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Abstract: Wellbore drilling parameters optimization is one of the most important issue in drilling 

engineering. Rate of penetration or mechanical specific energy was usually utilized as the 

optimization objective. The rate of penetration directly relates to the drilling cycle, while mechanical 

specific energy reflects the drilling efficiency. In this paper, except for rate of penetration and 

mechanical specific energy, the drilling life of bit is also summarized as a comprehensive assessment 

indicator in wellbore drilling parameters optimization problem. The drilling life of bit is taken into 

consideration for the design and manufacturing cost of bit compose a significant part of the drilling 

cost and the bit drilling life greatly influences the drilling efficiency. However, those objectives are 

usually related in a highly nonlinear relationship and in conflict with each other. Thus, a 

multi-objective cellular particle swarm optimization (MOCPSO) is developed to solve the 

three-objective drilling parameters optimization problem. Moreover, the radius basis function (RBF) 

method is employed into the formation parameters identification for rate of penetration model. 

Performance of MOCPSO is investigated by taken a comparison with multi-objective PSO and 

non-dominated sorting genetic algorithm-II (NSGA-II). Effect of the four commonly used 

neighborhood function is also investigated by making contrasts with each other. It can be inferred 

that MOCPSO is statistically superior to both multi-objective PSO, NSGA-II at the 0.05 level of 

significance on the wellbore drilling parameters optimization problem. And the four commonly used 

neighborhood templates perform comparable with each other, and are not statistically different for 

the drilling parameters optimization problem. 
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1. Introduction 

Wellbore drilling is one of the most important and costly operations during the oil and gas 

reservoirs exploration and production. For the high exploration cost and relatively much lower oil 

and gas prices, most of the worlds’ oil and gas companies are urgent to reduce the drilling costs as 

much as possible. The drilling cost is often denoted with the cost per meterage drilled. The practical 

drilling engineering is a complex, coupled and time-consuming system which involves the drilling 

equipment and tools, drilling fluid circulating system, and geological conditions of the construction 

area, and so on. Therefore, the drilling cost depends on various factors, such as types of the used 

drilling rigs, geologic feature of the drilling formation and the total drilling depth. In addition, the 

drilling cost is also closely related to rotating time of drilling bit, connection time, design and 

manufacturing cost of drilling bits and rigs, and so on. A significant part of the drilling expense is 

made up with the costs of rig operations, therefore, drilling parameters optimization is a central 

priority of all operators. One main task of drilling parameters optimization is to research the effects 

of the various drilling parameters (such as the rotations per minute, weight on bit etc.) on the drilling 

process and to select the most reasonable drilling parameters to obtain the optimal technical and economic 

indicators. Through the drilling parameters optimization, a shortened drilling period, a remarkably drilling 

cost reduction, an improved drilling quality and efficiency could be possibly achieved. 

In order to select the best set of drilling operating parameters, various drilling models are 

developed according to drilling operating parameters and rock properties. Graham and Muench [1] 

optimized the rotary speed and weight on bit to get the minimum drilling costs with field data. Then, 

Bourgoyne and Young [2] proposed a comprehensive nonlinear drilling model to estimate the drilling 

performance, and employed a relatively simple analytical procedure to solve the model and obtained 

a set of best operating drilling variables with a minimum drilling cost. Reza and Alcocer [3] then 

proposed a three-equation drilling model with several drilling variables, which consist of rate of 

penetration, rate of bearing wear and rate of bit dulling. Iqbal [4] employed a stepwise drilling 

parameters optimization procedure for roller-cutter bit insertion.  Amjad et al. [5] minimized 

drilling cost for the Iranian Khangiran gas field based on Bourgoyne and Young model. T. Eren, M. E. 

Ozbayoglu [6] implemented a real time optimization of drilling parameter. Zhang et al. [7] employed 

the biogeography-based optimization to deal with the drilling parameter optimization. Sun et al. [8] 

developed a real-time surveillance system of mechanical specific energy for drilling parameters 

optimization. Zhai et al. [9] studied deep water drilling parameters optimization. Cui et al. [10] 

optimized drilling parameters for a compound drilling with the mechanical specific energy theory. 

The above researches utilized the rate of penetration or mechanical specific energy as the 

optimization objective, which were single objective optimization approaches. The rate of penetration 

relates to the drilling cycle, while mechanical specific energy reflects the drilling efficiency. Both 

rate of penetration and mechanical specific energy are important indicators for a practical drilling 

situation. In addition, the drilling life of bit should also be taken into consideration. For the design 

and manufacturing cost of bit compose a significant part of the drilling cost and the bit drilling life 

greatly influences the drilling efficiency. Therefore, a three-objective drilling parameters 
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optimization model, in which rate of penetration, mechanical specific energy and drilling life of bit 

are included, is proposed in this paper. However, rate of penetration in the three-objective drilling 

parameters optimization model depends on many parameters, which should be estimated with the 

data gained during the drilling. Thus, the radius basis function (RBF) method is employed into the 

formation parameters identification for rate of penetration model. Those three objectives are in 

conflict with each other and related in a highly non-linear manner. Take a comprehensive 

consideration of the above objectives, a multi-objective drilling parameters optimization model is 

established. Then, a novel multi-objective algorithm based on the cellular particle swarm 

optimization, MOCSPO, is presented to solve the established optimization model. The performance 

of MOCPSO is compared with multi-objective PSO [11] and NSGA-II [12] on the multi-objective 

drilling parameters optimization problem. Moreover, four commonly used neighborhood templates 

of CPSO are taken into comparison to investigate the most suitable neighborhood for this drilling 

parameters optimization problem. 

The remainder of the paper is organized as follows. Section 2 establishes a multi-objective 

problem formulation for the drilling parameters optimization with several constraints. Section 3 

developed a RBF based inverse parameter estimation method for rate of penetration model. Then, the 

multi-objective cellular particle swarm optimization is discussed in detail in Section 4. The bit 

factors and formation parameters identification for an oil well section is present in Section 5. Section 

6 describes the optimization results and analysis, including the comparisons with multi-objective 

PSO and NSGA-II, investigations among the four neighborhood templates. Finally, the paper is 

closed by recapitulating salient points and concluding remarks in Section 7. 

2. Problem formulation for drilling parameters optimization 

In the practical drilling applications, biggest rate of penetration, longest drilling life of bit and 

smallest mechanical specific energy are respected to be achieved simultaneously. Thus, a 

multi-objective optimization model, including rate of penetration, mechanical specific energy and 

drilling life of bit, is established in this section. 

2.1. Rate of penetration 

Rate of penetration is an important indicator to estimate drilling efficiency and technological 

economy during the drilling engineering. Through investigating the impact of several variables (such 

as weight on bit, rotary speed, tooth wear and drilling fluid density etc.) on rate of penetration, 

Florence et al. proposed the following rate of penetration prediction model [13]: 

2

C C ( )

1

p H

pc

K WOB M RPMdH
v

dt C h


 


        (1) 

Where, K  is the coefficient of formation drillability; 
pC  is the differential pressure drilling 

parameter; 
HC  is the hydraulic efficiency; WOB  is the weight on bit (kN); M is the threshold bit 

weight (kN); RPM  is the rotary speed (r/min);   is the rotary speed exponent; 
1 2,C C  are the 
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wear coefficients of bit teeth; h  is the wearing capacity of bit teeth, the teeth is totally wear when 

1h  . 

Variation of bit size can also impact the value of rate of penetration. As the diameter of the bit 

decreases, the pressure applied to the bit per unit area would increase. Therefore, with a certain 

drilling pressure, the bit with a smaller diameter has a higher rate of penetration, and the bit teeth will 

wear faster than the bit with a larger diameter. 

Thus, the impact of bit diameter is taken into consideration when building the rate of 

penetration model in this paper. The new rate of penetration is express as following: 

2

C C ( ' ')
=

1

p H

pc

K WOB M RPM
v

C h




        (2) 

Where, '
WOB

WOB
D

 , 
' e hC E

M M
D

  ,
hE  is bit specific hydraulic horsepower (kW/mm

2
), 

eC  is 

coefficient of bit specific hydraulic horsepower, D  is the bit diameter (mm). 

2.2. Drill bit tooth wear 

In the drilling process, extrusion and friction between the formation and the drill bit is the main 

factor that cause bit wear and affect the bit life. Here, bit wear consists of tooth wear and bearing 

wear. The tooth and bearing wear model is established as following: 

3

1 2

2 1 1

( )

( )(1 )

fA S RPM S RPMdh

dt M M WOB C h

  


 
        (3) 

1.51dB
WOB RPM

dt C
            (4)

 

Where, 
1 2,S S are rotary speed influence coefficients, 

1 2,M M  are bit weight influence coefficients, 

fA  is formation abrasiveness factor. 

The integral of the above equation can be written: 

3

1 2

1

1 2 1

( )1
( 1 1)

( )
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f

t S RPM S RPM
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C M M WOB

  
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 
      (5) 

1.51
f fB WOB RPM t

C
             (6) 

Eq 5 and Eq 6 represent wear extent of tooth and bearing wear 
fH ,

fB , after the rig works for 

ft  hours. 

 

 



1262 

Mathematical Biosciences and Engineering  Volume 16, Issue 3, 1258–1279. 

2.3. Mechanical specific energy 

Mechanical specific energy refers to the amount of mechanical work required to break up a unit 

volume of rock. The lower the mechanical specific energy, the higher efficiency of the bit 

rock-breaking. The initial mechanical specific energy model is present as following [14]: 

MSE

120
E = +

b b pc

WOB RPM T

A A v

  


        (7) 

In which, 
bA  is the cross section area of bit (mm

2
), T  is the torque applied at the bit. 

The mechanical specific energy model expressed in Eq 7 did not take the hydraulic energy into 

consideration, for the hydraulic energy is hardly utilized in a conventional rotary-drilling. But for a 

certain formation, hydraulic energy is helpful even indispensable in the actual drilling [15]. In this 

case, the hydraulic term should be taken into consideration, and mechanical specific energy model 

turns into the following formula. 

6

MSE 1.2

2.8144604 10120
E = + -

4

h

b b pc pc

EWOB RPM T

A A v D v

    

 
     (8) 

2.4. Modeling of drilling parameters optimization 

In this paper, the rate of penetration, the drilling life of bit and mechanical specific energy are 

taken as the optimization objectives. The fastest rate of penetration, longest bit life and biggest 

mechanical specific energy are expected to be achieved simultaneously. However, these three 

objectives are often in conflict with each other. A preferable set of drilling parameters are expected to 

satisfy all these objects to one degree or another and offer a relatively fast rate of penetration, a long 

bit life and big mechanical specific energy. Thus, the wellbore drilling parameters optimization 

objective function can be given by: 
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   (9) 

Several constraints are applied in the wellbore drilling parameters optimization. Weight on bit 

directly influences the rate of penetration and drilling efficiency. When the weight on bit is too small 

to break the rock, rate of penetration and drilling efficiency would be decreased sharply. If the weight 
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on bit is too high, it will cause excessive wear of the tooth bit, so the value range of weight on bit is 

as follows: 

2 1/{ 0}Max M WOB M M ，  

The bit rotation speed cannot be too small in order to made the bit intrude into the formation to 

break rock. But the bit rotation speed cannot be too large at the same time for the restriction of bit 

material. Thus the value range of bit rotation speed is as follows: 

min maxn n n   

As to the practical situation, value of tooth and bearing wear extent should be as following: 

0 1

0 1

f

f

H

B

 

 
 

3. RBF based inverse parameter estimation 

3.1. Parameters to estimation in drilling parameters optimization 

The drilling parameters optimization problem formulated in Section 2 indicates that there are 

plenty of parameters needed to be estimated, which can be classified into two categories. One is 

related to the bit, such as tooth wear influence coefficient 
1C , rotary speed influence coefficients 

1 2,S S , and bit weight influence coefficients 
1 2,M M , which can be determined as the bit is selected. 

While the other is related to formation, which should be estimated with the data gained during the 

drilling, such as formation drillability coefficient K, threshold bit weight M, rotary speed exponent  , 

bit tooth wear coefficient C2 and formation abrasiveness factor Af. 

The formation parameters estimation process is to gain as good agreement as possible between 

actual experimental responses and simulated responses by models in Section 2, which can be solved 

with the inverse method [16]. The inverse method treated the parameter estimation as an 

optimization procedure, aiming to obtain a set of parameters that make the discrepancy between 

experimental responses and simulated response minimized. Thus, the objective function used to 

identify those formation parameters is present as following: 

 
  2

1

min ( )
N

i i

i i

T S
f

T




p
p        (10) 

Where p is the set of formation parameters to be identified, N is the number of experiment data, 

 iS p  is the simulation responses, 
iT  is the experimental responses. 

3.2. RBF based inverse estimation method 

In the above parameter estimation problem, the objective function is not known explicitly. 
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Therefore, a straightforward optimization on Eq 10 is obviously impractical. Thus, a RBF based 

inverse estimation method is proposed to identify those formation parameters, in which a RBF model 

is created to approximate the objective function. Plenty alternative surrogate models can be used as 

the approximation, such as the artificial neural network [17,18], the response surface method [19], 

the support vector regression [18,20], and so on. The RBF is utilized for its simple structure, easily 

implementation, and high accuracy and suitable for high dimensional problem. After the RBF 

approximation is created, then an optimization algorithm can be conducted on the RBF model. 

Procedure flowchart of the RBF based inverse method for parameter estimation in drilling 

parameters optimization is present in Figure 1. Main process can be concluded as follows. 

(1) Determine design space of formation parameters. In the drilling parameters optimization 

problem, there are five formation parameters to be estimated. Value range of these parameters 

should be determined first. 

(2) Design of experiments. The drilling model in Section 2 is sampled with regular design of 

experiments (DOE) methods, such as orthogonal arrays [21,22], various Latin hypercube 

designs [23], D-Optimal Design [24], and uniform designs [25], etc. In this work, Latin 

hypercube design is employed to locate the sampling points, for its high efficiency, low 

computation cost for construction. 

(3) RBF construction. RBF is employed to approximate the rate of penetration model, for its simple 

structure, easy implementation and high accuracy [26]. Details to create a RBF approximation is 

presented in Section 3.3. 

(4) Model validation. The RBF approximation model created during the above steps needs to be 

validated to see its’ performance. Various methods can be employed, such as the correlation 

coefficient, the mean absolute error, and so on [27]. In this paper, the root-mean-square error 

(RMSE) is computed to accomplish this task. RMSE reflects the global approximation accuracy. 

The smaller the value of RMSE, the higher the global accuracy of a corresponding 

approximation model. If the approximation is not acceptable, the process will turn to step 2. 

(5) Objective function evaluations. With the response from RBF approximation and the 

experimental data, objective function to identify the formation parameters is evaluated 

according to Eq 10. 

(6) Optimization. The evaluated objective in step 4 is optimized to figure out the optimal formation 

parameters. The optimizer is chosen up to the user’s preference. 

(7) Convergence test. With the optimization result in pn and f(pn) step 5, the convergence can be 

tested. With the optimization result, the convergence can be test. The convergence can be 

governed by the two inequality functions. 

1

1

( ) ( ) ,

,

n n f

n n x

f p f p

p p









 

 
         (11) 

Where 
f  and 

x  are tolerances supplied by the user, and n is the current iteration counter. If any 

of the two inequalities is true, the algorithm is considered to be converged and the optimum 

formation parameters are obtained. 
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Figure 1. The process of the RBF based inverse method for parameter identification. 

3.3. RBF construction 

A radial basis function uses a series of basic functions that are symmetric and centered at each 

sampling point and it has been developed for interpolation of scattered multivariate data [28]. For a 

given set of inputs 1 2{ , ,..., }
l

l l l l

nx x xX  and the corresponding outputs 1 2{ , ,..., }
l

l l l l

ny y yY , the RBF 

model can be written as follows: 

1

ˆ ( ) ( )
ln

l l

i i

i

y x x x


          (12) 

Where ln  is the number of sample points, l

ix x  is the euclidean norm between the design 

variable x  and the ith sampling points, i  is corresponding weight coefficient of the ith basic 

function  ( )l

ix x . With the ln  sampling points, a matrix equation can be denoted the following: 

Aλ Y            (13) 

A is a l ln n  basic function matrix with an element , ( )l l

i j i jA x x  , and λ  is the unknown 

coefficient matrix 1 2[ , ,..., ] ,
l

T

n  λ  Y  is the vector of function values at each sampling point 
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1 2[ , ,..., ]
l

l l l T

ny y yY . The basis function directly affect the performance and complexity of the final 

RBF model. Various basis functions, such as Gaussian base, multiquadric base, the inverse 

multiquadric base and the thin-plate spline base, can be utilized in RBF. In our work, the commonly 

used Gaussian base is used for its good local estimation capacity. 

2( )
( ) ,0 1

l l
i jc x xl l

i jx x e c
 

           (14) 

In this way, the RBF approximation model is created. 

4. Multi-objective cellular particle swarm optimization 

4.1. Combination of cellular automata and particle swarm optimization 

4.1.1. PSO 

Suppose there is a swarm with size S, in which each particle can be described by current 

position 
iX , current velocity 

iV , best position 
iP  (i=1,2,…,S). One particle flies with the 

guideline of its own historical experience and other particles’. Suppose t

gP  stands for the global best 

position thus far and t represents the current generation. Aiming to search for the optimum, the 

velocity and position of a particle is updated as the following equations. 

1

1 1 2 2

1 1

( ) ( )t t t t t t t

i i i i g i

t t t

i i i

V V c r P X c r P X

X X V



 

    

 
     (15) 

In which, 
1c  is a acceleration constant that regulates the relative velocities according to the best 

global positions and 
2c  a acceleration constant that regulates the relative velocities according to the 

local positions. And ( 1, 2)jr j   is a random variable drawn from a uniform distribution in the open 

interval (0, 1). t  is a inertia weight that is used to balance the capabilities of global and local 

search, and can be obtained as following: 

max min

max

t t
T

 
 


           (16) 

Where 
max  is the initial weight, 

min  is the final weight, and T is the maximum number of 

generations. 
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4.1.2. Cellular automata 

Cellular automata (CA) is firstly invented in late 1940s and then caught a lot of attention and 

interests of theoretical research because of the famous game of life [29]. It has been successfully applied 

into different areas, such as bus or traffic route planing system [30,31], generation of digital art 

works [32], parameters estimation in optimization algorithms [33,34], and fault detection [35] and so on. 

A cellular automaton includes a lattice of uniformly arranged finite state automata. Each one 

takes information from the neighboring automata. And then the neighbor update its next states via a 

state transition function. Several definitions of CA is described as following. 

Definition 1: Cell 

Cellular is not only the most basic but also important element in CA, which is also named as 

cell, which is distributed on the discrete crystal lattice of a cell space. Theoretically, cell space can be 

arbitrarily dimensional Euclidean space (such as one-dimensional or multi-dimensional). Different 

dividing ways of the cell space would bring about different cell shapes, but each cell can only has 

one state at a particular time. 

Definition 2: Cell space 

The set of all the cells locates in the Euclidean space is the cell space. For the one-dimensional 

cell space, there is only one dividing way, namely the isometric and piecewise division. While for 

the two-dimensional cell space, the triangle, hexagonal and square cell shapes is commonly used. 

Definition 3: Cell state 

Theoretically, each cell at one particular time can only has one cell state. The cell state at a 

certain time is usually described via multiple variables. Cell state in this work is denoted as

{ , , , ,...}t t t t t

i i g i iS P P V X . 

Definition 4: Neighbors 

As its name implies, neighbors is the around cells which impact the state of the current cell in 

the next moment. For a one-dimensional CA, all the cells within the neighborhood radius are treated 

as neighbors. Definition of neighbors in a two-dimensional CA is more complex. There are four 

commonly used neighborhood forms, which are illustrated in Figure 2. Detailed description of these 

neighborhood forms can be refer to literatures [36–38]. 

 

Figure 2. (a) Von Neumann. (b) Extended Von Neumann. (c) Moore. (d) Extended 

Moore Neighborhood templates. 

Except for these four commonly used neighborhood forms, one can propose a proper 

neighborhood function according to the specific problem and applications. 
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With the above neighborhood templates, deterministic finite automata (cells) interconnects with 

each other and work synchronously at discrete time steps. With a collection of such cells, CA could 

present enormous power to solve problems. In this way, CA could play an important role in modeling 

complex systems. Thus, the above mentioned CA model was adopted to study the swarm system in 

our early work [33]. 

4.1.3. CPSO framework 

PSO creates a swarm system in which interaction are involved among different particles. When 

employ the CA mechanism into the swarm system, each particle in PSO exchanges information not 

only with other particles but also with its neighbors. 

The CA model employed for PSO structure is described as follows: 

(1) Cell: Refers to the selected candidate solution; 

(2) Cell space: Stands for the set of all cells; 

(3) Cell state: Refers to the information of the selected candidate solution at a certain time t. The 

cell state consist of the current position 
iX , current velocity 

iV  etc. State of the ith cell can be 

described by { , , , ,...}t t t t t

i i g i iS P P V X ; 

(4) Neighborhood: Refers to the around particles which could be defined through neighborhood 

functions. 

(5) Transition rule: Refers to the information exchange rules between different cells, which can be 

denoted as 
1

1

( )( ) ( , ,..., )
l

t t t t t t

i i N i i i iS f S S f S S S 


  U . 

With the above definitions, a Cellular Particle Swarm Optimization (CPSO) is proposed. 

General framework is present in Figure 3. 

 

Figure 3. General framework of CPSO. 
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4.2. Non-dominated ranking 

When there are multi-objective functions, individual objective functions ( ), 1,...,if x i k  are 

expected to be minimized simultaneously, which is unlikely to be achieved in real life. In order to 

deal with this issue, multi-objective optimization algorithms is developed to distinguish “dominated” 

and “non-dominated” solutions, and reveal the Pareto optimal solutions that consist of 

non-dominated solutions. 

Suppose the optimization is to minimize ( ), 1,...,if x i k , searching for solutions u  and w , if

( ) (w), 1,...,i if u f i k  , and i=1,..., ( ) (w), 1,...,i ik f u f i k  ， , u  is a solution that dominates w , and w  

is a non-dominated solution. Solution that are not dominated by any other solutions is called a 

non-dominated solution or a Pareto optimal solution. Such a set of non-dominated solutions 

comprises a Pareto optimal set. 

A process of non-dominated ranking is described as following. For a certain solution q , the 

domination count 
qn  and dominating set 

qS  are calculated. The former one is the number of 

solutions that dominate solution q  and the later refers to the set would contain all the individuals 

that are dominated by solution q . 

Solutions that have domination count as zero are in the first non-dominated front. For a solution 

in the first non-dominated front, visit members in set 
qS  and reduce its domination count by one. 

Keeping doing in this way, for a member s , if its domination count becomes zero, it would be put 

into a separate list Q , which belong to a second non-dominated front. Continue the above procedure 

with each member of Q  and the third front would be identified. The process continues until all 

fronts are identified. 

4.3. Constraint handling 

Domination constraint rule is employed to handle the constraints. Suppose there are two 

assumed feasible solutions, a  and b , if a  dominates b , then a  is deemed to be superior to b . 

When a  is feasible but b  is non-feasible, a  is deemed to be superior to b . In the case where 

both a  and b  are non-feasible, solution that has a smaller overall constraint violation deemed to 

be superior. In the case where two solutions violates the same number of constraints, the solution 

with violation of a smaller amount is superior. 
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4.4. Elitist selection and external archive maintenance 

4.4.1. Elitist selection 

According to Eq 15, selection of global optimal position and the particle optimal position 

directly affects the particles’ flight trajectory during the optimization. In single-objective PSO, they 

can be determined simply and uniquely through fitness values. While in multi-objective optimization, 

there are plenty of potential feasible solutions which cannot be distinguished just according to the 

fitness values. In this work, the Pareto-based dominance, which adopts non-dominated particle 

between current position and previous best position is chosen as pBest. If the particles and previous 

best position do not dominate each other, then pBest is select randomly. While the crowding density 

(namely, Euclidean distance between current particles and non-inferior solutions in external archive) 

is employed to choose a particle with minimum Euclidean distance as gBest. 

4.4.2. External archive maintenance 

An external archive is established to lodge the non-dominated solutions. And non-dominated 

solutions can be preserved and maintained in a fixed size via an external archive. Process to create 

and maintain an external archive can be described as following. Firstly, the population particles are 

compared to the external archive particles to select the non-inferior particles are stored into external 

archive. When the number of non-inferior solutions exceed the predetermined archive size, particle 

with a minimum crowded distance is removed. Then sort the remaining particles again according to 

the crowded distance, and again select a particle with a minimum crowded distance to be removed. 

Keep these step repeated until meets the predetermined archive size. When the particles number have 

not reached the predetermined value, all the non-inferior particles are stored in external archive. 

Elitist solutions are efficiently preserved in the above external archive maintenance strategy. As 

the optimization process runs, numbers of non-dominated solutions increase quickly and sharply. 

External archive size is kept via the above remove mechanism, and several non-dominated solutions 

would also be lost. Moreover, the evolution and optimizing process that is guided by global optimal 

position could easily resulting in a precocious convergence. 

In order to deal with this issue, a redundant set is proposed to keep the diversity of 

non-dominated solutions in the external archive, in which the randomly chosen particles in the 

external archive are varied into particles in the redundant set. Given the redundant set size Rsize, then

size sizeR = A , where 
sizeA  stands for the external archive size. The variation formula is described as 

follows: 
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Where 
2r  is a random number 

2 (0,1)r  ,   is the variation factor and 
2  is the variation 

distribution index. And 
newp  is the randomly selected particle in external archive. max( ),min( )d d  

are the upper and lower bound of the dth dimensional for particle 
newp , respectively. 

The above described redundant set brings two advantages into the optimization. One is to keep 

the population from a local optimum. The other is to increase the solutions diversity in the external 

archive via particle variation mechanism. 

5. Bit factors and formation parameters identification 

In this section, the proposed method is conducted for drilling parameters optimization of a 

2500–2800 m well section in an oil field. An engineering detection test to collect drilling data is 

implemented in this section. A type 22 milling tooth bit with a diameter of 251 mm is employed in this 

well section. The relatively wearing capacity of teeth is 0.1. The torque applied at the bit is 15 KN.m. 

The bit factor can be determined according to the utilized bit type, which is present in Table 1. 

Table 1. Bit factors of drilling model. 

Bit factor Value 

Teeth wear coefficient, C1 5 

Bit weight influence coefficient, M1 0.0146 

Bit weight influence coefficient, M2 6.44 

Rotary speed influence coefficient, S1 1.5 

Rotary speed influence coefficient, S1 0.000065 

In a practical drilling engineering case, the hydraulic factor can enhance the drilling process. As 

it all knows, hydraulic energy is helpful to break the rock, and it is expected to be largest in a drilling 

practice. Therefore, the hydraulic efficiency 
HC  and differential pressure 

PC  are supposed to be 1 

to maximize the hydraulic factor. The real-time drilling data of the 2500–2800 m well section is 

collected every 5 minutes. Table 2 lists a part of real time drilling data. 

Table 2. Part of real time drilling data. 

No. weight on bit (KN) rotary speed (r/min) Rate of penetration (m/h) 

1 288 60 10.35 

2 258 62 10.14 

3 286 62 9.87 

4 288 63 9.77 

5 289 63 9.54 

6 292 64 9.50 

7 298 65 9.54 

   Continued on next page 



1272 

Mathematical Biosciences and Engineering  Volume 16, Issue 3, 1258–1279. 

    

No. weight on bit (KN) rotary speed (r/min) Rate of penetration (m/h) 

8 300 64 9.27 

9 293 65 8.92 

10 294 66 8.85 

11 300 69 9.11 

12 301 70 9.02 

13 295 66 8.28 

14 292 67 8.14 

15 294 68 8.13 

16 286 66 7.60 

17 288 65 7.47 

18 290 68 7.64 

19 293 69 7.67 

20 295 70 7.67 

With the real time drilling data and the proposed RBF based inverse parameter estimation 

method, the formation parameters of drilling model is identified as shown in Table 3. 

Table 3. Formation parameters of drilling model. 

Formation parameters Values 

Coefficient of formation drillability, K 0.00256 

Threshold bit weight, M 10.1 

Rotary speed exponent,   0.653 

Bit tooth wear coefficient, C2 3.569 

Formation abrasiveness factor, Af 0.00298 

6. Optimization result and analysis 

Performance of the proposed MOCPSO approach is verified through several investigations for 

drilling parameters optimization problem in this section. The impact of hybridization between CPSO 

and CA is explored by comparing its pareto front against that of the multi-objective PSO and 

NSGA-II approach. PSO is an evolutionary algorithm with good global search performance and fast 

convergence speed. Moreover, PSO has a simple structure, small number of tuning parameters and 

easy tuning procedures. And PSO has been successfully applied in many industrial field. In addition, 

the improved versions of PSO give high performance rankings according to the congress on 

Evolutionary computation (CEC). The NSGA-II is currently one of the most popular multi-objective 

genetic algorithm with a good convergence, and has become a performance baseline for other 

multi-objective optimization algorithms. Therefore, the impact of hybridization between cellular 

automata and particle swarm optimization is analyzed by comparing the obtained Pareto fronts 

against multi-objective PSO and NSGA-II approaches. Furthermore, effect of different neighborhood 

function (Von Neumann, Moore, Enhanced Moore and Margolus Neighborhood functions) are also 

investigated to figure out which one is most suitable for MOCPSO in the drilling parameters 

optimization problem. 
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Plenty of metrics including Spread [24], Inverse generational distance (IGD and Hyper volume 

(HV) can be adopted to estimate the performance of different approaches. IGD is a comprehensive 

index to measure the euclidean distance between the true Pareto front and the approximate Pareto 

front that was obtained via a certain optimization algorithms. IGD with a lower value indicates that 

the obtained approximate Pareto front is more close to the true Pareto front. In other words, the 

obtained Pareto front has a good diversity and convergence. Thus, IGD is adopted in this paper. 

Calculation formula for IGD is described as following equations. 

 *

* 1

,

( , )

P

i

d P P

IGD P P
P




        (18) 

Where, P is a set of uniform sample on the true Pareto front, while P
*
 is the Pareto front obtained via 

a certain optimization algorithms,  *,d P P  is the minimum euclidean distance between P and P
*
, 

and P  is the size of P*. 

6.1. Comparison with multi-objective PSO and NSGA-II 

In this section, performance of the proposed multi-objective CPSO is investigated through 

comparison with multi-objective PSO and NSGA-II. Parameters for these approaches are as show in 

Table 4, which is set according to researches [39,40]. Populations of these three approaches have the 

same sizes of 150, and the archive size are equal to each other, too. Moreover, they all have the same 

maximum iteration number, which is 100. Crossover probability in NSGA-II is 0.9, while mutation 

probability is 0.2 in both multi-objective PSO and NSGA-II. The Von Neumann neighborhood is 

employed in MOCPSO with the neighbors’ number of 6. Each approach conducts 21 runs on the 

drilling parameters optimization problem, and the IGD of each running is calculated. The boxplot of 

the 21 runing results (corresponding to IGD) is illustrated in Figure 4. It can be inferred that the 

proposed MOCPSO method performs better as compared to the other two approaches by having the 

smallest mean of IGD. In other words, implication of CA into PSO is effective on the multi-objective 

drilling parameters optimization problem. 

Table 4. Parameter settings for different approaches. 

Parameters Multi-CPSO Multi-PSO NSGA-II 

Population size 150 150 150 

Archive size 40 40 40 

No. of Max. iteration 100 100 100 

Crossover probability - - 0.9 

Mutation probability - 0.2 0.2 

No. of neighbors 6 - - 

javascript:void(0);
javascript:void(0);
javascript:void(0);
javascript:void(0);
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Figure 4. Experimental results box plot for different approaches. 

A Wilcoxon signed ranks test [41] is conducted in order to figure out whether there is an 

algorithm is statistically different with other two approaches on the wellbore drilling parameters 

optimization problem. Various alternative approaches to find out whether the algorithms are 

statistically different exist, such as the Analysis of Variance (ANOVA) and Kolmogorov-Smirnov 

(K-S) test. ANOVA and K-S assume that the tested samples come from a normally distributed 

population, which is inconformity with the drilling parameters optimization case. Wilcoxon signed 

ranks tests is a non-parametric statistical test for pairwise comparisons. Therefore, Wilcoxon signed 

ranks test for pairwise comparison of the proposed multi-objective CPSO method, multi-objective 

PSO and NSGA-II is conducted. Results are summarized and present in Table 5, in which the p-value 

of the pairwise comparisons are 0.0028 and 0.0420 for NSGA-II v.s. MOCPSO and MOPSO v.s. 

MOCPSO, respectively. The obtained p-values are smaller than 0.05, which means that the 

calculated IGD samples gained by NSGA-II and MOPSO are statistically different with that via 

MOCPSO. Besides, Figure 4 shows that MOCPSO method performs better as compared to the other 

two approaches by having the smallest mean of IGD. Therefore, it can be inferred with p-values from 

Table 5 and the box plot in Figure 4 that the proposed MOCPSO is statistically superior to both 

multi-objective PSO and NSGA-II at the 0.05 level of significance. 

Table 5. Results obtained through the Wilcoxon signed ranks for different approaches. 

MOCPSO v.s. R
+ 

R
- 

p-value 

NSGA-II 185 25 0.0028 

MOPSO 172 38 0.0420 

6.2. Different neighborhood functions investigation 

In this section, different neighborhood functions including the four commonly used forms 

described in Section 4.1.2 are investigated. The wellbore drilling parameters optimization is a 3 

dimensional problem. Therefore, the neighbor numbers of different neighborhood functions is show 
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in Table 6. 

Table 6. Neighbor numbers of different neighborhood functions. 

 Von Neumann Extended Von Neumann Moore Extended Moore 

Numbers 6 12 6 12 

Similar to the operations in section 6.1, MOCPSO with each neighborhood function is 

conducted 21runs on the drilling parameters optimization problem. And the IGD of each running is 

calculated. Boxplot of (corresponding to IGD) according to different neighborhood function results 

is illustrated in Figure 5, in which “C1”, “C2”, “C3”, “C4” means the Moore, Extended Moore, 

Extended Von Neumann, Von Neumann neighborhood functions respectively. It can be inferred that 

the Extended Von Neumann neighborhood function performs better as compared to the other 

neighborhood functions by having the smallest mean of IGD. 

 

Figure 5. Experimental results box plot for different neighbor functions. 

A Wilcoxon signed ranks tests is conducted in order to figure out whether the Extended Von 

Neumann neighborhood function is statistically different with other neighborhood functions on the 

wellbore drilling parameters optimization problem. A non-parametric statistical test was applied to 

the Extended Von Neumann neighborhood function and other three neighborhood functions for 

pairwise comparisons. The results is summarized and present in Table 7, in which the p-value of the 

pairwise comparisons are 0.7151, 0.2172 and 0.9584 for Extended Moore v.s. Extended Von 

Neumann, Moore v.s. Extended Von Neumann and Von Neumann v.s. Extended Von Neumann, 

respectively. The obtained p-values are larger than 0.05, which means that the calculated IGD 

samples gained with Extended Moore, Moore and Von Neumann are not statistically different with 

that via Extended Von Neumann. 
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Table 7. Results obtained through the Wilcoxon signed ranks for different 

neighborhood functions. 

Extended Von Neumann v.s. R
+ 

R
- 

p-value 

Extended Moore 126 105 0.7151 

Moore 150 80 0.2172 

Von Neumann 114 117 0.9584 

In order to determine which one is the best neighborhood function among the four commonly 

used neighborhood functions, a Friedman test [41] is conducted to compare among the different 

neighborhood functions. An alternative approach is Cochran Q test. Both the Friedman and 

Cochran Q test are non-parametric statistical tests suitable for multiple comparisons. But the 

Cochran Q test is more suitable to analysis the binary quality type data. Therefore, the Friedman 

test was applied to the IGD results obtained via different neighborhood functions. The obtained 

individual ranking and the p-value are summarized and present in Table 8. It infers that the 

Extended Von Neumann neighborhood function has the highest ranking, which means that it 

performs better as compared to the other neighborhood functions according to the rank value. 

However, the p-value of the Friedman test in Table 8 is 0.3492, larger than 0.05, which means that 

the calculated IGD samples gained with the four commonly used neighborhood templates perform 

comparable with each other, and are not statistically different for the drilling parameters 

optimization problem. New neighborhood functions may be developed for the drilling parameters 

optimization to improve the performance of MOCPSO further. 

Table 8. Results obtained through the Friedman test for different neighborhood functions. 

Neighborhood functions Rank p-value 

Moore 2.9048 

0.3492 
Extended Moore 2.5238 

Extended Von Neumann 2.2381 

Von Neumann 2.3333 

7. Conclusions 

Drilling parameters optimization is an important procedure in drilling engineering, for it 

concerns quality, efficiency, cost and safety of the practical drilling process. A three-objective 

drilling parameters optimization model, in which rate of penetration, mechanical specific energy and 

drilling life of bit are included, is developed in this paper. Besides, the RBF is employed to estimate 

the formation parameters in rate of penetration model. After that, a multi-objective CPSO is proposed 

to solve the three-objective drilling parameters optimization problem. Performance of the MOCPSO 

is compared with multi-objective PSO, NSGA-II and found that MOCPSO is statistically superior. 

Moreover, performance investigations of different neighborhood functions in MOCPSO are 

conducted, and indicated that the four commonly used neighborhood templates perform comparable 

with each other, and are not statistically different for the drilling parameters optimization problem. In 

the future work, a more efficiency neighborhood function should be developed for this problem. 

Besides, a new mathematical model formulation for well drilling parameters optimization that 
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considers geological uncertainty is another interesting research work. 
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