α)µF

(1 − α)µF
.

(4.6)
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Solving for b > 0 in (4.6), we then define the threshold value for the sterile mosquito per capita release
rate for system (4.1) as

bp := µ2
(αC − µF)

√
K(1 − α) − 2

√
αC(αµM + (1 − α)µF)

βµF
√

K(1 − α)
, (4.7)

such that there exists no, one positive equilibrium E∗ =

(
F∗,M∗,

b
µ2

M∗

)
where

M∗ =
K(αC̄ − µF)
2αC̄(1 + P)

=
K (αCγ̄ − µF)
2αCγ̄(1 + P)

=
K(αC − µF(1 +

βb
µ2

))

2αC(1 + P)
,

or two positive equilibria E−p :=
(
PM−

p ,M
−
p ,

b
µ2

M−
p

)
and E+

p :=
(
PM+

p ,M
+
p ,

b
µ2

M+
p

)
where

M∓
p =

K(αC̄ − µF) ∓
√

K2(αC̄ − µF)2 − 4αC̄(1 + P)µF Kγ̄
2αC̄(1 + P)

=
K(αC − µF(1 +

βb
µ2

)) ∓
√

K2(αC − µF(1 +
βb
µ2

))2 − 4αC(1 + P)µF K

2αC(1 + P)
,

(4.8)

if b > bp, b = bp, or b < bp, respectively.
We next determine the stability of the positive equilibria as follows.
The Jacobian matrix of system (4.1) at an equilibrium has the form

J2 :=
−

αCFM
K(1 + M + βM̃0)

µF(1 + βM̃0)F
M(1 + M + βM̃0)

−
αCFM

K(1 + M + βM̃0)
−

βµF F
1 + M + βM̃0

µM M
F
−

(1 − α)CFM
K(1 + M + βM̃0)

−
µM M

1 + M + βM̃0
−

(1 − α)CFM
K(1 + M + M̃0)

−
βµM M

1 + M + βM̃0
0 b −µ2

 .
(4.9)

It is clear that trJ2 < 0. We then compute the determinant of det J2.
Simple algebra yields

det J2 =∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

α

1 − α
·
µM M

F
µF(1 + βM̃0)F

M(1 + M + βM̃0)
+

α

1 − α
·

µM M
1 + M + βM̃0

0

µM M
F
−

(1 − α)CFM
K(1 + M + βM̃0)

−
µM M

1 + M + βM̃0
−

(1 − α)CFM
K(1 + M + βM̃0)

−
βMµM

1 + M + βM̃0
0 b −µ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣
−µF

α

1 − α
µM 0

µM M
F
−

(1 − α)CFM
K(1 + M + βM̃0)

−
µM M

1 + M + βM̃0
−

(1 − α)CFM
K(1 + M + βM̃0)

−
βMµM

1 + M + βM̃0
0 b −µ2

∣∣∣∣∣∣∣∣∣∣∣∣ .
(4.10)
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Writing

J21 :=
µM M

F
−

(1 − α)CFM
K(1 + M + βM̃0)

,

J22 := −
µM M

1 + M + βM̃0
−

(1 − α)CFM
K(1 + M + βM̃0)

,

J23 := −
βMµM

1 + M + βM̃0
,

we have

det J2 =

∣∣∣∣∣∣∣∣∣
−µF µF P 0
J21 J22 J23

0 b −µ2

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
−µF 0 0
J21 J22 + PJ21 J23

0 b −µ2

∣∣∣∣∣∣∣∣∣
=µFµ2(J22 + PJ21 +

b
µ2

J23)

=µFµ2(J22 + PJ21) + bµF J23.

(4.11)

By further writing D := 1 + M + βM̃0, we have

J22 + PJ21 = −
µM M

D
−

(1 − α)CFM
KD

+ µM − P
(1 − α)CFM

KD

=µM(1 −
M
D

) −
(1 − α)CFM

KD
− P

(1 − α)CFM
KD

=µM
1 + βM̃0

D
− (1 + P)

(1 − α)CPM2

KD

=µM
1 + βM̃0

D
−

(1 − α)P
KD

C(1 + P)M2.

(4.12)

It follows from (4.5) that

C̄(1 + P)M2 =
1
α

(
−µF Kγ̄ − K

(
µF − αC̄

)
M

)
,

that is,

C(1 + P)M2 = −
K
α

(
µF +

(
µF

γ̄
− αC

)
M

)
. (4.13)
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Substituting (4.13) into (4.12) yields

J22 + PJ21 =µM
1 + βM̃0

D
+

(1 − α)P
Dα

(
µF +

(
µF

γ̄
− αC

)
M

)
=µM

1 + βM̃0

D
+

µM

DµF

(
µF +

(
µF

γ̄
− αC

)
M

)
=
µM

D

(
2 +

(
bβ
µ2

+
1
γ̄
−
αC
µF

)
M

)
=
µM

D

(
2 +

(
1 +

2bβ
µ2
−
αC
µF

)
M

)
,

(4.14)

and then substituting (4.14) into (4.11), we arrive at

det J2 =
µFµMµ2

D

(
2 +

(
1 +

2bβ
µ2
−
αC
µF

)
M

)
−
βbµFµM

D
M

=
µFµMµ2

D

(
2 +

(
1 +

2bβ
µ2
−
αC
µF

)
M −

βb
µ2

M
)

=
µFµMµ2

D

(
2 −

(
αC
µF
−

(
1 +

bβ
µ2

))
M

)
=
µFµMµ2

D

(
2 −

(
αC
µF
−

1
γ̄

)
M

)
.

(4.15)

Suppose b < bp such that there exist two positive equilibria. Then from (4.8), we can rewrite M∓
p as

M∓
p =

B ∓
√

B2 − 4AC
2A

,

where A := αC̄(1 + P) > 0, B := K(αC̄ − µF) > 0, and C := µF Kγ̄ > 0 for short, and B2 > 4AC from
b < bp. Then

2−
(
αC
µF
−

1
γ̄

)
M∓

p = 2 −
αC̄ − µF

µF γ̄
M∓

p = 2 −
B
C

M∓
p

=
1
C

(
2C − BM∓

p

)
=

1
C

2C − B
B ∓
√

B2 − 4AC
2A


=

1
2AC

(
4AC − B2 ± B

√
B2 − 4AC

)
=

√
B2 − 4AC

2AC

(
±B −

√
B2 − 4AC

)
.

(4.16)

Hence

det J2|E−p =
µFµMµ2

D

√
B2 − 4AC

2AC

(
B −
√

B2 − 4AC
)
> 0,

and

det J2|E+
p

=
µFµMµ2

D

√
B2 − 4AC

2AC

(
−B −

√
B2 − 4AC

)
< 0.
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An immediate conclusion is that the positive equilibrium E−p is unstable.
For the stability of E+

p , we employ the Routh-Hurwitz stability criterion as follows.
Let the characteristic polynomial of J2 be

P(λ) = λ3 + a1(M)λ2 + a2(M)λ + a3(M).

Straight calculations yield

a1(M) = −trJ2 = −J11 + µ2 − J22,

a2(M) =

3∑
i=1

Di = −µF J22 − µF PJ21 − µ2J22 − bJ23 − J11µ2,

a3(M) = −detJ2 = −µFµ2(J22 + PJ21 +
b
µ2

J23),

(4.17)

where Di, i = 1, 2, 3, are the 2 × 2 principal minors of J2, and we write J11 =
−αCFM

KD
.

It is clear that a1(M+
p ) > 0 and we have previously shown a3(M) > 0. Thus the stability of E+

p is
determined by whether a1(M+

p )a2(M+
p ) > a3(M+

p ). We write

a2(M) = −µ2(J11 + J22) −
(
µF

(
J22 + PJ21 +

1
µ2

bJ23

)
+ (1 −

µF

µ2
)bJ23

)
= −µ2(J11 + J22) +

1
µ2

a3(M) − (1 −
µF

µ2
)bJ23

(4.18)

and H(M) = a1(M)a2(M) − a3(M). Then it follows from J11 < 0, J22 < 0, J23 < 0, a1(M+
p ) > 0, and

a3(M+
p ) > 0 that if we assume µ2 ≥ µF ,

H(M+
p ) = −µ2(J11 + J22)a1(M+

p ) −
J11 + J22

µ2
a3(M+

p ) − (µ2 − µF)
bJ23

µ2
a1(M+

p ) > 0. (4.19)

Therefore, positive equilibrium E+
p is locally asymptotically stable under the assumption of µ2 ≥ µF .

In summary, we have the following results.

Theorem 4.1. Define the threshold bp in (4.7) for the release of sterile mosquitoes for system (4.1).
Then

1. If b > bp, there is no positive equilibrium and the origin (0, 0, 0) is globally asymptotically stable.
2. If b = bp, there exists one positive equilibrium E∗ which is unstable, and the origin (0, 0, 0) is

locally asymptotically stable.
3. If b < bp, there exist two positive equilibrium E−p and E+

p . Equilibrium E−p is always an unstable
saddle and E+

p is locally asymptotically stable under the assumption of µ2 ≥ µF .

Notice that the model dynamics become more complex when µ2 < µF . Equilibrium E−p is still al-
ways an unstable saddle, but E+

p is no longer necessarily locally asymptotically stable. Even though we
have been unable to find stable or unstable closed orbits when E+

p is unstable, solutions initially close
to it can eventually approach the origin spirally. Example 2 demonstrates the dynamical complexity of
system (4.1).
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Example 2. Parameters are given as

α = 0.4,C = 10, µF = 0.2, µM = 0.2, µ2 = 0.16,K = 20, β = 0.3, (4.20)

so that the release threshold is bp = 8.7563. For b = 8.3 < bp, there exist two positive equilibria
E−p = (0.2336, 0.3505, 18.1801) and E+

p = (1.1414, 1.7120, 88.8121). Equilibrium E−p is an unstable
saddle and E+

p is a stable spiral. Solutions approach either the origin or E+
p oscillatorily, as shown in

the left figure in Figure 2. However, for b = 8.448, which is still less than bp, although there still
exist two positive equilibria E−p = (0.2676, 0.4015, 21.1972) and E+

p = (0.9964, 1.4945, 78.9116) and
equilibrium E−p is still an unstable saddle, E+

p becomes an unstable spiral. Solutions all approach the
origin as shown in the right figure in Figure 2.
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Figure 2. Parameters are given in (4.20) and the release threshold is bp = 8.7563. For
b = 8.3 < bp, there exist two positive equilibria E−p = (0.2336, 0.3505, 18.1801), which
is an unstable saddle, and E+

p = (1.1414, 1.7120, 88.8121), which is a stable spiral. The
solution initially starting from X10 = (1, 1.7, 88) spirals towards E+

p and the solution initially
starting from X20 = (1, 1.7, 51.2) approaches the origin as both shown in the left figure. With
the same parameters but b = 8.448 < bp however, there still exist two positive equilibria
E−p = (0.2676, 0.4015, 21.1972) and E+

p = (0.9964, 1.4945, 78.9116). Equilibrium E−p is still
an unstable saddle, but E+

p becomes an unstable spiral. As shown in the right figure, the
solution initially starting from X30 = (0.9, 1.5, 80) oscillates first, and then approaches the
origin for t sufficiently large. Another solution initially starting from X40 = (1, 1.3, 79) has
similar dynamics, but approaches the origin much faster than the first solution.

5. Concluding remarks

We formulated sex-structured models for interactive wild and sterile mosquitoes, following [9, 26],
and studied the models dynamics with different sterile mosquito release strategies. We analyzed mod-
els without sterile mosquitoes, including a model with Allee effect, as well as models with male sterile
mosquitoes that are released at a constant rate or a rate that is proportional to the wild male mosquitoes.
We then studied the dynamics of interactive wild and sterile mosquitoes, more specifically, the exis-
tence and stability of all equilibria. We established threshold values, bc and bp, for the two model
systems (3.1) and (4.1), respectively. We showed that, for the case of constant releases, if the release
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rate is greater than the threshold, that is, b > bc, there exists no positive equilibrium and the boundary
equilibrium where the two components for the wild mosquitoes are both zero and the component for
the sterile mosquitoes is positive, is globally asymptotically stable. Thus, all wild mosquitoes will be
wiped out eventually. If, on the other hand, b < bc, the boundary equilibrium is locally asymptotically
stable and there exist two positive equilibria, one of which is unstable and the other is locally asymp-
totically stable. Either all wild mosquitoes will go extinct or the two types of mosquitoes coexist,
depending on their initial values. There is no closed orbit for the model system with constant releases.

The dynamics for the releases proportional to the size of wild male mosquitoes are relatively similar
to those of constant releases, except that the origin (0, 0, 0) is an equilibrium and there is no boundary
equilibrium. If b > bp, there exists no positive equilibrium and the origin is globally asymptotically
stable. If b < bp, the origin is locally asymptotically sable and there exist two positive equilibria.
One of the two positive equilibria is always unstable and the other can be either locally asymptotically
stable or unstable. If it is locally asymptotically stable, solutions approach either the origin or the stable
positive equilibrium. Thus, either all mosquitoes go extinct eventually or the two types of mosquitoes
coexist, depending on their initial sizes. If the other positive equilibrium is unstable, on the other hand,
all the wild female and male mosquitoes are eventually wiped out. Note that this unstable positive
equilibrium can be a spiral and there might possibly exist closed orbits. However, we unfortunately
haven’t been able to find any although we are unable to prove their nonexistence yet.

We considered, using parameter β, the competition between wild and sterile male mosquitoes for
their wild female mates in this study. It plays a role in determining the release thresholds and the wild
mosquito components when the two types of mosquitoes coexist. According to Davis et al. [11] radio-
sterilized male mosquitoes are not as competitive as normal males in mating with normal females.
(See also [23].) So, increasing the mating competitiveness of sterilized male mosquitoes is essential
to achieve sterility in a substantial part of the total population. It follows from the formulas for the
thresholds in (3.3) and (4.7), the two thresholds are proportional to the reciprocal of β such that they
are reduced as β increases. Following from the formulas for the wild mosquito components at the
stable positive equilibria for the constant releases of sterile mosquitoes in (3.4), we have

αCµFµ2Kβ(1 + P)(bc − b) = K1 − K2β,

and then
M+

c = A1 + A2

√
K1 − K2β,

where A1, A2, K1 and K2 are all positive constants, independent of β. Hence, M+
c , if exists, decreases

as β increases. Similarly, we can also show that M+
p , if exists, decreases linearly as β increases. Thus,

as the sterile male mosquitoes are more capable to compete for female wild mates, the required release
thresholds of sterile mosquitoes are reduced and, if the number of releases is less than the threshold
such that the wild mosquitoes still exist, the wild components for the wild mosquitoes at the stable
positive equilibria are reduced too for both of the two release strategies. Therefore, it seems that more
attention needs to be given to increasing the competitiveness of sterile mosquitoes before they are
released.

We notice that the dynamics of the sexual-structured model systems with different strategies of
releases investigated in this paper are similar to the dynamics of the model systems in [26] where
all mosquitoes are assumed homogeneous without distinguishing their gender. That is, based on the
threshold values of releases and under certain other conditions, there exist two positive equilibria,
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one of which is unstable and one of which is locally asymptotically stable for both of the two model
systems. System (3) has a boundary equilibrium (0, 0, g0) and system (4) has the trivial equilibrium
(0, 0, 0) other than the positive equilibria. Solutions approach either the boundary (or the trivial) equi-
librium or the stable positive equilibrium, depending on their initial values. Nevertheless, the analysis
is more difficult for the three-dimensional systems in this paper than the two-dimensional systems in
[26]. As is illustrated above, the inclusion of the mosquitoes’ sexual structure is necessary from the
biology of mosquitoes and the modeling perspective. On the other hand, we have also learned once
more from this study, as has been well described in many other existing studies as well, that simplified
models may not necessarily lose key features that the more complicated models exhibit. Therefore, the
assumption of homogeneous populations are valid in many biological situations and we may start with
relatively simple models when we work on real world problems.

We would like to finally point out that while the studies of the dynamics of sex-structured
mosquitoes models with different releasing strategies such as the constant releases and the propor-
tional release of the sterile male mosquito population are important, any efforts directed at controlling
mosquitoes to prevent the spread of diseases is desirable. In the future, we will pay more attention
on the dynamics of mosquitoes populations combined with the population evolution induced by the
biological control.
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