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Abstract: As Malaria represents one of the major health burdens in Africa, there is a risk of reappear-
ance of this vector-borne disease in malaria-free or low risk countries such as those in North Africa.
One of the factors that can lead to this situation is the flow of sub-Saharan immigrants trying to reach
Europe through North Africa. In this work, we investigate such a possibility via a mathematical model.
We assume that the immigrant (non-locals) population has a carrying capacity that limits their num-
bers in the host country, and we study how they might contribute to the disease spread. Our analysis
gave conditions of the persistence of the disease and showed that the non-local population could have
a positive effect by reducing the spread of Malaria.
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1. Introduction

With 216 million infection cases in 2016 and around 445000 deaths in the same year [52], Malaria
is still one of the infectious diseases that has a huge burden on the world global health, particularly in
the African continent with more than 90% of the cases worldwide, according to WHO [50].

Although a lot of countries in Africa have already achieved the Malaria free status [51], including
the North African countries [9, 24], the road to a complete malaria free continent is still long. One
of the reasons of the possible reappearance of malaria in North African countries is the fact that these
countries have geographical borders with countries that are not Malaria free (see Figures 1 and 2).
Moreover, there has been an increase in the flow of the Sub-Saharan immigrants along the Trans-
Saharan migration route [11, 44, 27, 12]. For example, in Algeria which has been categorized as
a country with the potential of eliminating local transmission of malaria by 2020 [51], there have
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been cases of Malaria [23]. Also, countries such as Morocco and Tunisia are facing the same risk
[7, 11, 44, 12].

On the other hand, climate change and the new Trans-Saharan Highway linking Algeria and West
Africa have contributed to creating a new map of the distribution of tropical vectors. More precisely,
the mosquito A.gambie was recently identified as a new type in the Algerian mosquito fauna [11, 23,
12, 43]. This fact will increase the risk of imported malaria to the countries [34].

Hence, there is a need to investigate the impact of the increasing number of immigrants from Sub-
Saharan countries on the possible malaria infectious cases. The aim is to answer questions such as:
How will the immigrant population affect the potential spread of malaria in this region?

Since the first mathematical model describing the malaria transmission by Ross [38], many re-
searchers have extended Ross’s model by considering different factors, such as the latent period of
infection in mosquitoes and humans [2, 31]. Other models have been developed by introducing various
features of the disease to better understand the epidemiological reality of the disease and the impacts
of the external factors [6, 19, 33]. A review of different mathematical models in modelling malaria
transmission can be found, for example, in [30].

On the other hand, several papers have investigated the effect of the human migration, and it’s role
in the spread of the disease (see for example [5, 48]). To investigate Malaria in Africa, mathematical
models has been used to study the effects of climate change and migration on the spread of the diseases
[32, 35, 49]. Other studies have focused on the possible control measures, like border screening, to
reduce the impact of the disease [26]. Recently, these host countries adapted and implemented new
policies to limit the number of immigrants [8]. The focus of this paper is to study the impact of such
policies. This can be modeled by considering a logistic growth of the non-local population.

The work of Gao and Ruan [22] has focused on a multi-patch malaria model with logistic growth.
Their paper investigated on the effects of population movement in the spreading of malaria between
patches by analyzing the monotonicity of the basic reproduction number as a function of the travel
rates. In their work, they gave the condition of the persistence of the disease in both populations.

This work investigates the effects of the logistic growth of the immigrant population in a hosting
country that has a linear growth. The logistic growth is aimed to capture a limited number of immigrant
population that is allowed to stay in the country. This assumption allows us to investigate the effects
of the carrying capacity of this population on the dynamic of malaria. More precisely, we consider
two patches. The first represents the population of the hosting country, which we refer to as the local
population. This population is assumed to have a linear growth.The second is the immigrant population
(Sub-Saharan immigrants), which we refer to the as non-local population. This population is assumed
to have a logistic growth.

Since there is no health care preventative measure to identify the infected immigrants at the entry
(borders) to the hosting country, we assume that the flow of immigrants (non-local population) enter
directly as susceptible to the hosting country. On the other hand, the categorization of the non-local
population to different compartments, cited below, is done inside the hosting country after arrival.

We also assume that there is no movement between the two patches. This assumption is justified by
the fact that the non-local population lives with the local population in the same cities, and there are no
geographical separations between the two populations.

To our knowledge, there is no study on the effect of the carrying capacity vis-à-vis the linear growth,
in two populations, on the spread of Malaria.
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The paper is organized as follows: First, we introduce our mathematical model in Section 2. In
Section 3, we give the basic mathematical properties of the model and compute the basic reproduction
number. The local and global stability of the disease-free equilibrium is treated in Section 4. In
Section 5, we investigate the condition of the existence of an endemic equilibrium, and we give the
disease persistence result. Finally, we study the possibility of controlling the disease by controlling the
carrying capacity of non-locals in Section 6. A conclusion and discussion of the findings of this work
are in Section 7.

Figure 1. Malaria death rates per 100,000 in north African countries from 1990-2016 [37].

Figure 2. Incidence of malaria per 1,000 population at risk, 2000-2015, where incidence of
malaria is defined as the number of new cases of malaria in a year per 1,000 population at
risk [37].
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2. Presentation of the model

In this work, we opted to use an SEIRS model of malaria (see for example [17, 33]). The benefit of
such approach over the existing models is that it allows to us investigate the long time period dynamic
of the disease for the local and non-local populations.
The human population is divided into locals, L(t), and non-locals, N(t). The mosquito population is
denoted by M(t).
The human sub-populations, L and N, are divided into four classes according to their disease status:
susceptible S (t), exposed E(t), infectious I(t) and recovered R(t).

Hence, L(t) = S L(t) + EL(t) + IL(t) + RL(t) and N(t) = S N(t) + EN(t) + IN(t) + RN(t). The total
population of human,

∑
(t), is time-dependent with

∑
(t) = L(t) + N(t).

Since mosquitoes need a period of time to develop the parasite and pass from the infected stage
to the infectious stage, we divide the mosquito population into three subclasses: susceptible S M(t),
infected IM,1(t) and infectious I2

M(t) mosquitoes remain infectious for life and have no recovered class
[16, 28]. The total mosquito population, M(t) = S M(t) + IM,1(t) + IM,2(t) is not constant.

We assume that the susceptibles are recruited into the local population by constant input rate ΛL and
have a death rate dL. However, the non-locals are assumed to have a logistic growth with rN growth rate
and carrying capacity KN . The death rate of non-locals is dN . The average biting rate of mosquitoes a
and ci represent, respectively, the transmission probability from infectious mosquitoes to locals (i = 1),
mosquitoes to non-locals (i = 2), locals to mosquitoes (i = 3) and non-locals to mosquitoes (i = 4). The
death rate due to infection αk, k = L,N, and the recovery rate is δk, k = L,N. Finally, νk, k = L,N
is the progression rate at which the exposed humans become infectious.

Similarly, we assume that susceptible mosquitoes have a constant recruitment rate ΛM and die at
the rate dM. µM stands for the death rate due to the use of pesticides on the mosquito population.
Finally, νM represents the rate in which the infected mosquitoes become infectious. All the parameters
of the model are represented in Table 1, and flowchart below gives us the different path of model
compartments. The equations of the spread of malaria among the local population is given by:



dS L

dt
= ΛL − ac1

S L∑ IM,2 − dLS L + δLRL,

dEL

dt
= ac1

S L∑ IM,2 − (νL + dL)EL,

dIL

dt
= νLEL − (γL + αL + dL)IL,

dRL

dt
= γLIL − (δL + dL)RL.

(2.1)

For notation simplification, we call

εL = νL + dL, θL = γL + αL + dL, βL = δL + dL.
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Figure 3. The flowchart of the mathematical model. The dotted arrows show the direc-
tion of the transmission from infectious human to susceptible mosquito or from infectious
mosquitoes to susceptible humans.

The equations of the non-local population is given by:

dS N

dt
= rNS N(1 − S N

KN
) − ac2

S N∑ IM,2 + δNRN ,

dEN

dt
= ac2

S N∑ IM,2 − (νN + dN)EN ,

dIN

dt
= νN EN − (γN + αN + dN)IN ,

dRN

dt
= γN IN − (δN + dN)RN .

(2.2)

Here also, we denote

εN = νN + dN , θN = γN + αN + dN , βN = δN + dN .

The dynamic of the mosquitoes population is given by:

dS M

dt
= ΛM − ac3S M

IL∑ − ac4S M
IN∑ − (µM + dM)S M,

dIM,1

dt
= ac3S M

IL∑ + ac4S M
IN∑ − νMIM,1 − (µM + dM)IM,1,

dIM,2

dt
= νMIM,1 − (µM + dM)IM,2.

(2.3)

With: bM = µM + dM
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Table 1. Parameters interpretation.

Parameters Description
a Average biting rate of mosquitoes on a human.
c1 Transmission probability from infectious mosquitoes to locals.
c2 Transmission probability from infectious mosquitoes to non-locals.
c3 Transmission probability from infectious locals to mosquitoes.
c4 Transmission probability from infectious non-locals to mosquitoes.
ΛL Recruitment rate of local population.
rN Growth rate of non-local population.
KN Carrying capacity of non-local population.
ΛM Recruitment rate of mosquitoes.
dL Natural death rate for locals.
dN Natural death rate for non-locals.
dM Natural death rate for mosquitoes.
νL Rate of exposed locals becoming infected.
νN Rate of exposed non-locals becoming infectious.
νM Rate of infected mosquitoes becoming infectious.
αL Disease-induced death rate for locals.
αN Disease-induced death rate for non-locals.
γL Recovery rate for infected locals.
γN Recovery rate for infected non-locals.
δL Rate of losing immunity of local population.
δN Rate of losing immunity of non-local population.
µM Pesticide-induced death rate for mosquitoes.

3. The model analysis

The first step in analyzing our model is to show that the variables of the model are positive and
bounded. Let Ω = R3

+ × R
8
+ and denote points in Ω by (S , E, I,R), where S = (S L, S N , S M), E =

(EL, EN , IM,1), I = (IL, EN , IM,2) and R = (RL,RN).
Using these notations, we can write all the system in a compact form as:

dS
dt

= f1(S , E, I,R),

dE
dt

= f2(S , E, I,R),

dI
dt

= f3(S , E, I,R),

dR
dt

= f4(S , E, I,R).

(3.1)
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Let,

Γ =

{
(S , E, I,R) ∈ Ω;

ΛL

dL + αL
≤ L ≤

ΛL

dL
, 0 ≤ N ≤

(rN + dN)2KN

4rNdN
, 0 ≤ M ≤

ΛM

bM

}
(3.2)

Theorem 3.1. The system (3.1) has a unique non-negative solution for non-negative initial conditions.
Moreover, Γ is positively invariant and globally attracting for our system.

Proof. The local existence and uniqueness of solutions follow from the regularity of the function
f = ( f1, f2, f3, f4) which is of class C1 in Γ. For the positivity of the solution, we use the standard
approach [45]. Thus Ω is positively invariant.
As the system (3.1) has a unique non-negative solution, straightforward calculations show that
L,N,M ∈ Γ, and the solution is globally defined. �

The investigated model has two disease free equilibria (DFE) in Γ;

1. E01 is DFE without the non-local population i.e S ∗N = 0.

E01 = (S ∗L, 0, 0, 0, 0, 0, 0, 0, S
∗
M, 0, 0) = (

ΛL

dL
, 0, 0, 0, 0, 0, 0, 0,

ΛM

bM
, 0, 0)

2. E02 is DFE with full capacity immigrant population i.e S ∗N = KN .

E02 = (S ∗L, 0, 0, 0, S
∗
N , 0, 0, 0, S

∗
M, 0, 0) = (

ΛL

dL
, 0, 0, 0,KN , 0, 0, 0,

ΛM

bM
, 0, 0)

To find the basic reproduction number, we use the method described in [46]. Hence, we can rewrite
our model as follows

ẋi = Fi(x, y) −Vi(x, y) f or i = 1, ..., 6
ẏ j = g j(x, y) f or j = 1, ..., 5

(3.3)

with: x = (EL, IL, EN , IN , IM,1, IM,2) and y = (S L,RL, S N ,RN , S M).
F (x, y) is the inflow of new individuals into infected classes,

F =

(
ac1

S L∑ IM,2, 0, ac2
S N∑ IM,2, 0, ac3S M

IL∑ + ac4
S MIN∑ , 0

)T

andV contains all other within and out of the infected class, it’s given by:

V = −
(
−εLEL, νLEL − θLIL, −εN EN , νN EN − θN IN , −(νM + bM)IM,1, νMIM,1 − bMIM,2

)T .

Let F = DF |(S ∗,0) and V = DV|(S ∗,0) be the Jacobian matrices of the maps F and V, evaluated at the
DFE. Following Van den Driessche and Watmough [46], the matrix FV−1 is well defined and is the
next generation matrix that we denote K = FV−1.

K =



0 0 0 0 ac1
S ∗L∑∗ νM

(νM+bM)bM
ac1

S ∗L∑ 1
bM

0 0 0 0 0 0
0 0 0 0 ac2

S ∗N∑∗ νM
(νM+bM)bM

ac2
S ∗N∑ 1

bM

0 0 0 0 0 0
ac3

S ∗M∑∗ νL
εLθL

ac3
S ∗M∑∗ 1

θL
ac4

S ∗M∑∗ νN
εNθN

ac4
S ∗M∑∗ 1

θN
0 0

0 0 0 0 0 0
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R0 is the spectral radius of the next generation matrix, R0 = ρ(K).
For DFE = E02, we have

R0 =
a

ΛL

dL
+ KN

√
ΛM

bM

νM

bM(νM + bM)

(
c2c4KN

νN

εNθN
+ c1c3

ΛL

dL

νL

εLθL

)
. (3.4)

It is easy to prove that we can write R0 as follow:

R0 =
1

KN +
ΛL

dL

√(
KNR

N
0

)2
+

(
ΛL

dL
RL

0

)2

, (3.5)

where RL
0 and RN

0 are defined by

RL
0 =

a
ΛL

dL

√
ΛM

bM

νM

bM(νM + bM)

(
c1c3

ΛL

dL

νL

εLθL

)
, (3.6)

and

RN
0 =

a
KN

√
c2c4

νMΛM

b2
M(νM + bM)

KN
νN

εNθN
, (3.7)

where RL
0 represents the basic reproduction number of the local sub-population in the absence of the

non-local sub-population, and RN
0 is the basic reproduction number of the non-local sub-population in

the absence of the local sub-population.

4. Stability of the disease-free equilibria points

In this section, we investigate the conditions of the local and global stability of the disease-free
equilibria points.

4.1. The local stability

By linearizing the system of differential equations (3.3), we obtain the Jacobian matrix J∗ that can
be written in a block structure

J∗ =

(
F − V 0

J1 J2

)
Theorem 4.1. 1. The disease-free equilibrium point E01 is unstable.

2. The disease-free equilibrium point E02 is locally asymptotically stable if and only if R0 < 1 and
unstable if R0 > 1.
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Proof. The eigenvalues of the Jacobian matrix J∗ are those of F − V and J2, where J2 is given by:

J2 =


−dL δL 0 0 0

0 −βL 0 0 0
0 0 rN(1 − 2 S ∗N

KN
) δN 0

0 0 0 −βN 0
0 0 0 0 −bM


.

The spectrum of the matrix of J2 is given by λ(J2) =
{
−dL,−βL, rN(1 − 2 S ∗N

KN
),−βN ,−bM

}
.

1 When S ∗N = 0, J2 has one eigenvalue with positive real part, so it implies that the E01 is unstable.
2 When S ∗N = KN , all the eigenvalues J2 have negative real parts, then it remains to show in this

case that all the eigenvalues of the matrix F − V have all negative real parts.

We can prove easily that: F is a non-negative matrix and V is non-singular M-matrix. Using
Lemma 9.2 [13], our F and V verify all conditions, so we conclude that all the eigenvalues of J∗

have a negative real parts if and only if R0 < 1.

�

If we define the following parameters:

φ1 =

KN +
ΛL

dL√
K2

N +
ΛL

dL

2
, φ2 =

min
(
KN ,

ΛL

dL

)
max

(
KN ,

ΛL

dL

) ,

then we have the following remark,

Remark 1. 1) If RN
0 < 1 and RL

0 < 1, then R0 < 1.

2) If max
(
RN

0 ,R
L
0

)
≤ φ1, then R0 ≤ 1.

3) If max
(
RN

0 ,R
L
0

)
≤
√

2φ2 , then R0 ≤ 1.

4) If min
(
RN

0 ,R
L
0

)
> φ1 , then R0 > 1.

5) If min
(
RN

0 ,R
L
0

)
>

√
2

φ2
, then R0 > 1.

Moreover, we have 2) implies 3) and 5) implies 4).
Assertions 2 and 3 show that it is possible to have Ri

0 ≥ 1, i = N, L yet R0 is less than 1. On the
other hand, if the RL

0 and RN
0 are both bigger than 1, then from (3.5) we get R0 > 1. Therefore, the

persistence of malaria in both populations does not necessarily lead to an epidemic of the disease in
the total population. In fact, assertions 4 and 5 give such conditions, on the basic reproductions of the
two populations, that could result in the persistence of the disease.
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4.2. The global stability

To prove the global stability of E02, we use the approach given in [46]. Hence, our model can be
written as follows:

ẋ = (F − V)x − ψ(x, y) (4.1)

with

ψ(x, y) =



ac1

(
S ∗L∑∗

2
−

S L∑ )
I2

M

0

ac2

(
S ∗N∑∗

2
−

S N∑ )
I2

M

0

ac3

(
S ∗M∑∗

2
−

S M∑ )
IL + ac4

(
S ∗M∑∗

2
−

S M∑ )
IN

0



.

If R0 < 1 and the total human population
∑
∈

[
ΛL

dL
+ KN ,

ΛL

dL
+

(rN + dN)2

4rNdN
KN

]
, then E02 is globally

asymptotically stable [46].
Using remark 1, we have the following global stability result.

Proposition 1. If R0 <

√
min(KN ,

ΛL

dL
)

2 max(KN ,
ΛL

dL
)

then E02 is globally asymptotically stable.

Proof. To prove this result, we use the Barbashin-Krasovskii theorem [25] [Theorem 4.2, page 124].
We denoted by x = (S , E, I,R) and we consider the continuous scalar function V define by,

V = ac3
ΛM

bM

1
θL

(
νL

εL
EL + IL) + ac4

ΛM

bM

1
θN

(
νN

εN
EN + IN) + I1

M +
νM + bM

νM
IM,2.

To show that the equilibrium E02 is globally asymptotically stable, we need to show that V̇(x) is
globally negative definite i.e V̇(x) < 0, ∀x ∈ R11

+ \ {E02}.

We have

V̇ = ac3
ΛM

bM

1
θL

(
νL

εL
(ac1

S LIM,2∑ − εLEL) + νLEL − θLIL

)
+ac4

ΛM

bM

1
θN

(
νN

εN
(ac2

S N IM,2∑ − εN EN) + νN EN − θN IN

)
+ac3

S MIL∑ + ac4
S MIN∑ − (νM + bM)IM,1 +

νM + bM

νM
(νMIM,1 − bMIM,2)

= a2c1c3
ΛM

bM

νL

εLθL

S L∑ IM,2 + a2c2c4
ΛM

bM

νN

εNθN

S N∑ IM,2 − bM
νM + bM

νM
IM,2
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−a
ΛM

bM
(c3IL + c4IN) + aS M(c3

IL∑ + c4
IN∑ )

Since L(t) ≥
ΛL

dL + αL
and N(t) ≥ 0, we have

∑
= L(t) + N(t) ≥

ΛL

dL + αL
.

By the fact that ΛL
dL+αL

≥ 1, we get

V̇ ≤ a2c1c3
ΛM

bM

νL

εLθL

S L∑ IM,2 + a2c2c4
ΛM

bM

νN

εNθN

S N∑ IM,2 − bM
νM + bM

νM
IM,2

−a
ΛM

bM
(c3IL + c4IN) + aS M(c3IL + c4IN)

= a2c1c3
ΛM

bM

νL

εLθL

S L∑ IM,2 + a2c2c4
ΛM

bM

νN

εNθN

S N∑ IM,2 − bM
νM + bM

νM
IM,2

a(c3IL + c4IN)(S M −
ΛM

bM
).

As S L, S N ≤
∑

and S M ≤ M(t) ≤
ΛM

bM
, we obtain

V̇ ≤ a2c1c3
ΛM

bM

νL

θLεL
IM,2 + a2c2c4

ΛM

bM

νN

θNεN
IM,2 − bM

νM + bM

νM
IM,2

=
bM(νM + bM)

νM
IM,2

[
a2 νM

bM(νM + bM)
c1c3

ΛM

bM

νL

θLεL
+ a2 νM

bM(νM + bM)
c2c4

ΛM

bM

νN

θNεN
− 1

]

V̇ ≤
bM(νM + bM)

νM
IM,2

[
ΛL

dL
(RL

0 )2 + KN(RN
0 )2 − 1

]
. (4.2)

Using

(KN +
ΛL

dL
)2R2

0 = (
ΛL

dL
RL

0 )2 + (KNR
N
0 )2,

we have two cases:

Case 1, KN ≤
ΛL

dL
.

We replace KN(RN
0 )2 =

(KN +
ΛL

dL
)2

KN
R2

0 −

(
ΛL

dL
)2

KN
(RL

0 )2, we get

V̇ ≤
bM(νM + bM)

νM
IM,2

[
ΛL

dL
(RL

0 )2 + KN(RN
0 )2 − 1

]

≤
bM(νM + bM)

νM
IM,2


(2

ΛL

dL
)2

KN
R2

0 − 1

 .

In this case R0 <

√
min(KN ,

ΛL

dL
)

2 max(KN ,
ΛL

dL
)

=

√
KN

2
ΛL

dL

leads to V̇ < 0.
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Case 2, KN ≥
ΛL

dL
.

We replace (
ΛL

dL
)(RL

0 )2 =

(KN +
ΛL

dL
)2

ΛL

dL

R2
0 −

K2
N

ΛL

dL

(RN
0 )2, we get

V̇ ≤
bM(νM + bM)

νM
IM,2

[
ΛL

dL
(RL

0 )2 + KN(RN
0 )2 − 1

]

≤
bM(νM + bM)

νM
IM,2

 (2KN)2

ΛL

dL

R2
0 − 1

 .

In this case R0 <

√
min(KN ,

ΛL

dL
)

2 max(KN ,
ΛL

dL
)

=

√
ΛL

dL

2KN
impliesV̇ < 0.

�

In addition to the sharp result of the global asymptotically stability of DEF with respect to R0,
proposition 1, gives a new global stability condition without any condition on the total population

∑
.

Moreover, from (3.5) we can show the global stability of DFE, using the same Lyapunov function,
under the condition ΛL

dL

(
RL

0

)2
+ KN

(
RN

0

)2
< 1.

5. The endemic equilibrium and the uniform persistence

5.1. The endemic equilibrium

To find the possible endemic equilibria point, EE = (S ∗L, E
∗
L, I
∗
L,R

∗
L, S

∗
N , E

∗
N , I

,
NR∗N , S

∗
M, I

∗
M,1, I

∗
M,2), we

define λ∗1, λ∗2 and λ∗3 as follow:

λ∗1 =
ac1I∗M,2∑∗ , λ∗2 =

ac3I∗L∑∗ , λ∗3 =
ac4I∗N∑∗ .

The coordinates of EE for the human population are given by

S ∗L =
ΛL

dL
+

A2 − A1

dL
I∗L (5.1)

E∗L =
θL

νL
I∗L (5.2)

R∗L =
γL

βL
I∗L (5.3)

I∗L =
ΛLλ

∗
1

A1(dL + λ∗1) − A2λ
∗
1

(5.4)
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S ∗N = B1
c1

c2

1
λ∗1

I∗N (5.5)

E∗N =
θN

νN
I∗N (5.6)

R∗N =
γN

βN
I∗N (5.7)

I∗N =
KNc2

rN(B1c1)2λ
∗
1
(
rN B1c1 + c2λ

∗
1(B2 − B1)

)
. (5.8)

with
A1 =

εLθL

νL
, A2 =

δLγL

βL

B1 =
εNθN

νN
, B2 =

δNγN

βN
.

Note that A2 − A1 ≤ 0 and B2 − B1 ≤ 0.
Using (5.1), we get

L∗ =
ΛL

dL

1
A1dL − (A2 − A1)λ∗1

(A1dL − λ
∗
1(A2 − A1 + αL))

N∗ = KN +
c2KN

rN B1c1

(
B1(−1 +

rN

εN
) + B2(1 +

rN

δN
) + rN

)
λ∗1 +

c2
2KN

rN(B1c1)2 (
B1

εN
+

B2

δN
+ 1)(B2 − B1)(λ∗1)2,

which conclude the equation of
∑∗ as function of λ∗1 as follows,∑∗

=
1

A1dL + (A1 − A2)λ∗1

[
α0 + α1λ

∗
1 + α2(λ∗1)2 + α3(λ∗1)3

]
,

with

α0 = A1dL(
ΛL

dL
+ KN),

α1 = −
ΛL

dL
(A2 − A1 + αL) − (A2 − A1)KN − A1dL

c2KN

rN B1c1

(
B1(1 −

rN

εN
) − B2(1 +

rN

δN
) − rN

)
,

α2 =
c2

2KN

rN(B1c1)2

(
A1dL(B2 − B1)

(
B1

εN
+

B2

δN
+ 1

)
+ (A1 − A2)

B1c1

c2

(
B1(−1 +

rN

εN
)
))

+
c2KN

rN B1c1
(A1 − A2)(B2(1 +

rN

δN
) + rN),

α3 =
c2

2KN

rN(B1c1)2

(
B1

εN
+

B2

δN
+ 1

)
(A1 − A2)(B2 − B1).

It is easy to see that α0 > 0 and α3 < 0. Moreover, if
c2

c1
≥

ε2
NβNθN

dL(εNβNθN − δNγNνN)
and rN ∈[

εN ,
dL

c1

c2

βNεNθN
(βNεNθN − δNγNνN)

]
, then we have α1 > 0 and α2 ≤ 0.
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The remaining coordinates of EE, with respect to the mosquitoes population are

I∗M,2 =
ΛMνMλ

∗

(bM + λ∗)(νM + bM)(bM)
,

I∗M,1 =
ΛMλ

∗

(bM + λ∗)(νM + bM)
,

S ∗M =
ΛM

bM + λ∗
.

(5.9)

with λ∗ = λ∗2 + λ∗3.
Notice that we have:

λ∗ =
a∑∗ (c3I∗L + c4I∗N), (5.10)

1
ac1

λ∗1

∗∑
= I∗M,2. (5.11)

From (5.9), (5.10) and (5.11), we get the two following equations of λ∗ as function of λ∗1 as follow:

λ∗ =
bMλ

∗
1
∑∗

(ΛMac1c − λ∗1
∑∗) (5.12)

λ∗ =
a∑∗ ( c3ΛLλ

∗
1

A1dL − (A2 − A1)λ∗1
+

c4c2KN

rN(B1c1)2 (rN B1c1λ
∗
1 − (B1 − B2)c2(λ∗1)2)

)
. (5.13)

with c =
νM

(νM + bM)(bM)
. Using the equations (5.12) and (5.13), we have:

bMλ
∗
1
∑∗2
−

a(ΛMac1c − λ∗1
∑∗)∑∗ (

c3ΛLλ
∗
1

A1dL−(A2−A1)λ∗1
+ c2c4KN

rN (B1c1)2

(
rN B1c1λ

∗
1 − (B1 − B2)c2(λ∗1)2

))
= 0, (5.14)

Since λ∗1 , 0, by replacing
∑∗ by its formula, we get the following polynomial:

p0 + p1λ
∗
1 + p2(λ∗1)2 + p3(λ∗1)3 + p4(λ∗1)4 + p5(λ∗1)5 + p6(λ∗1)6 + p7(λ∗1)7 = 0. (5.15)

The coefficients pi, i = 0, ...7, of the polynomial (5.15) are given in the appendix 7.

Obviously, it is not easy to find the number of the exact solutions to the polynomial (5.15), and
hence determine the exact number of EE. However, using the Descartes’ Rule of Signs [3], we
determine the possible EE depending on the sign of coefficients pi, i = 0, ..., 7 of the polynomial
(5.15).

By the Descartes’ Rule of Signs, if R0 < 1, then either we have no solution or an even number of
endemics equilibria (EE) and when R0 > 1 we have an odd number EE. We can be more specific by
stating the following result.

Proposition 2. Suppose that pi > 0 for all i = 1, · · · , 6 then:

• If R0 < 1 so p0 > 0, there is no endemic equilibria.
• If R0 > 1 so p0 < 0, there is a unique endemic equilibrium.
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This result gives us a classical scenario where for R0 < 1 the disease free equilibrium is glob-
ally stable and for R0 > 1 the disease free equilibrium is unstable. The proof of this proposition is
straightforward from the paper of Levin [29].

More cases are treated in the appendix that show the possible existence of multiple endemic equi-
libria.

5.2. The uniform persistence

Since it is difficult to investigate the global stability of the endemic equilibria, as there are different
scenarios of existence of endemic equilibria, in this section we focus on finding the conditions of the
uniform persistence.
We recall that Γ, defined in (3.2), is a positively invariant subset of R11

+ .
Before giving the main result, we define Φt(S , E, I,R) as the flow corresponding to system (3.3). In

fact, Φt(S , E, I,R) denotes the solution of our system that starts at S (0), E(0), I(0), R(0) ≥ 0. Moreover,

Φt(S 0, E0, I0,R0) = (S (t), E(t), I(t),R(t)),

where
S = (S L, S N , S M), E = (EL, EN , IM,1), I = (IL, EN , IM,2), R = (RL,RN).

Using the result of the uniqueness of solution, we have the following result.

Theorem 5.1. If R0 > 1 then our system is uniformly persistent.

Proof. The system (2.1)-(2.3) is said to be uniformly persistent [40] if there exists a constant r > 0,
independent of initial conditions, such that any solution S (t), E(t), I(t),R(t) of our system satisfies the
following inequalities:

lim inf
t→∞

S (t) ≥ r, lim inf
t→∞

E(t) ≥ r, lim inf
t→∞

I(t) ≥ r, lim inf
t→∞

R(t) ≥ r.

The uniform persistence of our system can be proven by applying the result in Theorem [4.3, [21]].
In fact, Φ is a continuous flow on Γ that is a closed positively invariant subset of R11

+ .
Denote the restriction of Φt to ∂Γ by ∂Φt. The maximal invariant set of ∂Φt on ∂Γ is the singleton

S = {E02} that is a closed invariant set and also is isolated.

Let {Sα}α∈A denote the cover of S where A is a non empty index set , Sα ⊂ ∂Γ, S ⊂
⋃

α∈A Sα and Sα
are pairwise disjoint closed invariant sets.

No subset of the {Sα} forms a cycle i.e there exist no α ∈ A such that Sα = Sα0 .

The corresponding sets are denoted by γ(E02), γ−(E02), γ+(E02) and are, respectively, called the
trajectory, positive trajectory and negative trajectory.

All hypothesis (H) of [21] holds for system (1). Therefore, if R0 > 1 then E02 is unstable, which

gives the necessary and sufficient condition of Theorem 4.3 [21], and we conclude that our system is
uniformly persistent. �

Whether there is one or more endemic equilibrium, the proven result shows that if R0 > 1, the
disease-free equilibrium is unstable and the disease persists.

Mathematical Biosciences and Engineering Volume 16, Issue 2, 967–989.



982

6. The effect of the carrying capacity KN

As our main results depend on R0, which is a function of KN , the carrying capacity of the non-local
population, our aim is to investigate the positive effect of the carrying capacity KN in reducing the
spread of the disease infection in the total population.

Therefore, we study the sign of the function 1 − R0(KN). By rearranging this function and from
(3.4), our problem reduces to studying the sign of the function P(KN), where

P(KN) = (KN)2 +

(
2

ΛL

dL
− a2c2c4

ΛMνM

b2
M(νM + bM)

νN

εNθN

)
KN +

(
ΛL

dL

)2 (
1 −

(
RL

0

)2
)
. (6.1)

The roots of P(KN) are given by

K1,2 =
1
2

[
−

(
2

ΛL

dL
− a2c2c4

ΛMνM

b2
M(νM + bM)

νN

εNθN

)
∓
√

∆

]
,

with

∆ =

(
2

ΛL

dL
− a2c2c4

ΛMνM

b2
M(νM + bM)

νN

εNθN

)2

+ 4
(
ΛL

dL

)2 ((
RL

0

)2
− 1

)
.

Let
ξNM = a2c2c4

ΛMνM

b2
M(νM + bM)

νN

εNθN
.

Hence, we have the following cases:

Case 1. If RL
0 > 1 then ∆ > 0, the quadratic equation (6.1) has only one unique positive root K2.

Case 2. If RL
0 < 1 then it depends on the sign of 2

ΛL

dL
−ξNM and we can observe the following possibilities:

– If 2
ΛL

dL
< ξNM our quadratic polynomial (6.1) has two positives roots K1 < K2.

– If 2
ΛL

dL
> ξNM the quadratic polynomial (6.1) has no positive root.

Figure 4. The plot of R0 as function of KN i.e., R0(KN). the three graphs show all the possible
cases of the level of R0 as KN increases.
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Figure 4 represents the plots of all the different possible cases.
Figure 4 (a) represents case 1, where the basic reproduction number of the disease in the local popu-
lation is above 1. As the carrying capacity of the non local KN increases, R0 decreases, leading to the
eradication of the disease as KN exceeds the critical carrying capacity value K2. On the other hand, if
the basic reproduction number of the local population is below 1, there will be two scenarios.

(i) The first scenario is represented by Figure 4 (b). In this case, we have two critical carrying
capacity values K1 and K2. When KN is below K1 or above K2, R0 is less than one, and the
disease will die out. The second situation is when KN belongs to the interval ]K1,K2[, R0 is above
1, and the disease will persist in the total population.

(ii) Second scenario, Figure 4 (c), R0 remains always below one and the increase of the carrying
capacity of the non-local population has no effect on the transmission of the disease among the
total population.

7. Discussion and conclusion

As Malaria is still a global health threat, there are ongoing scientific efforts to eradicate the disease
that burdens several regions in the world including Sub-Saharan countries. This work is aimed at
studying the effect of the sub-Saharan immigrants on the possible importation of malaria to North
African countries. The goal is to investigate the impact of immigrants (non-local population) on the
possible reappearance of Malaria in the North African countries.

Therefore, we introduced a mathematical model that included two human populations (locals and
non-locals) and the mosquito population. Unlike the existing models, our study considered two types
of growth for each human population. The local population with a linear growth and the immigrant
population with a logistic growth. The choice of having a logistic growth for the non-local population
was justified by the fact that the hosting country might impose a carrying capacity on the number of
the immigrants. Plus there are no mechanisms to screen the health status of the immigrants coming to
the host country.

Using the basic reproduction number of the disease R0, which was calculated by the standard next-
generation matrix method, we gave, in the remark 1, the characterization of all possible conditions,
on RL

0 and RN
0 , which led to R0 < 1 and R0 > 1. This result showed that the disease could persist,

slightly, in both human populations (locals and non-locals) although R0 < 1. On the other hand, the
transmission of the disease in both populations should reach a specific level, i.e., the minimum of the

basic reproduction number of locals and non-locals have to exceed φ1 or

√
2

φ2
(remark 1), before it

could become highly infectious in all the population.

The global stability analysis showed that the threshold condition R0 < 1 alone could not guarantee
the global stability of the disease-free equilibrium. In fact, the total population

∑
must have upper and

lower bounds to have the global stability. However, via a Lyapunov function, we showed that if R0 is
less than a constant, which is below one, then the disease died out from the total population (Theorem
1).
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Using Descartes Rule of Signs, we were able to find the conditions of the existence of endemic
equilibrium. Depending on the signs of the coefficients of the polynomial (5.15), propositions 3, 4
and 5 gave all the possible cases of the number of endemic equilibria. More precisely the number of
endemic equilibriums are even (0 or 2) if R0 < 1 and odd (1 or 3) if R0 > 1. As we could not give a
general result for the global stability of an endemic equilibrium, we proved, in Theorem 5.1, that if
R0 > 1, then we had the uniform persistence of the solution.

Finally, we investigated the impact of the carrying capacity of the non-local population on the
transmission of the disease in both populations. Our findings showed that if RL

0 > 1, then as the
carrying capacity increased, the disease changed from being persistent (R0 > 1) to a possible
eradication; in this case, it had an absorption effect of the malaria infection in the total population.
However, if RL

0 < 1, there were two scenarios: If the local population growth was not high (i.e.,
ΛL

dL
<
ξNM

2
), then the increase of carrying capacity of the non-locals would not affect the transmission

of the disease until it reached a specific threshold K1, after that the disease became persistent. The
increase of the carrying capacity, to reach another threshold K2, led to a decline of the disease
infection among the total population, and again we observed the absorption effect. The second

scenario was when the local population growth was high enough (i.e.
ΛL

dL
>
ξNM

2
). In this case, an in-

crease of the carrying capacity of non-local would not affect the malaria transmission in the population.

Our finding suggests that the imported malaria infections in the North African countries cannot be
blamed on the increasing number of the immigrant from the Sub-Saharan countries. If the disease is
already endemic in the local population, then the increase of the carrying capacity of the immigrant
has an absorption effect on the infection. However, if the disease is not endemic among the local
population, the transmission of the imported malaria depends on the level of the growth of the local
population.
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Appendix

The endemic equilibrium

If we denote by,
∑∗

2 =
ΛL

dL
+ KN and recall that, c =

νM

bM(νM + bM)
then the coefficients pi of the

polynomial (5.15) are given as follow:

p0 = bMA2
1d2

L(
∗∑
2

)2(1 − (R0)2),

p1 = 2bMα0α1 + a2ΛMcc2c4
KN

B1
A1A2 + a2ΛMcc2c4

KN

rN B1
A2

1dL

(
(B1 − B2)

c2

B1c1
dL − rN

)
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+A1dL
bM

ac1cΛM
(R0)2(

∗∑
2

)2((α0dL − aΛMc1c)A1 + aΛMc1cA2),

p2 = bMα
2
1 + α0bM

2α2 − A1(A2 − A1)dL
1

ac1cΛM
(R0)2(

∗∑
2

)2


+ac4

c2KN

rN B1c1

(
rN A2 + A1((B1 − B2)

c2

B1c1
dL − rN)

)
((aΛMc1c − α0dL)A1 − aΛMc1cA2) ,

p3 = bMα0

[
2α3 + α2A1dL

∑∗
2

ac1cΛM
(R0)2

]
+ α1bM

[
2α2 − (A2 − A1)A1A2dL

(
∑∗

2)2

ac1cΛM
(R0)2

]
+ac2c4

KN

rN B1c1

(
rN A2 + A1((B1 − B2)

c2

B1c1
dL − rN)

)
(α0A2 − aα1A1dL)

+ac2
2c4(A2 − A1)

KN

rN(B1c1)2 (B1 − B2) (aΛMc1c(A2 − A1) + α0A1dL) ,

p4 = −aα0c2
2c4

KN

rN(B1c1)2 (B1 − B2)(A2 − A1)2 + aα1c2
2c4A1dL

KN

rN(B1c1)2 (A2 − A1)(B1 − B2)

+ac2c4
KN

rN B1c1

(
rN A2 + A1((B1 − B2)

c2

B1c1
dL − rN)

)
(α1A2 − (α1 + α2dL)A1)

+α3bM

[
2α1 +

(A1dL)2(
∑∗

2)2

acc1ΛM
(R0)2

]
+ α2bM

[
α2 − (A2 − A1)

A1dL(
∑∗

2)2

acc1ΛM
(R0)2

]
,

p5 = ac2c4
KN

rN B1c1

(
rN A2A1(dL(B1 − B2)

c2

c1B1
− rN)

)
(α2(A2 − A1) − α3A1dL)

+α3bM

[
2α2 − (A2 − A1)

A1dL(
∑∗

2)2

acc1ΛM
(R0)2

]
−ac2

2c4
KN

rN(B1c1)2 (A2 − A1)(B2 − B1) (α1A2 − A1(α1 + α2dL)) ,

p6 = bMα
2
3 − aα2c2

2c4
KN

rN(B1c1)2 (B1 − B2)(A2 − A1)2 + aα2c2
2c4

KN

rN(B1c1)2 A1dL(A2 − A1)(B1 − B2)

+ac2c4α2(A2 − A1)
KN

rN B1c1

(
rN A2 + A1((B1 − B2)

c2

B1c1
dL − rN)

)
,

p7 = −c4
2c4

K2
N

r2
N(B1c1)4

(
B1

εN
+

B2

δN
+ 1

)
(A2 − A1)3(B1 − B2).

Since A2 − A1 ≤ 0 and B2 − B1 ≤ 0, we have p7 > 0. On the other hand, if R0 < 1 then p0 > 0, and
respectively if R0 > 1 then p0 < 0.

Multiple endemic equilibria

The proposition 2 deals with one case of existence of endemic equilibria among several others.
Depending on the sign of pi, there are more cases of the number of possible endemic equilibria.
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If
c2

c1
≥

ε2
NβNθN

dL(εNβNθN − δNγNνN)
and rN ∈

[
εN ,

dL

c1

c2

βNεNθN
(βNεNθN − δNγNνN)

]
then we can have the

following results:

1. p6 > 0.

2. If (R0)2 ≤ 2α2
βLνL

δLγLνL − εLθLβL

d2
L

ΛL + dLKN
then,

– when
εLθL

νL
≥

aΛMc1c
(ΛL + dLKN)dL

we obtain that p1 > 0 and p3 < 0.

– when α1
δLγLνL − εLθLβL

βLνL
−
εLθLdL

νL
dLα2 ≤ 0 we have p5 > 0.

3. If (R0)2 ≥ 2α2
βLνL

δLγLνL − εLθLβL

d2
L

ΛL + dLKN
then,

– when
εLθLdL

νL
(ΛL + dLKN) ≤ aΛMc1c(1 −

νLδLγL

εLθLβL
) we have p2 > 0.

– when α1
δLγLνL − εLθLβL

βLνL
−
εLθLdL

νL
dLα2 ≤ 0 we get p4 < 0

Proposition 3. If p1, p5, p6 ≥ 0 and p3 ≤ 0 then;

• an even number of positive real roots of P(x) (0 or 2) when R0 < 1,
• an odd number of positive real roots of P(x) (1 or 3) when R0 > 1.

Proposition 4. If p2, p6 ≥ 0 and p4 ≤ 0 lead to the following result.

• When R0 < 1 we have an even number of possible positive real roots of P(x) (0 or 2).
• When R0 > 1 we have an odd number of possible positive real roots of P(x) (1 or 3).

Proposition 5. If p6 ≥ 0 we can have up to 6 endemic equilibria when R0 < 1 and no more then 5
when R0 > 1.
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