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Abstract: Recently, Chen and Ma [A generalized shift-splitting preconditioner for saddle point prob-
lems, Applied Mathematics Letters,43 (2015) 49-55] introduced a generalized shift-splitting precondi-
tioner for saddle point problems with symmetric positive definite (1,1)-block. In this paper, I establish
a parameterized shift-splitting preconditioner for solving the large sparse augmented systems of linear
equations. Furthermore, the preconditioner is based on the parameterized shift-splitting of the saddle
point matrix, resulting in an unconditional convergent fixed-point iteration, which has the intersection
with the generalized shift-splitting preconditioner. In final, one example is provided to confirm the
effectiveness.
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1. Introduction

Consider the following 2 × 2 block saddle point problems

A

(
x
y

)
≡

(
A BT

−B 0

) (
x
y

)
=

(
f
g

)
, (1.1)

where A ∈ Rn,n is symmetric positive definite,B ∈ Rm,n,m ≤ n. It appears in many different applications
of scientific computing, such as constrained optimization [49], the finite element method for solving
the Navier-Stokes equation [29, 30, 31], and constrained least squares problems and generalized least
squares problems [1, 38, 44, 45] and so on; see [9-17, 19,20,35,39,40] and references therein.
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In recent years, there has been a surge of interest in the saddle point problem of the form (1), and a
large number of stationary iterative methods have been proposed. For example, Santos et al. [38] stud-
ied preconditioned iterative methods for solving the singular augmented system with A = I. Yuan et
al. [44, 45] proposed several variants of SOR method and preconditioned conjugate gradient methods
for solving general augmented system (1) arising from generalized least squares problems where A can
be symmetric and positive semidefinite and B can be rank deficient. The SOR-like method requires
less arithmetic work per iteration step than other methods but it requires choosing an optimal iteration
parameter in order to achieve a comparable rate of convergence. Golub et al. [32] presented SOR-like
algorithms for solving linear systems (1). Darvishi et al. [28] studied SSOR method for solving the
augmented systems. Bai et al. [2, 3, 23, 49] presented GSOR method, parameterized Uzawa (PU) and
the inexact parameterized Uzawa (PIU) methods for solving linear systems (1). Zhang and Lu [46]
showed the generalized symmetric SOR method for augmented systems. Peng and Li [37] studied the
unsymmetric block overrelaxation-type methods for saddle point. Bai and Golub [4, 5, 6, 7, 8, 33, 40]
presented splitting iteration methods such as Hermitian and skew-Hermitian splitting (HSS) iteration
scheme and its preconditioned variants, Krylov subspace methods such as preconditioned conjugate
gradient (PCG), preconditioned MINRES (PMINRES) and restrictively preconditioned conjugate gra-
dient (RPCG) iteration schemes, and preconditioning techniques related to Krylov subspace meth-
ods such as HSS, block-diagonal, block-triangular and constraint preconditioners and so on. Bai and
Wang’s 2009 LAA paper [40] and Chen and Jiang’s 2008 AMC paper [23] studied some general ap-
proaches about the relaxed splitting iteration methods. Wu, Huang and Zhao [42] presented modified
SSOR (MSSOR) method for augmented systems. Cao, Du and Niu [19] introduced a shift-splitting
preconditioner and a local shift-splitting preconditioner for saddle point problems (1). Moreover, the
authors studied some properties of the local shift-splitting preconditioned matrix and numerical experi-
ments of a model stokes problem are presented to show the effectiveness of the proposed precondition-
ers. Recently, Chen and Ma [22] presented a generalized shift-splitting preconditioner for saddle point
problems with symmetric positive definite (1, 1)-block and gave theoretical analysis and numerical
experiments.

For large, sparse or structure matrices, iterative methods are an attractive option. In particular,
Krylov subspace methods apply techniques that involve orthogonal projections onto subspaces of the
form

K(A, b) ≡ span
{
b,Ab,A2b, ...,An−1b, ...}.

The conjugate gradient method (CG), minimum residual method (MINRES) and generalized min-
imal residual method (GMRES) are common Krylov subspace methods. The CG method is used for
symmetric, positive definite matrices, MINRES for symmetric and possibly indefinite matrices and
GMRES for unsymmetric matrices [39].

In this paper, based on generalized shift-splitting preconditioners presented by Chen and Ma [22], I
establish a parameterized shift-splitting preconditioner for saddle point problems with symmetric pos-
itive definite (1,1)-block. Furthermore, the preconditioner is based on a parameterized shift-splitting
of the saddle point matrix, resulting in an unconditional convergent fixed-point iteration, which has
the intersection with the generalized shift-splitting preconditioner. However, the relaxed parameters of
the parameterized shift-splitting methods are not optimal and only lie in the convergence region of the
method.
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2. Parameterized shift-splitting (PSS) preconditioner

Recently, for the coefficient matrix of the augmented system (1.1), Chen and Ma [22] made the
following splitting

A =
1
2

(
αI + A BT

−B βI

)
−

1
2

(
αI − A −BT

B βI

)
, (2.1)

where α > 0, β > 0 are two constant numbers and I is the identity matrix (with appropriate dimension).
Based on the iteration methods studied in [19, 22], a parameterized shift-splitting of the saddle point
matrixA can be constructed as follows:

A =
1
2

(
αI + A (1 − αβ)BT

−B βI

)
−

1
2

(
αI − A −(1 + αβ)BT

B βI

)
, (2.2)

where α > 0, β > 0 are two constant numbers and I is the identity matrix (with appropriate dimension).
By this special splitting, the following parameterized shift-splitting method can be defined for solving
the saddle point problem (1.1):

Parameterized shift-splitting (PSS) method: Given initial vectors u0 ∈ Rm+n, and two relaxed
parameters α > 0 and β > 0. For k = 0, 1, 2, ... until the iteration sequence {uk} converges, compute

1
2

(
αI + A (1 − αβ)BT

−B βI

)
uk+1 =

1
2

(
αI − A −(1 + αβ)BT

B βI

)
uk +

(
f
g

)
, (2.3)

where α > 0, β > 0 are two constant numbers. It is easy to see that the iteration matrix of the
Parameterized shift-splitting iteration is

Γ =

(
αI + A (1 − αβ)BT

−B βI

)−1 (
αI − A −(1 + αβ)BT

B βI

)
. (2.4)

If we use a Krylov subspace method such as GMRES (Generalized Minimal Residual) method or
its restarted variant to approximate the solution of this system of linear equations, then

TPS S =
1
2

(
αI + A (1 − αβ)BT

−B βI

)
, (2.5)

can be served as a preconditioner. We call the preconditioner PPS S the parameterized shift-splitting
preconditioner for the nonsymmetric saddle point matrixA.

In every iteration of the parameterized shift-splitting iteration (2.5) or the preconditioned Krylov
subspace method, we need solve a residual equation(

αI + A (1 + αβ)BT

−B βI

)
z = r (2.6)

needs to be solved for a given vector r at each step. Since the matrix PPS S has the following matrix
factorization

TPS S =
1
2

(
I 1−αβ

β
BT

0 I

) (
A + αI +

1−αβ
β

BT B 0
0 βI

) (
I 0
− 1
β
B I

)
. (2.7)
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Let r = [rT
1 , r

T
2 ]T and z = [zT

1 , z
T
2 ]T , where r1, z1 ∈ Rn and r2, z2 ∈ Rm. Then by (8), it can resuly in(

z1

z2

)
=

(
I 0

1−αβ
β

I

) (
A + αI +

1−αβ
β

BT B 0
0 βI

) (
I − 1

β
BT

0 I

) (
r1

r2

)
. (2.8)

Hence, analogous to Algorithm 2.1 in [19], we can derive the following algorithmic version of the
generalized shift-splitting iteration method.

Algorithm 2.1. For a given vector r = [rT
1 , r

T
2 ]T , the vector z = [zT

1 , z
T
2 ]T can be computed by

(9) from the following steps:
Step 1: t1 = r1 −

1−αβ
β

BT r2;
Step 2: Solve (A + αI +

1−αβ
β

BT B)z1 = t1;
Step 3: z2 = 1

β
(Bz1 + r2).

Now, we turn to study the convergence of the parameterized shift-splitting iteration for solving
symmetric saddle point problems. It is well known that the iteration method (2.5) is convergent for
every initial guess if and only if ρ(Γ) < 1, where ρ(Γ) denotes the spectral radius of Γ). Let λ be an
eigenvalue of Γ) and [x∗, y∗]∗ be the corresponding eigenvector. Then we have(

αI − A −(1 + αβ)BT

B βI

) (
x
y

)
= λ

(
αI + A (1 − αβ)BT

−B βI

) (
x
y

)
, (2.9)

or equivalently,
(λ − 1)αx + (λ + 1)Ax + (1 + αβ + λ − λαβ)BT y = 0,
(λ + 1)Bx + (1 − λ)βy = 0.

(2.10)

To get the convergence of the parameterized shift-splitting iteration, we first give some lemmas.
Lemma 2.1. Let A be a symmetric positive definite matrix, and B has full row rank. Let Γ be defined
as in (5) with α > 0 and β > 0. If λ be an eigenvalue of Γ, then λ , ±1.
Proof. Let [x∗, y∗]∗ be the corresponding eigenvector of λ. if λ = 1, then from (11) we have(

A BT

B 0

) (
x
y

)
= 0. (2.11)

It is easy to get that the coefficient matrix of (2.11) is nonsingular. Hence x = 0 and y = 0. which
contradicts the assumption that [x∗, y∗]∗ is an eigenvector of the iteration matrix Γ. So λ , 1.

Now, we prove that λ , −1. If λ = −1, then from (2.10) we can obtain

− 2αx + 2αβBT y = 0, and − 2βy = 0. (2.12)

Since α > 0, β > 0, from (2.12) we get x = 0 and y = 0, which also contradict the assumption that
[x∗, y∗]∗ is an eigenvector of the iteration matrix Γ. So λ , −1. This completes the proof. �
Lemma 2.2. Assume A be a symmetric positive definite matrix, and B has full row rank. Let λ be an
eigenvalue of Γ(with α > 0 and β > 0) and [x∗, y∗]∗ be the corresponding eigenvector with x ∈ Cn and
y ∈ Cm. Then x , 0. Moreover, if y = 0, then |λ| < 1.
Proof. If x = 0, then from (11) we have (1 + αβ + λ − λαβ)BT y = 0. By Lemma 2.1 we know that
λ , −1 and α > 0, β > 0. Thus we have BT y = 0. Because BT has full column rank, we get y = 0,
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which contradicts with the assumption that [x∗, y∗]∗ is an eigenvector. Thus x , 0. From Lemma 2.2
[21], we easy know |λ| ≤‖ (αI + A)−1(αI − A) ‖2 .
Theorem 2.3. Assume A ∈ Rn×n be a symmetric positive definite matrix, and B ∈ Rm×n has full row
rank, and let α, β be two positive constants. Let ρ(Γ) denote the spectral radius of the parameterized
shift-splitting iteration matrix. Then it holds that

ρ(Γ) < 1, ∀α > 0, β > 0, (2.13)

i.e., the parameterized shift-splitting iteration converges to the unique solution of the saddle point
problem (1.1).
Proof. Let λ be an eigenvalue of Γ and [x∗, y∗]∗ be the corresponding eigenvector with x ∈ Cn and
y ∈ Cm. By Lemma 2.1 we obtain λ , 1. Then we can obtain from (2.10) that

y =
λ + 1
β(λ − 1)

Bx. (2.14)

Substituting (2.14) into the first equation of (2.10), we get

(λ − 1)αx + (λ + 1)Ax +
(1 + αβ + λ − λαβ)(λ + 1)

β(λ − 1)
BT Bx = 0. (2.15)

By Lemma 2.2, we obtain that x , 0. Multiplying β(λ − 1) as well as x∗
x∗x on both sides of Eq. (2.15),

we have

αβ(λ − 1)2 + β(λ2 − 1)
x∗Ax
x∗x

+ (1 + αβ + λ − λαβ)(λ + 1)
x∗BT Bx

x∗x
= 0. (2.16)

Let

a =
x∗Ax
x∗x

, b =
x∗BT Bx

x∗x
. (2.17)

Because A is a symmetric positive definite matrix and B has full row rank, we get a > 0 and b ≥ 0.
Substituting (2.17) into (2.16), we know that λ satisfies the following real quadratic equation

λ2 +
2b − 2αβ

αβ + βa + b + αβb
λ +

αβ − βa + b + αβb
αβ + βa + b + αβb

= 0. (2.18)

Then from Lemma 2.2, we know that a sufficient and necessary condition for the roots of the real
quadratic equation (2.18) to satisfy |λ| < 1 is∣∣∣∣∣αβ − βa + b + αβb

αβ + βa + b + αβb

∣∣∣∣∣ < 1, (2.19)

and ∣∣∣∣∣ 2b − 2αβ
αβ + βa + b + αβb

∣∣∣∣∣ < 1 +
αβ − βa + b + αβb
αβ + βa + b + αβb

. (2.20)

It is easy to find that (2.19) and (2.20) hold for all α > 0 and β > 0 when a > 0 and b > 0. Also, if
b = 0, there is a x , 0 such that Bx = 0. Then by Lemma 2.1, from (2.10) we have y = 0. Hence, by
Lemma 2.2 we have |λ| < 1. Thus ρ(Γ) < 1. Then, we get (2.13), e.e., the parameterized shift-splitting
iteration converges to the unique solution of the saddle point problem (1.1). �
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Remark 2.1. When α = 0, The parameterized shift-splitting preconditioner reduces to the lo-
cal shift-splitting preconditioner. Moreover, the parameterized shift-splitting preconditioner in this
paper and the generalized shift-splitting preconditioner in [21] are two different preconditioning
modes. Moreover, they have an intersection.

Remark 2.2 From Theorem 2.3, we know that the parameterized shift-splitting iteration method is
uncondit0inally convergent.

3. Numerical examples

In this section, I present one example to illustrate the effectiveness of the parameter shift-splitting
preconditioner for GMRES(m) method and MINRES to solve the linear systems (1) in the sense of it-
eration step (denoted as It), elapsed CPU time in seconds (denoted as CPU), and relative residual error
(denoted as RES). All numerical examples are carried out in Matlab 7.0. In our experiments, all runs
with respect to both GSS method and PSS method are started from initial vector ((x(0))T , (y(0))T )T = 0,
and terminated if the current iteration satisfy RES < 10−6.

Table 1. Iteration counts, relative residual and CPU time about preconditioned matrices
T −1

GS SA and T −1
PS SA when choosing different parameters. Here, p = 16.

T −1
PS SA α β ItBiCGS T AB ResBiCGS T AB CPU(s)

0.001 0.002 2 6.5007 × 10−7 0.147
0.003 0.001 1 8.0657 × 10−7 0.074
0.005 0.006 5.5 6.5785 × 10−7 0.367
0.007 0.004 4 5.9859 × 10−7 0.262
0.009 0.008 2 6.4956 × 10−7 0.142

T −1
GS SA α β ItBiCGS T AB ResBiCGS T AB CPU(s)

0.001 0.002 2 6.5008 × 10−7 0.146
0.003 0.001 1 8.0664 × 10−7 0.072
0.005 0.006 5.5 4.6159 × 10−7 0.329
0.007 0.004 4 6.1723 × 10−7 0.268
0.009 0.008 2 6.4961 × 10−7 0.151

Example 3.1. [18] Consider the linear system of equations (1) with

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ VC + VC ⊗ I) + 9(e1eT
l + eleT

1 ) ⊗ I,

where V = tridiag(−1, 2,−1) ∈ Rl×l,VC = V − e1eT
l − eleT

1 ∈ R
l×l and e1 and el are the first and last

unit vectors in Rl, respectively. Here T and K correspond to the five-point centered difference matrices
approximating the negative Laplacian operator with homogeneous Dirichlet boundary conditions and
periodic boundary conditions, respectively, on a uniform mesh in the unit square [0, 1]× [0, 1] with the
mesh-size h = 1

l+1 .
In Figures 1 ∼ 4, I report the eigenvalue distribution for the generalized shift-splitting precondi-

tioned matrix T −1
GS SA and the parameter shift-splitting preconditioned matrix for different parameter,
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respectively. In Tables 1 ∼ 4, we report iteration counts, relative residual and cpu time about precon-
ditioned matrices T −1

GS SA and T −1
PS SA with l = 16 and l = 24 when choosing different parameters.

Figures 1 ∼ 4 and Tables 1 ∼ 4 show that the GSS preconditioner and PSS preconditioner have the
same eigenvalue distribution and the convergence when choosing different parameters.
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Figure 1. The eigenvalue distribution for the parameter shift-splitting preconditioned matrix T −1
PS SA when

α = 0.001, β = 0.002(the first), α = 0.003, β = 0.001 (the second),α = 0.005, β = 0.006(the third), α =

0.007, β = 0.004(the fourth) and α = 0.009, β = 0.008 (the fifth), respectively. Here, l = 16.
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Figure 2. The eigenvalue distribution for the generalized shift-splitting preconditioned matrix T −1
GS SA when

α = 0.001, β = 0.002(the first), α = 0.003, β = 0.001 (the second),α = 0.005, β = 0.006(the third), α =

0.007, β = 0.004(the fourth) and α = 0.009, β = 0.008 (the fifth), respectively. Here, l = 16.
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Figure 3. The eigenvalue distribution for the parameter shift-splitting preconditioned matrix T −1
PS SA when

α = 0.001, β = 0.002(the first), α = 0.003, β = 0.001 (the second),α = 0.005, β = 0.006(the third), α =

0.007, β = 0.004(the fourth) and α = 0.009, β = 0.008 (the fifth), respectively. Here, l = 24.
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Figure 4. The eigenvalue distribution for the generalized shift-splitting preconditioned matrix T −1
GS SA when

α = 0.001, β = 0.002(the first), α = 0.003, β = 0.001 (the second),α = 0.005, β = 0.006(the third), α =

0.007, β = 0.004(the fourth) and α = 0.009, β = 0.008 (the fifth), respectively. Here, l = 24.
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Table 2. Iteration counts, relative residual and CPU time about preconditioned matrices
T −1

GS SA and T −1
PS SA when choosing different parameters. Here, p = 16.

T −1
PS SA α β ItGMRES ResGMRES CPU(s)

0.001 0.002 9(1) 1.8872 × 10−8 0.394
0.003 0.001 8(1) 3.4887 × 10−7 0.359
0.005 0.006 13(1) 3.2668 × 10−7 0.499
0.007 0.004 11(1) 4.7948 × 10−7 0.432
0.009 0.008 13(1) 8.5534 × 10−7 0.530

T −1
GS SA α β ItGMRES ResGMRES CPU(s)

0.001 0.002 9(1) 1.8871 × 10−8 0.402
0.003 0.001 8(1) 3.4834 × 10−7 0.358
0.005 0.006 13(1) 3.2640 × 10−7 0.510
0.007 0.004 11(1) 4.7939 × 10−7 0.432
0.009 0.008 13(1) 8.5183 × 10−7 0.493

Table 3. Iteration counts, relative residual and CPU time about preconditioned matrices
T −1

GS SA and T −1
PS SA when choosing different parameters. Here, p = 24.

T −1
PS SA α β ItBiCGS T AB ResBiCGS T AB CPU(s)

0.001 0.002 2.5 9.8445 × 10−7 1.557
0.003 0.001 1 8.6139 × 10−7 0.583
0.005 0.006 5.5 7.2770 × 10−7 3.166
0.007 0.004 4 9.6488 × 10−7 2.366
0.009 0.008 17 9.2708 × 10−7 10.313

T −1
GS SA α β ItBiCGS T AB ResBiCGS T AB CPU(s)

0.001 0.002 2.5 9.8383 × 10−7 1.551
0.003 0.001 1 8.6147 × 10−7 0.580
0.005 0.006 5.5 6.9932 × 10−7 3.382
0.007 0.004 4 9.4912 × 10−7 2.391
0.009 0.008 20.5 9.0799 × 10−7 12.469

4. Discussion and conclusion

In this paper, the author presents a parameterized shift-splitting preconditioner for saddle point
problems with symmetric positive definite (1, 1)−block. Theoretical analysis shows that PSS method
is an unconditional convergent fixed-point iteration. Furthermore, numerical example indicates that the
GSS preconditioner and PSS preconditioner have the same eigenvalue distribution and the convergence
when choosing different parameters.
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Table 4. Iteration counts, relative residual and CPU time about preconditioned matrices
T −1

GS SA and T −1
PS SA when choosing different parameters. Here, p = 24.

T −1
PS SA α β ItGMRES ResGMRES CPU(s)

0.001 0.002 16(1) 7.7884 × 10−8 5.527
0.003 0.001 13(1) 7.5976 × 10−7 4.262
0.005 0.006 20(1) 6.4167 × 10−7 6.343
0.007 0.004 16(1) 8.7812 × 10−7 5.338
0.009 0.008 21(1) 6.5959 × 10−7 6.970

T −1
GS SA α β ItGMRES ResGMRES CPU(s)

0.001 0.002 16(1) 7.7882 × 10−8 5.500
0.003 0.001 13(1) 7.5943 × 10−7 4.400
0.005 0.006 20(1) 6.4171 × 10−7 6.298
0.007 0.004 16(1) 8.7812 × 10−7 5.288
0.009 0.008 21(1) 6.6135 × 10−7 6.897
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