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Abstract: A new tuberculosis model with fast and slow progression and media coverage is formulated
and analyzed. The basic reproductive number Ry is derived, and the existence and stability of all
the equilibria are discussed. The occurrences of forward and backward bifurcation are obtained by
using center manifold theory. Numerical simulations are also given to support our theoretical results.
Sensitivity analysis on a few parameters is also carried out. Our results show that media coverage can
encourage people to take measures to avoid potential infections and control the spread of tuberculosis.
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1. Introduction

Tuberculosis (TB) is a common and fatal infectious disease. It has become a chronic infectious
disease that threatens human health worldwide. Globally, in 2016 there were an estimated 10.4 million
incident cases of TB, equivalent to 140 cases per 100000 population. Meanwhile, the proportion of
people who develop TB and die from the disease (the case fatality ratio) was 16% [1]. Therefore, TB
has become a global concern for social and public health issues.

Many scholars have carried out a lot of excellent researches on the transmission mechanism and
prevention strategies of TB [2, 3, 4, 5, 6]. Silva et al. [4] introduced delays in a TB model, and studied
optimal control of TB with state and control delays. Huo et al. [5] presented a two-strain TB model
with general contact rate which allows TB patients with the drug sensitive of strain Mycobacterium
tuberculosis to be treated and gave a detailed qualitative analysis about positivity, boundedness, exis-
tence, uniqueness and global stability of the equilibria of the model. Huo and Zou [6] studied a TB
model with two kinds of treatment, that is, treatment at home and treatment in hospital and showed
that the treatment at home has a negative influence on the spread of TB.

The susceptible individuals who carry the pathogen developing into infectious individuals are dif-
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ferent from the progression of TB transmission. Some people may become symptomatic infectious
individuals after a few days or months, and some people may occur after several years or even decades.
For the former, it is considered that the susceptible individuals directly develop symptomatic infectious
individuals without going through the latency period after infection, which is called the fast progres-
sion of TB transmission. For the latter, it is considered that the susceptible individuals become the
latent individuals carrying the pathogen after infection with Mycobacterium tuberculosis, and they can
become infected by exogenous reinfection or endogenous infection, which is called a slow progression
of TB transmission. Huo and Feng [7] constructed an HIV/AIDS epidemic model with different latent
stages and treatment. The model allowed for the latent individuals to have the fast and slow latent com-
partments. Mccluskey [8] introduced the spread of TB through two models which included fast and
slow progression to the infected class. Berge et al. [9] considered a two patch cholera model with the
aim of investigating the impact of human population movements between two cities(patches). Song
et al. [10] studied TB models with fast and slow dynamics. Many scholars have studied infectious
diseases related to the fast and slow progression (see e.g. [11] and references cited therein).

Media coverage is changing the way that we communicate with each other in our daily life, work
and study. The media may be the most important source of public health information. At the same
time, it also plays an important role in the spread and control of epidemics by providing some health
information. Cui et al. [12] proposed a general contact rate S(I) = c¢; — ¢, f(I) to reflect some intrinsic
characters of media coverage. Huo and Zhang [13] introduced a novel alcoholism model which in-
volves impact of Twitter, and showed that Twitter can serve as a good indicator of alcoholism model
and affect the spread of the drinking. Huo et al. [14] presented a S EIS epidemic model with the
impact of media coverage. Their results manifested that media can be regarded as a good indicator
in controlling the emergence and spread of the epidemic disease. Many scholars have done a lot of
researches on infectious diseases with or without media coverage [15, 16, 17, 18, 19, 20, 21].

Motivated by the above, we construct a new TB model which not only involves fast and slow
progression but also incorporates the impact of media coverage in this paper. We study the stability of
all the equilibria. Furthermore, we also investigate the occurrence of backward and forward bifurcation.
Our results show that media coverage can encourage people to take countermeasures to avoid potential
infections.

The rest of this paper is organized as follows. In Section 2, a new tuberculosis model with fast
and slow progression and media coverage is constructed. In Section 3, we discuss the existence and
stability of all the equilibria, then we analyze a forward and backward bifurcation. Some numerical
simulations are presented in Section 4. Sensitivity analysis and some discussions are given in the last
section.

2. Model formulation

2.1. System description

The total population N(z) is divided into four compartments: S (¢), E(f), I(¢) and R(t). S(t) denotes
susceptible individuals. E(¢) is referred to as undetected non-symptomatic (latent) carriers. I(¢) is
symptomatic infectious individuals. R(¢) represents recovered individuals. M(¥) represents the number
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of message that all of them provide about TB at time ¢. The total population N(¢) is given by
N(@t) =S+ E@) +1(t) + R(®).

The transfer diagram of the model is shown in Figure 1. The transfer diagram leads to the following
system of ordinary differential equations:
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Figure 1. The transfer diagram of system (2.1).
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dt ’)/ /’l 2
dM(t

dt() =S + E + psl + R — ™.

All the parameters are positive constants. ¢ is the constant recruitment rate of the population. S is
the transmission coefficient of TB. « is the coefficient that determines how effective the disease-related
messages can influence the transmission rate and the transmission rate S is reduced by a factor e™*#
(see [13, 14]). w is the natural death rate. g is the proportion of disease by fast progression. ¢ is
the progression rate from the exposed individuals to the infected individuals. d is the disease-related
death rate of TB. vy is the recovery rate of TB. 7 is the rate that message become outdated. u;, us, us
and py are the rates that susceptible individuals, exposed individuals, infectious individuals, recovered
individuals may send messages about TB, respectively.

2.2. Basic properties

In this section, we will show positivity and boundedness for system (2.1).
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2.2.1. Positivity of solutions

Lemma 1. If S(0) > 0, E(0) > 0,1(0) > 0,R(0) > 0, M(0) > 0, the solutions S (¢), E(¢), I(t), R(t), M(t)
of system (2.1) are positive for all # > 0.
Proof. If S (0) > 0, according to the first equation of system (2.1), we have

ds (1) _

=0 [BID)e™ ™ + ]S ().

It can be rewritten as:

dfly) exp { j; l [,BI(u)e‘“M(”) + u]du}

+S@)[BIMe ™ + p|exp | f t |BIGw)e™™® + | du
0

= dexp { [)t [,BI(u)e“’M(”) + ,u]du}.

Therefore,

i

Lswenp] [ Ipre e+ ulaud) = sexp [ [p1ae e+ ulau)

Hence,

S (1) exp { ‘[0’ [ﬁl(u)e_aM(u) + ,u]du} -5(00) = [)t (5 exp { fou [,BI(v)e_“M(V) + ,u]dv})du.

So,
S(1) = SO)exp{ - f [B1ae o + aJau)
0

cexp( = [ ot o] [ (seso] [ Jprore o + ula])au)

> 0.

Similarly, we can show that E(¢) > 0,1(t) > 0,R(¢) > 0, M(¢t) > 0. So the solutions S (¢), E(¢), 1(?),
R(t), M(¢) of system (2.1) with initial conditions S (0) > 0, E(0) > 0,1(0) > 0, R(0) > 0, M(0) > O are
positive for all # > 0. This completes the proof of Lemma 1.

2.2.2. Invariant region

Lemma 2. The feasible region Q defined by

0 o(uy + o + us +
Q={(S.E.LRM) R :0<S+E+I+R<>,0<M< i + pia + i “4)}
u ur

with initial conditions S(0) > 0, E(0) > 0,1(0) > 0,R(0) > 0, M(0) > O is positively invariant for
system (2.1).
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Proof. Adding the former four equations of system (2.1), we obtain

% = 6 — uN(t) — dI(r) < & — uN(D).

It follows that 5
0 < N(t) < =+ N(@)e™,
u

where N(0) is the initial value of total number of people. Thus,
. )
lim sup N(t) < —.
t—00 /_l

Then 5
0<SH+EM®+1(r) +R(t) < ;

Further, from the last equation of system (2.1), we have

dM(t 19
dt( ) = w1 S (1) + o E(t) + pusl(t) + paR(H) — M (1) < ;(/11 + o+ 3+ pg) — TM(2).
It follows that 5
0 < M(1) < (U1 + o + 3 + pg) + M),
Ut

where M(0) represents the initial value of cumulative density media coverage. Thus,

o(uy + o + ps +
lim sup M(z) < (1 + fo + 3 ,U4)_
t—o0 MT

It implies that the region

O(ur + o + 3 +,U4)}

5
Q={S.ELRM)ER :0<S+E+I+R<—,0<M<
Iz ur

is a positively invariant set for system (2.1). So we consider dynamics of system (2.1) on the set Q in
this paper. This completes the proof of Lemma 2.

3. Analysis of the model

3.1. The basic reproductive number

It is easy to see system (2.1) always has a disease-free equilibrium

0 0
Po = (So. Eo.To. Ro. Mo) = (,0,0,0, %). (3.1)

We can obtain the basic reproductive number R, by using the next-generation method [22]. Let x =
(E,IR,S,M)T, then system (2.1) can be written as

dx
i F(x) = V(x),
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where,
(1 -q)BSIe M (u+eE
qBS le~ M —eE+(d+u+yl
F(x) = 0 and V(x) = -yl + uR
0 —0+BSIe™ ™™ + uS
0 —1S — toE — 3l — puR + ™™

The Jacobian matrices of ¥ (x) and V(x) at the disease-free equilibrium Py are, respectively,

Fs3s 0 0 Vix3 0 0
DF(PY=| 0 00| DV(PY=| 0 2% 0o u o],
0 00 M2 M3 M4 1 T
where
0 U5 g pre 0 0
F=|o %e—aﬁié ol V=| - d+u+y 0
0 0 0 0 -y M

The basic reproductive number, denoted by Ry is thus given by

(€ + uq)poe” +
uu +e)d+u+y)

apo
T

Ry =p(FV™') = (3.2)

3.2. Stability of disease-free equilibrium

Theorem 1. The disease-free equilibrium P, = (2 0,0,0, ’L#f) of system (2.1) is locally asymptotically
stable if Ry < 1, and is unstable if Ry > 1.

Proof. The Jacobian matrix corresponding to system (2.1) about P, = (5, 0,0,0, ’%5) is obtained as
follows:

apyo
w0 B 0 0
0 —(u+e) oo -5 0 0
T(Po)=| £ %e‘%é—(d+u+7) 0 0
0 0 0% —u 0
M1 M2 M3 M4 —T

The characteristic equation corresponding to the Jacobian matrix J(Py) is given by [AE — J(Py)| = 0,
where A is the eigenvalue and E is the unit matrix. Thus, we get

90 - Boe+ug) )

(A+ﬂm+pfp?+@y+s+d+y—77aﬁfm+qumd+ﬂ+w— =0. (3.3)
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Obviously, Eq. (3.3) has three negative roots 4, = —7, A, = A3 = —u, and the other two roots 44 and As

are determined by

0 _oams
/12+(2u+g+d+7—ﬁe‘szlé)ﬂ+(y+3)(d+,u+y)—
u

According to the above calculation and analysis, we can obtain
(5 + auyé
Aads = (ot e+ o+ ) - DT o

(5 auyé
Nt ds =P _urerdry)
u

Bo(e + uq) _ams
v ylig

=0. (3.4)

o= (u+e)d+pu+y)(1 =Ry,

apy o
_wtred+p+ 7)61[ (6 +uq)Bse ™ z+ug

£+ g pu+e)d+u+y) (u+e)q
:(u+8)(d+u+y)q[R0_ e+pq  E+uq ]
£+ g eq+uqg (d+p+yyq
+e)d+pu+ e+
Lt y)q[RO_ N Hq ]
€+ pq d+u+v)q

€+ uq ]
(d+u+y)q

If Ry < 1, we have A4ds > 0, 44 + A5 < 0, hence A4 < 0,45 < 0. Therefore, Py = (5,0, 0,0, ’%6) is
locally asymptotically stable. If Ry > 1, Eq. (3.4) has two real roots that one is positive and another is
negative. In this case, Py = (5, 0,0,0, ‘%) is unstable. This completes the proof of Theorem 1.

Theorem 2. The disease-free equilibrium P, = (%,0, 0,0, ’%) of the
asymptotically stable if Ry < 1 and M(t) > ’%ﬁ.

Proof. Motivated by Huo and Zhang [13], we define the Lyapunov function
V(t) = eE(t) + (u + &)I(2).

It is clear that V(¢) > 0 and the equality holds if and only if E(¢) = I(¢) = 0.
From the first equation of the system (2.1), we have
ds
— =6-BSIe™ —uS <6 —us,
dt
and then we can obtain S (f) < 3.
Differentiating V() with respect to time ¢ yields:

dv( _ dE@) di(r)
i C dr tlute) dt
=BSIe™M (e + pg) — (u + &)(d + p +y)I

apyo

< Bo(e + ugle

I—(u+e)d+u+yl

system (2.1) is globally
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Bo(e + pg)e”
=Gl S

=u+ed+u+yIRy—1).

It follows that V() is bounded and non-increasing. Therefore, lim V(7) exists. Note that % =0
1—00

ifandonlyif E =1 =R =0,§ =8¢y = i,M =M, = ‘%S. The maximum invariant set of the
system (2.1) on the set {(S,E,I,R,M) : Vo 0} is the singleton Py = (%,0, 0,0, %5) And note that

dt
% < 0 for all + > 0. By LaSalle’s Invariance Principle [23], the disease-free
equilibrium Py = (5, 0,0,0, ‘%) is globally asymptotically stable when Ry < 1 and M(z) > ‘%5. This

completes the proof of Theorem 2.

Ry < 1 guarantees that

3.3. Existence and Stability of the endemic equilibria

First, we introduce:

D= ———{(ug + &)y + pps) + (d + p+ Yl — @) — i+ &)1, (3.5)
uT(ug + £)
B o(ug + )@
Ko = v o@rpryy (36)
R, = Ryje' ™. (3.7)

Remark 1. It is clear to check that: Ry; > 0 if and only if ® > 0; Ry; = 0 if and only if ® = 0; Ry; < 0
if and only if ® < 0.

Theorem 3. For system (2.1),

(1) If Ry > max{1, Ry}, there is a unique endemic equilibrium P7.

(i) If R, = Ry < min{1, Ry, } and Ry; > 0, there is a unique endemic equilibrium P;.

(ii1) If R. < Ry < min{l, Ry;} and Ry; > 0, there are two distinct endemic equilibria P and P;.

Proof. The endemic equilibrium P*(S*, E*, I, R*, M*) of system (2.1) is determined by equations

§—BSIe™ ™™ — S =0,

(1-¢q)BSle™ —(u+e)E =0,

gBSIe™™™ + eE — (d + pu+ y)I = 0, (3.8)
yI - pR =0,

wS + wE + sl + R — ™™ = 0.

Further, we obtain

g (.u+8)(d+/1+7)1

S == 39
U H(ug + €) G2
E= (1 —q)(d+u+7)1 (3.10)
uq + &
R=ZI, (.11)
M
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5 @
m=H°_Z
ur o«

where @ is given by (3.5). Substituting S, M into the first equation of (3.8) yields

d
Ro[l _ u+e)d+u+ 7)1] _ o0
o(ug + €)
According to (3.6) and (3.13), we have
0]

Ro(1-—1)-e =0.
We consider a function F(/) defined by
()
F(I) = Ry(1 — —1I) - e .
(D) = Rof &l)e

Then, we have
F(O)=Ry—1,F(+) = —c0,

R R
F'(I) = —R—"cp + ®e® F'(0) = —R—ch + @,
01 01

F'(I) = -
Case 1. When © = 0, according to (3.13), we have

_ o(ug + ) (1 B i)
C(u+e)d+u+y)\ Ry

Therefore, there is a unique endemic equilibrium if ® = 0 and Ry > 1.
Case 2. When @ # 0, we have
F'(I) = %% < 0.

Thus, we get F'(I) < F’(0), which means ®e™ % < ®.
() IfRy > 1, we have F(0O) =Ry — 1> 0, F(+00) = —o0 < 0, and

R R R
F()=-—20+®0e® < ——20+®=(1 - —2).
Ry Ry Ry
When Ry > Ry; > 0, we have ® > 0 and 1 — 1%)1 < 0, which means F’(I) < 0.
When Ry > 0 > Ry;, we have ® < 0 and 1 — 1%01 > 0, which means F’(1) < 0.

Therefore, there is a unique endemic equilibrium if @ # 0 and Ry > max{1, Ry }.
In conclusion, there is a unique endemic equilibrium P7 if Ry > max{1, Ry }.
2)If Ry < 1, we have F(0) =Ry — 1 <0, F(+00) = —c0 < 0, Let’s suppose

F'(I) = —ﬁm + D =0,
Roi

Then we obtain
I.= —In—.
® Ry

(3.12)

(3.13)

(3.14)
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When Ry < Rg;, we have @ > 0 and In % > 0, which means /. > 0.
Substituting /. into (3.14), we get

Ry . Ry

F(.) =Ry + Ro, (In Ro, 1).
(a) When F(I.) = 0, we can obtain I = I. and Ry = R, where R, is given by (3.7).
Therefore, there is a unique endemic equilibrium P; if R, = Ry < min{1, Ry;} and Ry; > 0.
(b) When F(I.) > 0, we can obtain Ry > R..
Since F(0) = Ry—1 <0, F(+00) = —co < 0 and F(I.) > 0, we know that F(/) = 0 has two different
positive solutions I3 and 1. Let I and I} satisfy I; < I < I;. Therefore, there are two distinct endemic
equilibria P} and P} if R, < Ry < min{l, Ry} and Ry; > 0. This completes the proof of Theorem 3.
Theorem 4. When g = 0, the endemic equilibria P;(i = 1,2,3,4) of system (2.1) have the following
qualities:
() If Ry > max{1, Ror}, ai(Iax(I}) = a3(I}) > 0, as(I)|ar(I)ax(I}) - as(I}) | - [al(lf)]2a4(1f) > 0 and
as(I7) > 0, the endemic equilibrium P7 is locally asymptotically stable.
(i) If R, = Ry < min{1, Ry, } and Ry; > 0, the endemic equilibrium P; is unstable.
(ii1) If R. < Ry < min{l, Ry;} and Ry; > 0, the endemic equilibrium P75 is unstable.
(iv) If R. < Ry < min{l, Ry} and Ry; > 0, the stability of the endemic equilibrium Pj is uncertain.
Proof. When g = 0, the Jacobian matrix corresponding to system (2.1) about P;(i = 1,2,3,4) are
obtained as follows:

—plie ™ —p 0 —BSTe M0 aBSiIe M
BLre™ M —(u+e) PBSie™M 0 —aBSiIe M
J(P;) = 0 & —~d+u+y) 0 0
0 0 Y —H 0
Hi Mo M3 Ma -7

The characteristic equation corresponding to the Jacobian matrix J(P?) is given by [AE — J(P})| = 0,
where A is the eigenvalue and E is the unit matrix. Thus, we get

A+BLe ™ + 0 BS e ™™ 0 —aBSiLeM
—BIr e ™ A+p+e —pSie ™ 0 apS;Ire= M
0 —-& A+d+u+y 0 0 =0.
0 0 -y A+ u 0
—Hi ) —H3 —Ha A+T

We set © = Be~*M; | then

@=3 _amd g+ e)d+pu+ y)e‘DI?RO /Jq)eCDI,.*RO
= e T e i = — )
&0 Ry,
From the second equation of (3.8), we have
. +e)d+pu+
BSiIe M = (u+¢e)E; = w+ed+tpty) I,
g
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then
_(@rod+puty) 50

OS; =pBS;e M :
P =hSie € Ry

and
B (,u+8)(d+,u+)/)l* B 6(1)[*
B e "Ry ¥

Therefore, the characteristic equation can be rewritten as:

@S I} =BS;I;e ™M

A+ wF@) =0,

where
F(1) = 2* + a\(INA + ay(INA + a3(INA + ay(I)),

where
a(ll)=d+y+3u+e+1+0I,

a(lHN)=d+y+2u+e+)(u+0O)+1(d+y+2u+e)+ %I;‘(pz—m),
az(ID) =uBl({d+y+2t+e+p) + (e +d+y)(u+OI) + ed + )OI
+ %H[(d +y+ 2w — ) + e(u3 —/11)],
ay(I}) = t(u+&)(d +y + )|+ O) — u(1 + L) .
(i) According to (3.17)-(3.20), we have

a(l})=d+y+3u+e+1+0I],
a(l))=d+y+2u+e+1)(U+O)+1d+y+2u+e)+ %If(yz—,ul),
az(I)) =u®Ld+y+2t+ e+ +1(e+d +y)(u+OI) + &(d + y)OI]

+ %IT[(CZ + Y+ 21 — py) + ez —,Ul)],

ay(I}) = T+ &)(d +y + )|+ OI) — u(1 + I}) .

(3.15)

(3.16)

(3.17)
(3.18)

(3.19)

(3.20)

It is clear that a,(I]) > 0, according to Routh—Hurwitz criteria [24], the proof (i) of Theorem 4 is

obtained.
(i) According to the proof of (ii) of Theorem 3, we have I = éln
Therefore, based on (3.17)-(3.20), we can obtain

Roy
Ro

a(l;)=d+y+3u+e+7+0I; >0,
ay(B) = tu(u + &)(d +y + w|(1 + @) - (1 + ®I3)| = 0.

. Then, we can get O = udI;.

It is easy to know that a3(13) # 0, and a,(I})ax(I5) — a3(I;) < 0. Therefore, we know that Eq. (3.15) has
negative, positive and zero eigenvalues. So the endemic equilibrium P} of system (2.1) is unstable.

Ry

(iii) Due to I; < I; = gln7

a(l;)=d+y+3u+e+7+0[ >0,

, we can get O < u®I;. Therefore, based on (3.17)-(3.20), we can obtain
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and
ay(I;) < Tu(u + &)(d +y + w|(1 + L) - (1 + @I3)| = 0.
Let g;(I5)(j = 1,2,3,4) be the solutions of F(1) = 0, and we assume that the real parts satisfy

Re(g1(I3)) < Re(g2(I3)) < Re(g3(I3)) < Re(g4(I3)), where Re means the real part of a complex number.
Then we can obtain g;(I7)(j = 1,2, 3,4) satisfying

§1(153) + &2(I3) + g3(13) + g4(L3) = —ai(l3) <0,

and
81(13)82(13)g3(13)g4(I3) = as(I3) < 0.

So, we have Re(g(I3)) < 0 and Re(g4(I3)) > 0. Then, we know that the endemic equilibrium P of
system (2.1) is unstable.

(iv) Dueto I} > I = %ln%‘, we have OI; > u®I;. Therefore, based on (3.17)-(3.20), we can obtain

a(ly))=d+y+3u+e+7+0I; >0

and
ay(l;) > tu(u + &)(d +y + w|(1 + L) - (1 + ®I})| = 0.

Let g;(I;)(j = 1,2,3,4) be the solutions of F(1) = 0, and we assume that the real parts satisfy
Re(g1(I})) < Re(gx(I})) < Re(g3(I})) < Re(gs4(I})). Then we can obtain g;(I;)(j = 1,2,3,4) satis-
fying

giIy) + g (1) + g3(I)) + ga(}) = —ai(I;) < 0 (3.21)
and

g1(I;)g2(I;)g3(I)galy) = as(ly) > 0.
Therefore, if Re(g;(I})) < 0(j = 1,2,3,4), the endemic equilibrium P} of system (2.1) is stable.
However, if Re(g1(1;)) < Re(g2(1})) < 0 < Re(g3(I})) < Re(g4(1})) and [Re(g1(1}))| + |Re(g2(1}))| >
|Re(g3(I};))| + |Re(g4(I}))|, the endemic equilibrium P} of system (2.1) is unstable. Thus, the stability of
the endemic equilibrium Pj is uncertain. This completes the proof of Theorem 4.

3.4. Forward and backward bifurcation

Theorem 5. (i) If Ry; < 1, system (2.1) exhibits a forward bifurcation at Ry = 1.
()If Ry; > 1, system (2.1) exhibits a backward bifurcation at Ry = 1.
Proof. We suppose x; = S,x, = E, x3 = I, x4 = R, xs = M, system (2.1) becomes

dX]

— =08 - Bxix3¢ " — ux; = fi,

dt Bxix; HX1 f

dX2 —ax

dr (I = @)Bxi1 X3¢ — (u + €)x2 1= fo,
dx o

d_t3 = gBxixze "™ +ex, —(d+pu+vy)x; = f3,
dX4

— = YX3 — UX4 = [,

dt VX3 — 1X4 1= fa

dX5

T ML X X + 14Xy — TXs 1= -
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When Ry = 1, we obtain 8 = 3, = ’%We w . When 8 = ., the Jacobian matrix corresponding

to system (2.1) about the disease-free equilibrium Py = xp = ( 0,0,0, = ) is given by
—u 0 _%ﬁm 0 0

0 —(u+e (l—q)(u:li;dww) 0

stq

0
J(xo)=| 0 & Qe dHey) i1 d+y) 0 0
0 0 0% -u 0
H H2 H3 My —T
It is clear that O is a simple eigenvalue of J(x;). A right eigenvector w corresponding to the 0 eigenvalue
is w = (wy, Wy, W3, Wa, ws)!, where
+e)d+u+y) (e +uq) (e +uq)®
w = _w Y = (=) d+u+7y), 0 = &+ pg g = L HL (= ETHUT
jz 2 a
The left eigenvector v corresponding to the 0 eigenvalue satisfying vJ = 0 and vw = 1is v =
(U1, 2,3, U4, Us), Where

1
= = = O, = N
N (R R R TR
u+e
Uz = .
el -gd+u+y)+(e +#q)(/u +2)]
5
Furthermore, we have a = ) vww; (ia){k(gi()) and b = Z () ZOOM;;’) Substituting the values of all
ki, j=1 ki=1
second order derivatives evaluated at the disease-free equilibrium xy = (;, 0,0,0, ’%S), we obtain
_ & f2(xo) 02 f2(xo) 0 f3(xo) & f3(xo)
a = 20w w; + 2v,w3ws + 2v30 W3 + 2v3w3ws
X10X3 (9x36x5 6X16.X3 6X36X5

apd

_ayé ad
=2Be” r (ww3 — 70)30)5)(1}2(1 - q) +v3q)

_ e+ uaP i+ £)d + 1+ )(Ror = De”H
pel(l = @)d + p+7) + (e +puq)(u + &)]

and

& f2(xo) R & f3(xo)
9x;08 " 0x308

5 _oms
= wz;e m[(1 = q)uy + qus]

b= Vw3

B 5(e + ug)e”
pel(1 = g)(d + p+7y) + (e + ug(u + &)1
According to Theorem 4.1 of [25], note that the coefficient b is always positive. If Ry; < 1, the co-
efficient a is negative. In this case, the direction of the bifurcation of system (2.1) at Ry = 1 is forward.
If Ry; > 1, the coefficient a is positive. Under this circumstance, the direction of the bifurcation of
system (2.1) at Rty = 1 is backward. This completes the proof of Theorem 5.
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4. Numerical simulation

In this section, we will give some simulations using the parameter values which are given in Table

1.
Table 1. The parameters description of the tuberculosis model.
Parameter Description Estimated value Source
0 Constant recruitment rate of the population 0.8day™! [14]
B Transmission coefficient of TB 0.0099-0.8person~'day~! Estimate
a The coefficient that determines how effective TB 0.00091-0.8day ! [14]
information can influence the transmission rate
u Nature death rate 0.009-0.6year™! Estimate
q The proportion of disease by fast progression 0-0.5year™! Estimate
e The progression rate from E to / 0.02-0.99day ™! Estimate
d The disease-related death rate of TB 0.002-0.5day ™! Estimate
Y The recovery rate of TB 0.006-0.99day! Estimate
7 The rate that susceptible individuals may send 0.04-0.99day ! [26]
message about TB
o The rate that exposed individuals may send 0.008-0.8day ™! [26]
message about TB
U3 The rate that infectious individuals may send 0.08-0.8day ! [26]
message about TB
jon The rate that recovered individuals may send 0-1day™! Estimate
message about TB
T The rate that message become outdated 0.03-0.6year™! [26]

We choose a set of the following parameters: 6 = 0.8, 8 = 0.8, @ = 0.08, u = 0.6, g = 0.5,
e =009,d =002y =07 u =099 u, =04, u3 = 0.8, ug = 0.8, 7 = 0.6. It is easy to
check that the basic reproductive number Ry = 0.383 < 1. Then the unique disease-free equilibrium
Py =(1.3333,0,0,0,2.2) of system (2.1) is globally asymptotically stable (see Figure 2).

Next, we select a set of the following parameters: 6 = 0.8, 8 = 0.8, « = 0.08, u = 0.2, ¢ = 0.1,
e=04,d=0.02,y=0.6,u; =0.2, u, = 0.8, u3 = 0.8, uy = 0.8, 7 = 0.6. It is easy to check that the
basic reproductive number Ry = 2.4553 > 1. Then, from Theorem 4, the endemic equilibrium Pj of
system (2.1) is locally asymptotically stable when Ry > max(1, Ry;), where Ry; = —0.0158 (see Figure
3).
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Figure 2. The disease-free equilibrium of system (2.1) is globally asymptotically stable when
R() < 1.
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Figure 3. The endemic equilibrium Pj of system (2.1) is locally asymptotically stable when
Ry > maX{l,Rm}.

The backward and forward bifurcation diagram of system (2.1) is shown in Figure 4, and the di-
rection of bifurcation depends upon the value of Rjy;. As seen in the backward bifurcation diagram
of Figure 4(a) when Ry; = 4.4936 > 1, there is a threshold quantity R, which is the value of Ry. The
disease-free equilibrium is globally asymptotically stable when Ry < R., where R, = 0.1350. There are
two endemic equilibria and a disease-free equilibrium when R. < R < 1, the upper ones are stable, the
middle ones are unstable and the lower ones is globally asymptotically stable. There is a stable endemic
equilibrium and an unstable disease-free equilibrium when Ry > 1. As seen in the forward bifurcation
diagram of Figure 4(b) when Ry; = 0.5357 < 1, the disease-free equilibrium is globally asymptotically
stable when Ry < 1. There are a stable endemic equilibrium and an unstable disease-free equilibrium
when Ry > 1.
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Figure 4. (a) Illustration of backward bifurcation when one parameter 8 in Ry is varied.
(b) Mlustration of forward bifurcation when one parameter 3 in Ry is varied.

5. Sensitivity analysis and discussion

In this section, we discuss sensitivity analysis of the basic reproductive number R, and the infectious
individuals 7 at first. We study the influence of «, u; and S to Ry. It is straightforward from (3.2) that
Ry increases as 8 increases. This agrees with the intuition that higher transmission coefficient increases
the basic reproduction number. In order to see the relationship of these parameters and R,, we regard
Ry as a function about those parameters. Note that

apyo

ORy _  (e+puq)Bdiue
oa Wt +e)d+pu+7y)

ORy _ (s +yq)aﬁéze_%6
o rru+e)d+u+y)

ap o

ORy uBoe” w 0
0qg uu+e)d+u+y)

Therefore, we find that @ and u; have a negative influence on the basic reproductive number R.
However, ¢ has a positive influence on the basic reproductive number R,. The parameter values are
0=08,¢=0.1,=08,u=02,6=04,y=0.6,d =0.02, u, = 0.8, u3 = 0.8, uy = 0.8, 7 = 0.6.
From Figure 5, we know that the basic reproductive number R, will decrease when @ and y; increase.
However, the basic reproductive number R, will increase when ¢ increases.
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Figure 5. The relationship among R, @, ¢; and q.

Next, in order to evaluate the effect of media coverage on the dynamics of tuberculosis, we choose
different values of @ and 7 (see Figure 6). The parameters are 6 = 0.8, ¢ = 0.1, 8 = 0.8, u = 0.2,
e=04,y=0.6,d=0.02,u; =02, u, = 0.8, u3 = 0.8, uy = 0.8.

From Figure 6, we know that infected number will decrease when « increase, and increase when 7
increases. Therefore, we find that media coverage has a great impact on the transmission of tuberculo-
sis.

Choosing  as a parameter, it is also observed that with 8 increasing, the positive equilibrium point
P7 loses its stability and a Hopf bifurcation occurs when g passes a critical values *.

0.6 . . . . . . . . . 0.6 .
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.................................................

N 051 3
_04r _ 04
Q Q
o e}
g w—,=0.008 g wwmn =08
< - 0=0.08 c 20,6
B 03 0=0.2 3 0.3 =0.2
3 —=0.6 3 - 7=0.08
b= mnee0=08 b= 20,008
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__________
01 % 5 01r
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o . . . . . . . . . o . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Days Days
(a) (b)

Figure 6. The effect of message-related parameters on the dynamics of infectious individu-
als.

We select a set of the following parameters: 6 = 0.8, 5 = 0.0099, @ = 0.007, u = 0.009, g = 0.1,
£=099,d=0.5,y=0.99, u; =0.08, u, = 0.8, u3 = 0.8, g = 0.8, 7 = 0.6. The endemic equilibrium
P7 of system (2.1) is locally asymptotically stable when Ry > max{1, Ry} and 8 < " (see Figure 7).
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Figure 7. Endemic equilibrium P} of system (2.1) is locally asymptotically stable when

B<p".

To illustrate the existence of Hopf bifurcation, we choose a set of the following parameters: 6 = 0.8,
a = 0.007, u = 0.009, g = 0.5, & = 099,d = 0.02, y = 0.1, gy = 0.09, u, = 0.008, u3 = 0.08,
uy = 0.08, 7 = 0.03. When B passes through the critical value 8*, we find the positive endemic
equilibrium P7 loses its stability and a Hopf bifurcation occurs (see Figure 8).

In this paper, we propose and analyse a TB model with fast and slow progression and media cov-
erage. By means of the next-generation matrix, we obtain the basic reproductive number R,, which
plays a crucial role in our model. By constructing Lyapunov function, we prove the global stability of
the disease-free equilibrium. In addition, we obtain the existence and the local stability of the endemic
equilibrium. By using the center manifold theory, we get a backward and forward bifurcation. Further-
more, we give a numerical result about a Hopf bifurcation occurs when S passes through the critical
value 5*. At last, we also use numerical method to simulate outcomes which we have been proved.

The initially exposed individuals have a higher risk of developing active TB. They still have the
possibility of progressing to infectious TB with time passing. The likelihood of becoming an active
infectious case decreases with the age of the infection. Taking these factors into consideration, we set
up a new tuberculosis with fast and slow progression and media coverage. Through simulations, we
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know that 8 plays an important role and induces Hopf bifucation in our model. Furthermore, we have
done some simulations (not shown). We did not find other critical parameters (including g) for Hopf
bifurcation. ¢ is the proportion of disease by fast progression. Since Ry = p(FV™!) = %, we
can find the basic reproductive number R, will increase when ¢ increases. Tuberculosis may breakout
due to the increase of g. The fast and slow progression can not induce Hopf bifurcation, but it still plays

an important role in TB transmission and has a positive influence on the basic reproductive number Ry.
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Figure 8. Endemic equilibrium P} of system (2.1) occurs a Hopf bifurcation when Ry >
max{1, Ry} and 5 > 5*.

Our results show that media coverage has a substantial influence on the dynamics of tuberculosis
and it can greatly influence the spread of the tuberculosis, thus, it is crucial to remind people to take
countermeasures to avoid potential infections by media coverage.

In our model (2.1), we only consider the form of ordinary equation. Note that all of the people
have a time delay in releasing and receiving information, it is more realistic to explore a time delay in
the rate that media coverage become outdated. On the other hand, as suggested by Styblo et al. [27],
recovered individuals may only have partial immunity. Indeed, TB is one kind of chronic infectious

Mathematical Biosciences and Engineering Volume 16, Issue 3, 1150-1170



1169

diseases that has a certain relapse rate due to the drug-resistant tuberculosis and lack of combination
drug regimen. Thus, it is a very interesting and more realistic to study our model with reinfection, that
is some individuals in the recovered class can relapse back into the active TB state. We leave these
interesting works for the future.
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