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Abstract: In the classical chemostat, the output of the system has no effect on its input. This 
contrasts with many ecological systems, where the output at the end of a growing season affects 
nutrient inputs for subsequent seasons. Here, an iterative-continuous modelling framework is 
introduced that retains the structure of classical ecological models within each iteration but accounts 
for nutrient feedbacks between iterations. As an example, the framework is applied to the classical 
chemostat model, where nutrient outputs affect the supply ratio at each iteration. Furthermore, the 
biotic parameters in the model, including organismal demands for nitrogen (N) and phosphorus (P), 
are linked to core biogenic processes—protein and rRNA synthesis. This biosynthesis is further 
deconstructed into 11 biological constants and rates, most of which are deeply shared among all 
organisms. By linking the fundamental macromolecular machinery to the cycling of nutrients on the 
ecosystem scale, the framework enables to rigorously formulate qualitative and quantitative 
questions about the evolution of nutrient ratios and the existence of stoichiometric attractors, such as 
the puzzling persistence of the Redfield N:P ratio of 16 in the ocean. While the framework presented 
here is theoretical, it readily permits setting up empirical experiments for testing its predictions. 

Keywords: chemostat; Redfield ratio; nitrogen; plankton; nutrient cycling; mathematical model; 
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1. Introduction: Iterative continuous dynamical system 

Some key processes in Nature can be viewed as iteratively continuous: within each iteration the 
process runs continuously reaching its final state that feeds into the next iteration. For example, in 
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temperate areas, the growth of primary producers is seasonal. During the growing season (usually 
Spring and Summer), plants continuously grow and compete. At the end of the season, some part of 
the plant biomass (e.g. leaves) falls and gets partially or fully decomposed, releasing nutrients into 
the soil. The released nutrients affect the plant growth and the competition outcomes in subsequent 
growing seasons. At larger scales, numerous phytoplankton species grow and compete in the upper 
ocean, the plankton biomass sinks to the deep ocean and decomposes, releasing nutrients into the 
water that the upwelling eventually brings to the upper ocean, thus affecting the growth and 
competition outcomes of new plankton. 

Mathematically, such natural processes can be viewed as iterative dynamical systems, where the 
end state of each iteration affects the input parameters for the next iteration: 

ௗ௑

ௗ௧
ൌ ,௜ߙሺܨ ,ߚ ܺሻ with Xሺ0ሻ ൌ ܺ଴; ߙ௜ ൌ ݃ሺ ௜ܺିଵ

∗ ሻ with ߙ௜ ൌ ݅ ,଴ߙ ൌ 2, 3, 4, … (1a) 

where:  
  ,is the continuous function that governs the system dynamics within each iteration ܨ
 ௜ is the real-valued vector (or scalar) representing the input parameter(s), the values of which mayߙ
vary between iterations (e.g. the supply of nutrients into the system); 
ܺ is the real-valued vector representing state variables (e.g. species density, nutrient stocks);  
  ;is the real-valued vector (or scalar) representing biotic parameter(s) (e.g. species traits) ߚ
ܺ଴ represents the initial conditions of the state variables for each iteration (for simplicity, the initial 
conditions are assumed to be the same for all iterations but can be generalized to vary);  
  ;଴ represents the initial values of the input parameters for the first iterationߙ

௜ܺ
∗ is the end state of the i-th iteration, i.e. it is the solution ܺሺܶሻ at time ܶ (the duration of each 

iteration) for 
ௗ௑

ௗ௧
ൌ ,௜ߙሺܨ ,ߚ ܺሻ  with ܺሺ0ሻ ൌ ܺ଴ ; if ܶ  is sufficiently large and the solution 

approaches an equilibrium, then ௜ܺ
∗ can be viewed as the equilibrium state of the i-th iteration;  

݃ is the function that defines for each iteration (except the first one) the dependence of the input 
parameters on the end state of the previous iteration. 

A more elaborate and interesting iterative system that captures not only nutrient feedbacks but 
also competitive and evolutionary outcomes can be introduced by allowing a biotic parameter (ߚ, in 
this case a scalar) to vary, and then applying Adaptive Dynamics (Geritz et al., 1998 [7]; Diekmann, 
2002 [5]) to track its evolution. Under certain conditions, Adaptive Dynamics allows using a 
single-species model to predict competitive outcomes of a multispecies system. For example, if 
system (1) has a positive globally stable equilibrium at each iteration, then the methods of Adaptive 
Dynamics can be applied to find the Evolutionary Steady (or Stable) Strategy (ESS) among all 
possible ߚ values. This would be akin to considering a multispecies system with each species 
having a different trait ߚ, and then finding among them the winner, if such exists. The winner’s trait 
(or some function of it) can be taken as the end state of each iteration: 

ௗ௑

ௗ௧
ൌ ,௜ߙሺܨ ,௜ߚ ܺሻ with ܺሺ0ሻ ൌ ܺ଴; ߙ௜ ൌ ݃ሺߚ௜ିଵሻ with ߙ௜ ൌ ݅ ,଴ߙ ൌ 2, 3, 4. ..,  

where ߚ௜ିଵ is the ESS value for ߚ for system 
ௗ௑

ௗ௧
ൌ ,௜ିଵߙሺܨ ,ߚ ܺሻ, if it exists    (1b) 
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An alternative and more compact representation of (1a, b) is possible (without explicitly using 
function ܨ , as a discrete dynamical system for ߙ௜ ), but the above structure has a couple of 
advantages. First, within each iteration it allows explicitly using a classical ecological model 

represented as 
ௗ௑

ௗ௧
ൌ ,௜ߙሺܨ ,௜ߚ ܺሻ. This makes the rich history of theoretical results for classical 

models applicable within iterations; it also allows experimenters to use conventional and well-tested 
set ups (e.g. chemostat) to track the dynamics within each iteration. Second, the most interesting part 

of the process, biologically, often rests in the continuous system 
ௗ௑

ௗ௧
ൌ ,௜ߙሺܨ ,௜ߚ ܺሻ as illustrated 

with the case below. 

2. Iterative chemostat model 

Let us start with a classical chemostat model (Smith and Waltman, 1995) [16] of the growth of 
one species on two limiting nutrients (substrates) in a well-mixed continuous culture, which will be 
later linked to the iterative system (1b): 

ቐ
ܰᇱ ൌ ݀ሺܰ଴ െ ܰሻ െ ݂݊ሺܰ, ܲሻܺ
ܲᇱ ൌ ݀ሺܲ଴ െ ܲሻ െ ,ሺ݂ܰ݌ ܲሻܺ

ܺᇱ ൌ ሺ݂ሺܰ, ܲሻ െ ݀ሻܺ
        (2) 

Here:  

N(t)  and P(t) are the concentrations of nitrogen (N) and phosphorus (P), respectively, in the 

medium at time ݐ;  
ܺሺݐሻ is the biomass of the species at time ݐ;  
N 0  and P0  are the inflowing concentrations of N and P, respectively;  

d  is the dilution (flow) rate (thus, 
ଵ

ௗ
 is the residence time of a molecule in the chemostat);  

n  and p  are the N and P concentrations in the species biomass, respectively (also referred to, in 

the chemostat theory, as quotas or nutrient use efficiencies);  

f (N , P)  is the relative growth rate of the species. 

The output of model (2) has no effect on its input. In ecological or physiological systems, 
however, the output of a process can and often does affect its input (feedback loops), e.g. through 
nutrient cycling or signaling. Extensions of the chemostat model accounting for some type of 
feedback (e.g. the experimenter manipulating the dilution rate depending on the internal state of the 
chemostat, the impulsive state feedback control, or linked chemostats) have been proposed and 
analyzed (e.g. Pirt and Kurowski, 1970 [13]; Codeço and Grover 2001 [2]; De Leenheer and Smith, 
2003 [4]; Guo and Chen, 2009 [9]). Below, feedbacks between the supply of nutrients and the biotic 
parameters of the species are considered. 

Apllying the notation used in (1b) to model (2), one can define X as ሺܰ, ܲ, ܺሻ and ܨ as the 
right-hand side of the classical chemostat model (2) with the input parameters being ߙ௜ ൌ ሺ ௜ܰ

଴, ௜ܲ
଴ሻ 

and the variable biotic parameter ߚ being related to ݊/݌, which is the ratio of nitrogen-to-phosphorus 
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(N:P) of the species. Here is an example of the feedback loop: if system (2) represents the growth of 
a phytoplankton species in the upper ocean, then one can consider the set of all possible traits ߚ, i.e. 
possible chemical compositions of a species that affect its N:P. Suppose that for a given supply of 
nutrients, the ESS value for ߚ exists (under suitable conditions the ESS can be viewed as the trait of 
the species that outcompetes all others, i.e. the “winner”). Let us denote the ESS value of the winner 
as ߚ௜ and take it as the end state of the i-th iteration. The biomass of the winner eventually sinks 
into the deep ocean, where it partially or fully decomposes, releasing N and P in the ratio that equals 
to, or strongly depends on, the N:P ratio of its biomass. The periodic upwelling brings those nutrients 
up from the deep ocean to the surface, thus, affecting the ratio of the nutrient supply, ௜ܰାଵ

଴ : ௜ܲାଵ
଴ , for 

the next growing season. In other words, at each iteration the ratio of input parameters, ௜ܰାଵ
଴ : ௜ܲାଵ

଴ , 
depends on the end state (ߚ௜) of the previous iteration: ߙ௜ାଵ ൌ ݃ሺߚ௜ሻ. 

The above described iterative framework allows to raise questions that cannot be raised within 
the classical chemostat theory and it allows to do so in a mathematically rigorous way. For example, 
do sequences ߙ௜ or ߚ௜ exist and converge as ݅ → ∞? Such a question is not a mere mathematical 
curiosity but carries deep practical importance because it can potentially shed light on the evolution 
of nutrient ratios (stoichiometry) at the ecosystem or global scale, as outlined in the next section. 

3. The Redfield Ratio 

The feedback between phytoplankton in the upper ocean and nutrients in the deep ocean is of 
special interest because it is responsible for what is likely to be the most expansive stoichiometric 
pattern on the planet, known as the Redfield ratio. The average N-to-P atomic ratio in phytoplankton 
in the upper ocean is ~16, i.e. for every atom of P there are about 16 atoms of N in the aggregate 
phytoplankton biomass. Remarkably, nearly the same N:P ratio is found throughout the waters of the 
deep ocean in the both hemispheres. While considerable deviations from the Redfield ratio do exist, 
nevertheless, it shows surprising robustness on the vast spatial and temporal scales (Falkowski and 
Davis, 2004 [6]). 

In the early 1930s, Alfred Redfield discovered the ratio after participating in the inaugural 
voyages of Atlantis—the first American ship built specifically for biological research. He first 
described the N:P ratio of 16 in Redfield (1934) [14] (later the ratio was extended to include carbon 
and other elements). However, it is still not fully understood why the N:P ratio centers around 16 and 
not some other biologically plausible number, and how this ratio can get established and persist on 
such large scales. 

Several continuous dynamical models yielded insights into the Redfield ratio by considering 
feedbacks between the plankton dynamics and the nutrient pools. However, those models either explicitly 
introduce N:P = 16 into the model as an input parameter (e.g. Tyrrell 1999 [18]) or arrive at the 
conclusion that N:P = 16 has no inherent biological significance (e.g. Klausmeier et al., 2004 [11]). The 
latter seems to be at odds with Redfield’s original hypothesis stating that the N:P = 16 is rooted in 
“protoplasm”: “the relative proportion of phosphate and nitrate must tend to approach that characteristic 
of protoplasm in general and that, given time enough and freedom from systematic disturbing influences, 
a relationship between phosphate and nitrate such as that observed to occur in the sea must inevitably 
have arisen” (Redfield, 1934) [14]. To the best of my knowledge, no dynamic model exists that would 
explain the emergence and persistence of N:P ~16 without feeding into the model either N:P = 16 and/or 
several N:P value averaging to 16 (e.g. [18], Weber and Deutsch, 2012 [19]). 
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Here, an iterative-continuous chemostat model is developed that has a potential to show how 
N:P = 16 can emerge and persist from an arbitrary initial N:P condition in the ocean. In its present 
form, model (2) prescribes the N and P contents (quotas) to the phytoplankton, as biotic parameters 
݊ and ݌. This necessitates feeding into the model phenomenological N:P value (݊:  with no (݌
intrinsic biological significance. Below, I extend model (2), so that parameters ݊ and ݌ are not 
prescribed but, instead, arise from basic macromolecular values deeply shared by all life forms. 

4. Linking Chemostat Model to the Core Macromolecular Synthesis 

For many microorganisms, and phytoplankton specifically, the largest or dominant pool of the 
intracellular N is protein, while the single largest pool of intracellular P often is ribosomal RNA 
(rRNA) (Sterner and Elser, 2002) [17]. These two genetic information-carrying biopolymers, protein 
and rRNA, are interdependent on their biosynthesis: rRNA (as a structural part of a ribosome) is 
required to synthesize proteins, while proteins (as RNA polymerases) are the ones that synthesize 
rRNAs. Below, I focus on these two biopolymers to understand their role in the Redfield ratio. The 
goal here is not to account for all the possible factors that can affect microbial N:P but rather 
understand if and how the interdependence of the two biopolymers leads to the rise and persistence of 
stoichiometric attractors, such as the Redfield ratio, on the ecosystem and evolutionary scales. While the 
proposed model ignores all other nutrient pools in the cell, it can be extended to include such pools but at 
the cost of increased complexity. 

Here, I use the notation of Loladze and Elser (2011) [12] (also adopted by Daines et al., 2014 [3]), 
where the authors used the interdependence of protein and rRNA to derive the “Redfield formula” 
showing that the maximal possible microbial growth corresponds to N:P ~16, without feeding any 
specific N:P into the formula. 

Let’s characterize a microbial species by a trait defined here as the species protein:rRNA, 

  a : r , where:  

ܽ and ݎ are the species protein and rRNA contents, respectively.  
The N and P contents in the species biomass can be directly expressed through its protein and 

rRNA contents via three stoichiometric constants universal to all life (݊௔, ݊௥, and ݌௥): 

n( ) 
naa  nrr

a  r


na (a / r) nr

(a / r)1


na  nr

 1
       (3) 

p() 
prr

a  r


pr

(a / r) 1


pr

 1
         (4) 

where:  
݊௔ ൌ 0.17 and ݊௥ ൌ 0.15 are the concentration of N in protein and rRNA, respectively, and 
௥݌ ൌ 0.09 is the concentration of P in rRNA. 

A couple of notes. First, since protein has no P, it follows that the model assigns all the 
intracellular P to rRNA. Second, I do not and cannot use the term “constants” here with the same 
precision as physicists are so fortunate to be able to use for physical constants. Unlike, say, the speed 
of light in vacuum, the numerical value of “biological constants” (bioconstants), ݊௔, 	݊௥, and ݌௥, 
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can slightly vary depending on the relative frequency of amino acids in a protein or nucleotides in an 
rRNA. However, aside from such small variations, the three bioconstants are universally applicable 
to all biological matter, irrespective of its organizational complexity, be it a unicellular organism, a 
healthy or malignant tissue, or a population. 

Next, the growth function, f (N , P) , is linked to two fundamental macromolecular processes 

essential to any biological growth—protein and rRNA biogenesis. How does each of these two 
processes limit the overall growth? 

If protein synthesis limits the overall growth, then the growth rate would be: 

protein synthesis rate

protein content

 r

a
 1        (5) 

where ߛ is the variable rate of protein synthesis per unit mass of rRNA (all the protein in living 
systems is synthesized by ribosomes, each containing the fixed amount of rRNA; for details see 
Loladze and Elser (2011) [12]). 

If rRNA synthesis limits the overall growth, then the growth rate would be: 

rRNA synthesis rate

rRNA content

a

r
          (6) 

where ߰ is the variable rate of rRNA synthesis per unit mass of protein (all the RNA in living 
systems is synthesized by proteins, RNA polymerases). 

The overall growth of the species then is limited by the lower of the two biosynthesis rates (5) 
and (6): 

  
f    min 1 ,            (7) 

Next, the variable rates of protein and rRNA synthesis are linked to the availability of N and P 
in the medium. Many models of microbial growth focus on the uptake of nutrients and on the surface 
of the cell as the growth limiting step. While such surface-level limitations are important, the 
ultimate destination for the N and P atoms imported into a cell is protein and rRNA synthesis (the 
only pools considered here). A novel part of the model is that it shifts the focus for the growth 
limiting step from the uptake, which has been extensively studied and modeled in the literature, to 
the focal points of biogenesis related to genetic information—nucleic acids and protein. Recent 
empirical evidence shows that the supply of N and P affects key rates of biosynthesis in 
phytoplankton (Grosse et al., 2017 [8])—a feature that is underexplored in the plankton modeling 
literature but may be central for the Redfield ratio. 

First, in the absence of N, no protein synthesis is possible, i.e. ߛ ൌ 0. Second, under N-replete 
and otherwise optimal conditions, the synthesis of a protein is limited by the maximal capability of a 
ribosome to synthesize a protein. Let’s denote the maximal possible protein synthesis rate per unit 
mass of rRNA as ߛ௠. It is reasonable to assume that the rate of protein synthesis increases with 
increasing N availability in the medium (ܰሻ from 0 (in the absence of N) to ߛ௠  (N-replete 
conditions) in a smooth saturating fashion captured by Michaelis-Menten kinetics of nutrient uptake, 
also known as the Monod function for microbial growth: 
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 (N ) 
 mN

KN  N
           (8) 

where KN  is the half-saturation constant defined as the N concentration in the medium 

corresponding to the protein synthesis rate being a half of ߛ௠. 
A similar argument can be applied to the dependence of rRNA synthesis on P availability to 

arrive at: 

 (P) 
 mP

KP  P
           (9) 

where ߰௠ is the maximal rate of rRNA synthesis per unit mass of protein, and KP  is the 

half-saturation constant for ܲ, defined as the P concentration in the medium corresponding to the 
rRNA synthesis rate being a half of ߰௠. 

Substituting Eqs 8 and 9 into Eq 7 yields: 

  

f N , P,    min 1 (N ),   (P)   min
1

m
N

K
N
 N

,


m
P

K
P
 P









     (10) 

Note that in the absence of either nutrient, the species ceases to grow, irrespective of its ߚ: 

f 0, P,    f N , 0,    0. 

As shown in Loladze and Elser (2011) [12], the maximal rates of protein and rRNA 
synthesis,	ߛ௠ and ߰௠, can be deconstructed into eight molecular constants and rates, most of which 
are widely shared among organisms. The values for each of the eight parameters have been either 
theoretically derived or empirically determined (see Table 1), making no need to prescribe some 
arbitrary or theoretically convenient values to any of the eight parameters. Here is how ߛ௠ and ߰௠ 
are decomposed into the eight parameters: 

௠ߛ ൌ థೌఙೌ௠ೌ

௠ೝ௟ೝ
 and ߰௠ ൌ థೝఙೝ௠ೝ

௠ೌ௟ೌ
                          (11) 

where:  
݈௔ is the number of amino acids in an RNA polymerase (Pol I holoenzyme for eukaryotes),  
݈௥ is the number of nucleotides in a ribosome,  
݉௔ is the average mass of an amino acid,  
݉௥ is the average mass of a ribonucleotide,  
and the remaining four parameters are defined and determined at optimal and nutrient-replete 
conditions:  
 ௔ is the maximal peptide elongation rate (the number of amino acids added during synthesis to theߪ
growing protein chain per unit of time),  
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 ௥ is the maximal rRNA elongation rate (the number of nucleotides added during synthesis to theߪ
growing rRNA per unit of time, and adjusted for excised external and internal transcribed spacers), 
߶௔ is the maximal fraction of ribosomes actively translating, i.e. synthesizing proteins,  
߶௥ is the maximal fraction of protein that is RNA polymerase actively transcribing DNA into rRNA, 
i.e. synthesizing rRNA. 
Substituting Eqs 11 into Eq 10 yields the relative growth rate of the species as: 

݂ሺܰ, ܲ, ሻߚ ൌ min ቀିߚଵ థೌఙೌ௠ೌ

௠ೝ௟ೝ

ே

௄ಿାே
, ߚ థೝఙೝ௠ೝ

௠ೌ௟ೌ

௉

௄ುା௉
ቁ                 (12) 

Substituting Eqs 3 and 4 into system (2) yields: 

ە
۔

ܰۓ
ᇱ ൌ ݀ሺܰ଴ െ ܰሻ െ ௡ೌఉା௡ೝ

ఉାଵ
∙ ݂ ∙ ܺ

ܲᇱ ൌ ݀ሺܲ଴ െ ܲሻ െ ௣ೝ
ఉାଵ

∙ ݂ ∙ ܺ

ܺᇱ ൌ ሺ݂ െ ݀ሻܺ

                           (13) 

where ݂ is defined by Eq 12. 
System (12, 13) with 17 parameters has a remarkable property: 11 out the 17 parameters hold 

the same value (bioconstants) for either all (݊௔, 	݊௥, ,௥ሻ or several kingdoms of life (݈௔݌ ݈௥,݉௔, 	݉௥ሻ, 
or are widely applicable at least within each family or genus (ߪ௔, ,௥ߪ	 	߶௔, 	߶௥ሻ. Out of the remaining 
6 parameters, ܭே and ܭ௉ can be potentially species specific, and their variability is touched upon 
in Discussion. Parameter ݀ (the dilution rate) reflects the physical properties of the system (the rate 
of inflow) rather than biological ones, leaving only three parameters (ܰ଴, 	ܲ଴,  ሻ that would makeߚ
biological sense to vary between iterations of the system. 

This raises an interesting question directly related to the Redfield ratio: If the feedback between 
the nutrient supply ܰ଴ and ܲ଴, and the species protein:rRNA, ߚ, is accounted for by the iterative 
framework, can the N:P ratio of either the supply or the species converge to some value? If so, is this 
value the Redfield ratio? 

Rigorously formulating the above question requires to explicitly express the species N:P, 
denoted here as ߠ, through the species trait, protein:rRNA, ߚ. This is straightforward to do using 
Eqs 3 and 4: 

ߠ ൌ ݌/݊ ൌ ௡ೌఉା௡ೝ
ఉାଵ

/ ௣ೝ
ఉାଵ

ൌ ௡ೌఉା௡ೝ
௣ೝ

       (14) 

Eq 14 shows that ߠ is a one-to-one (linear) function of ߚ and, hence, ߠ and ߚ can be used 
interchangeably to refer to the species trait here (the reason for retaining both is to ease derivations). 

Next, the iterative process is described. For each iteration, consider system (12, 13) in the 
positive cone ሺݔ, ܰ, ܲሻ with all the 11 bioconstants set at their intrinsic values, and ݀ set at some 
meaningful value. The remaining three parameters ܰ଴, 	ܲ଴, and ߚ can vary as follows. For the first 
iteration (݅ ൌ 1), the input parameters are set at some arbitrary ratio ଵܰ

଴: ଵܲ
଴. Among all the possible 

values of ߚ, the ESS value is selected (assuming a unique ESS exists). It is possible to show that 
under reasonable conditions a unique ESS exists (I.L. and Sergei Pilyugin, unpublished data). Let us 
denote the ESS value for protein:rRNA as ߚଵ for the first iteration. It uniquely defines the species 
N:P via Eq 14, denoted here as ߠଵ, which is taken as the output of the first iteration. 
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For the second iteration (݅ ൌ 2), the N:P ratio of the inflow,	 ଶܰ
଴: ଶܲ

଴ is set to ߠଵ. This reflects 
the cycling of nutrients, where the biomass sinks and decomposes, releasing nutrients into the deep 
waters that the upwelling subsequently brings up to the upper ocean. With the nutrient supply for the 
second iteration being equal to ߠଵ, system (12, 13) is again considered with all the possible ߚ 
values, among which the ESS value is selected, denoted as ߚଶ. It defines the species N:P (ߠଶ). For 
the next iteration (݅ ൌ 3), the N:P of the inflow is set to ߠଶ, and so on the iterations continue. 

Questions then arise about the convergence of ሼߠ௡ሽ௡ୀଵ
ஶ . Does the sequence converge? If so, to 

what value? Is the value unique? Considering that most of the parameters in (12, 13) are immutable, 
what is the numerical value of the point of convergence, if such a point does exist? Is the value 16? If 
not, how far is the value from 16 and how does it depend on the core macromolecular parameters? 

These questions can be schematically represented on Figure 1. 

 

Figure 1. The iterative-continuous framework allows to rigorously formulate and analyze 
questions about the evolution of stoichiometric ratios and the emergence and stability of 
stoichiometric attractors on large temporal scales. Starting with arbitrary initial 
conditions (e.g. N:P = 5 or N:P = 40), a possible evolution of phytoplankton N:P is 
depicted, converging to the vicinity of the Redfield N:P ratio of 16. 

Summarizing the above, an iterative chemostat linked to the core biosynthesis can be 
formulated as follows: 

ە
ۖ
۔

ۖ
ۓ ܰᇱ ൌ ݀ሺ ௜ܰ

଴ െ ܰሻ െ ௡ೌఉା௡ೝ
ఉାଵ

݂ ∙ ܺ

ܲᇱ ൌ ݀ሺ ௜ܲ
଴ െ ܲሻ െ ௣ೝ

ఉାଵ
݂ ∙ ܺ

ܺᇱ ൌ ሺ݂ െ ݀ሻܺ,

݂ሺܰ, ,ܤ ሻߚ ൌ ݉݅݊ ቀିߚଵ థೌఙೌ௠ೌ

௠ೝ௟ೝ

ே

௄ಿାே
, ߚ థೝఙೝ௠ೝ

௠ೌ௟ೌ

௉

௄ುା௉
ቁ

, ݅ ൌ 1, 2…,  (15) 

and  
 ଵܰ

଴: ଵܲ
଴ is set at an arbitrary value, and: 

௜ܰାଵ
଴ : ௜ܲାଵ

଴ ൌ ௜ߠ ൌ ሺ݊௔ߚ௜ ൅ ݊௥ሻ ∶ ݅ ,௥݌ ൌ 1, 2, 3, …,    (16) 

where ߚ௜ ൌ ESSሺߚሻ for (15) at ݅-th iteration, if a unique ESS exists. 
Table 1 lists values of the 11 bioconstants. Note that for any given ݅ and ߚ, system 15 is a 

classical chemostat model of one species growing on two limiting nutrients. Eq 16 describe the 
feedback: for the initial iteration, the inflow N:P ratio is set at some arbitrary value; for each 
subsequent iteration the ratio is equal to the N:P of the “winner” of the preceding iteration (ߠ௜) 
defined by its protein:rRNA (ߚ௜) via Eq 14. 
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Table 1. Descriptions and values of 11 parameters of the model acting as “biological 
constants”. The first five parameters have the same value throughout all the kingdoms of 
life. The bottom seven are nearly constant within either several kingdoms, or at the very 
least within a family or genus. 

Parameter Description Prokaryote Eukaryote Units 

݉௔  average mass of an amino acid in peptide chains 110 110 Daltons 

݉௥  average mass of a ribonucleotide in RNA 321 321 Daltons 

݊௔  average N content in amino acids 17% 17%  

݊௥  average N content in ribonucleotides 15% 15%  

௥݌  average P content in ribonucleotides 9% 9%  

݈௔ 
length of RNA polymerase 

(Pol I holoenzyme for eukaryotes) 
3400 4800 amino acids 

݈௥ length of rRNA in a ribosome 4560 6860 nucleotides 

௔ߪ  maximal peptide elongation rate 21 10 amino acids/sec 

௥ߪ  
maximal nascent precursor-rRNA elongation rate 

(corrected for excised ETS and ITS) 

85 

(71) 

40–60 

(33–49) 
nucleotides/sec 

߶௔ 
maximal fraction of protein that is RNA 

polymerase actively transcribing rRNAs 
0.0020 0.0018  

߶௥  maximal fraction of ribosomes actively translating 0.80 0.80–0.90  

 

 

Figure 2. Numerical runs of iterative-continuous system (15, 16) with all the parameters set for 
prokaryotes as in Table 1 and ݀ ൌ 0.03, ேܭ ൌ 0.01, ௉ܭ ൌ 0.0015, ௜ܲ

଴ ൌ 0.05, ݅ ൌ 1,2… 
The initial N:P supply is set to 4 for the lower trajectory and 50 for the upper one. The grey line 
depicts Redfield N:P = 16. Since the model tracks N:P ratios in the units of mass, they were 
multiplied by the molar N:P = 2.21 to depict them as atomic ratios. 
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The purpose of this paper is to introduce the interactive-continuous framework and, specifically, 
the iterative chemostat, which allows to mathematically formulate key questions related to the 
Redfield ratio. While answering these questions is outside of the scope of this paper, examples of 
numerical runs of system (15, 16) are given in Figure 2 depicting the N:P trajectories over many 
iterations. How the outcome of system (15, 16) depends on its variable parameters (݀, ,ேܭ	 ,௉ܭ	 	 ௜ܲ

଴) is 
touched upon in Discussion. 

5. Discussion 

It is a canonic statement in ecology that energy flows but nutrients cycle. Yet, the richly 
developed set of ecological models, such as those in the population dynamics or the chemostat theory, 
often lack built-in feedbacks for nutrient cycling. 

An iterative-continuous dynamical system introduced here can account for feedbacks found in 
ecological and physiological systems by making the input parameters at each iteration depend on the 
end state of the preceding iteration. While such dynamics can be mathematically formulated more 
concisely as a purely iterative system, the presented framework provides several advantages. First, 
the continuous function ܨ in system (1a, b) retains the structure of classical ecological models that 
bring with them the rich theoretical and experimental history, thus, making well-established methods 
and results applicable within each iteration. Second, by accounting for feedbacks via iterations, the 
framework allows separating fast and slow time scales. For example, fast seasonal competitive 
dynamics in the upper ocean contrast with the slower nutrient cycling in the deep ocean, where 
nutrient residence time can be several hundred years. Alternative mathematical approaches exist for 
separating slow and fast time scales in ecological systems (e.g. Rinaldi and Scheffer, 2000 [15]; 
Klausmeier, 2010 [10]). The framework presented here specifically separates the slow feedback loop 
from the faster system dynamics. This makes it well-suited for experimental testing because it can 
eliminate the need for experimenters to explicitly set up the slow recycling compartment. Instead of 
physically feeding the nitrogen and phosphorus atoms from the output back to the input, the iterative 
chemostat (15, 16), passes only the information about their ratios, as shown in Figure 3. 
Experimenters can account for the feedback of the slow recycling compartment by periodically 
adjusting the N:P of the inflow based on the N:P of the outflow. This would allow them to track the 
slow evolution of nutrient ratios much faster than in natural systems. 

However, the framework is not limited only to passing the information. System (1a, b) allows 
for broader range of feedbacks, including passing matter and for the recycling compartment itself to 
be continuous (via function ݃). The end state of each iteration can be taken as the value of the state 
variables (at an equilibrium or at some time T, the duration of each iteration) or as the value of biotic 
parameters corresponding to the ESS. The ESS value can be determined with the help of Adaptive 
Dynamics (Geritz et al., 1998 [7], Diekmann, 2004 [5]), allowing under suitable conditions to use 
a single-species system for modeling the outcome of multi-species competitive system. 
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Figure 3. Schematic depiction of the classical (A) and the iterative (B) chemostats, and a 
system with an explicit nutrient cycling feedback (C). 

The iterative chemostat (15, 16) allows to raise new questions that are difficult (or impossible) 
to raise rigorously within the classical non-iterative framework. As iterations progress, do 
stoichiometric ratios in the biomass or the medium converge to some value? If convergence to some 
point exists, it would mean that the point of convergence acts as a stoichiometric attractor to which 
the nutrient ratio in the ecosystem tend to over evolutionary scales. A particularly tantalizing 
possibility is that the stoichiometric N:P attractor is the famed Redfield ratio: more than 80 years 
after it was first described (Redfield, 1934) [14], the ratio still leaves open key questions about the 
mechanisms responsible for both its emergence and its surprising robustness. 

For the framework to be conducive for investigating the numerical value of the stoichiometric 
attractors (e.g. N:P = 16), the parameters in the continuous chemostat model are linked to key 
biopolymers and biosynthetic rates. The advantage of going to such a small organizational scale is 
twosome: 1) core macromolecular and biochemical processes are deeply shared among all life ( e.g. 
transcription and translation), and 2) several “biological constants” exist at this scale that are 
otherwise extremely difficult to find at higher organization scales (e.g. most eukaryotes have the 
same number of ribonucleotides in a ribosome, but, on the organismal or population scale, it is hard 
to name a constant that would be as widely applicable to an entire kingdom of life as say ݈௥, ݉௔ or 
 .(௥ are݌

This allows to raise not only qualitative but also quantitative questions about the evolution of 
stoichiometric ratios. If across iterations, the N:P ratio in the biomass or the medium converges to 
some value, is that value 16? If not, how far is it from 16? How does it depend on the core 
bioconstants? Grosse et al. (2017) [8] empirically showed that biosynthetic rates in phytoplankton 
depend on the supply of N and P, which is the central feature of model (15, 16). 
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A peculiar feature of the Redfield ratio is that, while it is omnipresent on vast marine scales, it 
rarely persists in smaller bodies of water such as lakes. Does the persistence of the Redfield ratio 
depend on the strength of internal nutrient feedbacks and residence time of nutrients? The iterative 
framework allows to investigate such questions by varying the strength of the feedback between 
iterations via the dilution rate and absolute nutrient concentrations (݀ and ௜ܲ

଴). 
Next, I discuss some limitations of the model, which considers only two cellular pools: protein 

and rRNA. While these pools often are the dominant N and P pools in microorganisms, other cell 
surface and intracellular N and P pools (e.g. phospholipids, storage compartments) can substantially 
impact the overall species N:P (e.g. Daines et al., 2014 [3]) and possibly affect the quantitative 
outcomes of iterations or the rate of convergence. However, the qualitative outcomes, such as the 
existence of points of convergence, i.e. stoichiometric attractors, might be robust to additions of 
various cellular N and P pools. 

Another considerable simplification in the model is that it does not explicitly consider multiple 
steps that the N and P atoms go through before they become a part of the two biopolymers (protein or 
RNA). These steps include passive and/or active transport through the cell membrane and 
incorporation into monomers (amino acids or nucleotides). Each of these steps, together with 
environmental factors and limitations imposed by other nutrients, can affect species N:P. For 
example, Chrzanowski and Grover (2008) empirically showed that cell size and temperature can 
affect microbial N:P under the same nutrient supply [1]. The model presented here does not aspire to 
comprehensively account for the factors affecting plankton N:P but rather it sets a framework for 
investigating the emergence of stoichiometric attractors and their dependence on the core 
macromolecular machinery. Furthermore, model (15, 16) does not necessarily ignore the multiple steps 
that the N and P atoms go through before ending in proteins or rRNA but rather packs them into Monod 
functions (Eqs 8, 9 and 11) (a possibly relevant mathematical fact here is that an arbitrary number of 
compositions of Monod functions is a Monod function; Bo Deng personal communication). 

The model considers only P as a limiting factor for rRNA synthesis, even though RNA is N-rich 
(nearly as N-rich as protein is, ݊௥ ൌ 	0.15 cf. ݊௔ ൌ 0.17), and, hence, N can potentially limit RNA 
synthesis. However, the atomic N:P ratio in RNA is very low (<4) and, under most realistic scenarios 
with the N:P of the inflow >4, the N limitation of RNA synthesis is unlikely. While it is rather 
straightforward to add the N limitation of rRNA synthesis to model (15, 16), the resulting 
complications have no meaningful effect on the dynamics of the model under realistic scenarios (I.L. 
unpublished data). 

The numerical runs in Figure 2 show the existence of a unique stoichiometric attractor to which 
the N:P in the system converges from arbitrary initial conditions either below or above the 
convergence point. Since the values of 11 bioconstants in the model (15, 16) are either theoretically 
or empirically derived, it leaves the numerical value of the stoichiometric attractor to potentially 
depend only on the variable parameters: the dilution rate, absolute nutrient concentrations or the 
two half-saturation constants. Interestingly, the model shows that the dilution rate correlates with the 
rate of convergence but has little effect on the value of the attractor. Similarly, richer nutrient levels 
slow down the convergence but have no affect on the value of the attractor. In other words, the 
convergence is iteratively faster in oligotrophic systems (such as are the interior parts of the ocean). 
The value of the attractor however, depends on the ratio of the half-saturation constants, ܭே:ܭ௉. 
This is expected because the half-saturation constants reflect multiple limitations that N and P atoms 
go through, all the way from the medium to the biopolymers. This may be prematurely interpreted as 
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meaning that the complexity of nutrient uptake kinetics is ultimately driving the optimality of 
plankton N:P, and that the Redfield ratio carries no inherent biological significance. However, the 
Redfield formula in Loladze and Elser (2011) [12], which assumes nutrient replete and otherwise 
optimal conditions, does not depend on either ܭே or ܭ௉, but only on the 11 bioconstants: 

ܴ݂݈݁݀݅݁݀ ܰ ∶ ݋݅ݐܽݎ ܲ ൌ   ൬݊௔
௠ೌ

௠ೝ
ට
௟ೌமೌ஢ೌ
௟ೝமೝ஢ೝ

൅ ݊௥൰ ∶  ௥      (17)݌	

I hypothesize that if under reasonable conditions the ratio of half-saturation constants can vary 
and evolve, it would also converge to the same value as the N:P of the attractor, and ultimately both 
ratios, driven by the ultimate demands of the biosynthetic machinery supported by the nutrient 
feedback, will converge to the Redfield ratio. If so, this would indicate that Alfred Redfield’s original 
1934 hypothesis that one of the planet’s most expansive stoichiometric patterns, the N:P = 16, rises 
from the life’s smallest organizational scale (the “characteristic of protoplasm”) is true. 
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