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1. Introduction

In recent years, there has been growing interest in the study of virus dynamics model with delays
[3, 4, 7, 13, 16, 17, 19, 28, 29]. And the following ordinary differential equations are usually formulated
a general virus infection dynamical model with constant delays [7]

du1 (t)
dt

= a − bu1 (t) − f (u1 (t) , u3 (t))
du2 (t)

dt
= r f (u1 (t − h1) , u3 (t − h1)) − pg (u2 (t))

du3 (t)
dt

= kg (u2 (t − h2)) − qu3 (t) ,

(1)

where u1 (t) , u2 (t) , and u3 (t) represent the population of target cells, infected cells, and free viruses,
respectively the positive b, p, and q are the respective death rates. The parameters a, r, and k are the
rates at which new target cells, infected cells, and free viruses are generated, respectively. The function
f (u1 (t) , u3 (t)) represents the rate for the target cells to be infected by the mature viruses. pg (u2 (t))
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describes the death rate of the infected cells depending on the population of themselves. Once the virus
contacts the target cell, such cell may survive the entire latent period h1. The delay h2 represents the
time necessary for the newly produced viruses to be infectious.

To be better understanding the dynamical behaviour of virus infection one introduces spatial
coordinate x ∈ Ω and allows the unknowns to depend on it. The target cells, infected cells, and
free viruses are assumed to follow the Fickian diffusion with the constant diffusion rate d1, d2, and
d3. In earlier results where d1 = d2 = 0 and d3 > 0 (see e.g., for model without delay [20, 21]
and [4,13] with constant delay), were investigated by many researchers. For the case di > 0, i = 1, 2, 3,
a very interesting phenomenon was discovered in paper [1]. Although this phenomenon was first
discovered in the vaccinia virus, the researchers showed that the similar phenomenon was found in
some other kinds of virus. Recently, there have been some interesting research developments on such
virus infection dynamics models, see, e.g., for model without delay [9, 22, 24] and [14, 23, 25] with
constant delay. On the other hand, it is clear that the constancy of the delay is an extra assumption
which essentially simplifies the analysis. Whereas, the state-dependent delay is taken to be a bounded
function of the total population (target cells, infected cells, and free viruses), which is more appropriate
to describe the real-world processes in biological problem. Moreover, introducing such state-dependent
delays in modeling real phenomena results frequently from an attempt to better account for the actual
behavior of the population. Therefore, different from the existing results [3, 4, 7, 13, 19, 28, 29], the
diffusive virus dynamics model [17] with state-dependent delay is worthy of attention. And such
topics have not been fully investigated, which remain a challenging issue.

Motivated by the above observations, we modify the model (1) to (2) that also extends the model
in [17]. And we mainly consider the asymptotic stability of the system (2) from a dynamical systems
point of view.

∂u1 (x, t)
∂t

= a − bu1 (x, t) − f (u1 (x, t) , u3 (x, t)) + d14u1 (x, t)
∂u2 (x, t)

∂t
= r f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut))) − pg (u2 (x, t)) + d24u2 (x, t)

∂u3 (x, t)
∂t

= kg (u2 (x, t − τ2 (ut))) − qu3 (x, t) + d34u3 (x, t) , x ∈ Ω, t > 0,

(2)

where u1 (x, t) , u2 (x, t) , and u3 (x, t) defined as earlier, also represent the population of target cells,
infected cells, and free viruses, at position x at time t, respectively. Ω is a fixed, connected bounded
domain in Rn with smooth boundary ∂Ω. Denote u = (u1, u2, u3) and the history segment ut (x, θ) ,
u (x, t + θ) , θ ∈ [−h, 0] , h , max {h1, h2} . τ1 (ut) and τ2 (ut) where are taken to be some general
functions of system populations with 0 ≤ τ j (ut) ≤ h j, j = 1, 2, represent the latent period that the
cell survives once the virus contacts the target cell and the time that the newly produced viruses are
infectious, respectively. di, i = 1, 2, 3 is the constant diffusion rate.

The rest of the paper is organized as follows. In section 2, we briefly recall some basic known
results which will be used in the sequel. In section 3, we first present the positivity and boundedness
results for the model (2). Next we mainly study the asymptotic stability of interior equilibria from a
dynamical systems point of view. According to constructing a dynamical system on a nonlinear metric
space, we apply [5, Theorem 4.1.4] and choose a novel Lyapunov functional to the model (2) and allow,
but not require, diffusion terms in each state equation. In section 4, we generalize the method to such
model with Logistic growth rate.
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2. Preliminary

In this section, we present some definitions, lemmas, and notations, which will be useful throughout
this paper.

Denote the linear operator −A0 = diag (d14, d24, d34) in C
(
Ω̄,R3

)
with D

(
A0

)
, D (d14) ×

D (d24) × D (d34) . Let D (di4) ,
{
y ∈ C2

(
Ω̄,R

)
: ∂y
∂−→n
|∂Ω = 0

}
for di , 0, i = 1, 2, 3. Omit the space

coordinate x, we denote the unknown u (t) = (u1 (t) , u2 (t) , u3 (t)) ∈ X ,
[
C

(
Ω̄,R

)]3
, C

(
Ω̄,R3

)
.

It is well-known that the closure −A (in X) of the operator −A0 generates a C0−semigroup e−At on
X which is analytic and nonexpansive [12, p.4-p.5]. Further, −A is the infinitesimal generator of the
analytic compact semigroup e−At on X (see [27, Theorem 1.2.2] for more details). We denote the space
of continuous functions by C , C ([−h, 0] , X) equipped with the sup-norm ‖ϕ‖C , sup

θ∈[−h,0]
‖ϕ (θ)‖X .

Now the system (2) is rewritten in the following abstract form

d
dt

u (t) + Au (t) = F (ut) , (3)

where the nonlinear continuous mapping F : C → X is defined by

F (φ) (x) ,


a − bφ1 (x, 0) − f

(
φ1 (x, 0) , φ3 (x, 0)

)
r f

(
φ1 (x,−τ1 (φ)) , φ3 (x,−τ1 (φ))

)
− pg

(
φ2 (x, 0)

)
kg

(
φ2 (x,−τ2 (φ))

)
− qφ3 (x, 0)

 (4)

with φ ∈
(
φ1, φ2, φ3

)
∈ C.

Set the initial value ψ =
(
ψ1, ψ2, ψ3

)
∈ Lip ([−h, 0] , X) for the equation (3) , where

ψ ∈ Lip ([−h, 0] , X) ,
{
ψ ∈ C : sup

s,t

‖ψ (s) − ψ (t)‖X
|s − t|

< ∞, ψ (0) ∈ D (A)
}
. (5)

In our study we use the standard (c.f. ( [15, Def. 2.3, p.106]) and ( [15, Def. 2.1, p.105])).

Definition 2.1. A function u (t) ∈ C
(
[−h, t f ), X

)
is a mild solution of initial value problem (3) − (5) if

u0 = φ and

u (t) = e−Atφ (0) +

∫ t

0
e−A(t−s)F(us)ds, ∀t ∈ [0, t f ). (6)

Definition 2.2. A function u (t) ∈ C
(
[−h, t f ), X

)
∩C1

(
[0, t f ), X

)
is a classical solution of initial value

problem (3) − (5) if u (t) ∈ D (A) for t ∈ [0, t f ) and (3) − (5) are satisfied.

Next we present the existence and uniqueness of solution for the initial value problem (3) − (5) .
Throughout the paper, we assume that functions f : R2 → R and g : R → R satisfy the following

conditions:

(H1) f and g are Lipschitz continuous.

(H2) | f (u1, u3)| ≤ µu1 for u1, u3 ≥ 0, and |g (u2)| ≤ λu2 for u2 ≥ 0.
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We follow the streamline of the proof Lemma 1.2 in [10], (see also [8, Theorem 2]) established
by [15, Theorem 3.1 and Corollary 3.3]. Moreover, the linear growth bounds of f and g imply the
global continuation of the classical solution. Then we obtain the result as follows.

Lemma 2.3. Let the state-dependent delays τ j : C →
[
0, h j

]
, ( j = 1, 2) be locally Lipschitz. Suppose

that (H1) and (H2) hold. Then initial value problem (3) − (5) has a unique global classical solution
for t ≥ 0.

The following lemma provides a theoretical foundation for the stability of the equilibrium in a
dynamical system.

Lemma 2.4. ( [5, Theorem 4.1.4]) Let {S (t), t ≥ 0} be a dynamical system on Z. Set 0 be an equilibrium
point in Z. Assume V is a Lyapunov function on Z satisfying V (0) = 0, V (y) ≥ α (‖y‖) for y ∈ Z,
‖y‖ = dist {y, 0} , where α (·) is a continuous strictly increasing function, α (0) = 0 and α (r) > 0 for
r > 0. Then 0 is stable. Suppose in addition that V

′ (y) ≤ −β (‖y‖) , where β (·) is continuous, increasing
and positive, with β (0) = 0. Then 0 is uniformly asymptotically stable.

In the sequel, we mainly discuss the asymptotic stability of interior equilibria of system (2) on a
metric space

X f =
{
φ ∈ C1 ([−h, 0] , X) : φ (0) ∈ D (A) , φ̇ (0) + Aφ (0) = F (φ)

}
endowed with

‖φ‖X f
= max

θ∈[−τ,0]
‖φ (θ)‖X + max

θ∈[−τ,0]

∥∥∥φ̇ (θ)
∥∥∥

X
+ ‖Aφ (0)‖X .

We know that X f is a complete metric space from [8, 10].
The following proposition offers some properties of a function, which will play an important role in

construction of Lyapunov functionals.

Proposition 2.5. A function v : [0, +∞) → R is defined by v (s) , s − 1 − ln (s) , which is of the
following properties.

(i) v (s) ≥ 0 for all s ∈ [0, +∞).

(ii) v̇ (s) = 1 −
1
s
, v̇ (s) < 0 for s ∈ (0, 1) and v̇ (s) > 0 for s ∈ (1, ∞) .

(iii) v (s) = 0 if and only if s = 1.

(iv)
(s − 1)2

2 (1 + ε)
≤ v (s) ≤

(s − 1)2

2 (1 − ε)
, ∀ ε ∈ (0, 1) and ∀ s ∈ (1 − ε, 1 + ε) . It is checked that∣∣∣∣∣∣ d

ds
(s − 1)2

2 (1 + ε)

∣∣∣∣∣∣ ≤ |v̇ (s)| ≤

∣∣∣∣∣∣ d
ds

(s − 1)2

2 (1 − ε)

∣∣∣∣∣∣ , ∀ ε ∈ (0, 1) and ∀ s ∈ (1 − ε, 1 + ε) .

3. Main result

3.1. Positivity and boundedness

In the subsection, we prove the positivity and boundedness of solutions for system (3) .
To get the results, we need further assumptions:

(H3) g is increasing, g (0) = 0 and g (u2) ≥ 0 for u2 ≥ 0.

Mathematical Biosciences and Engineering Volume 16, Issue 2, 947–966.



951

(H4) f (u1, u3) > 0 for u1, u3 > 0 and f (u1, 0) = f (0, u3) = 0 for u1, u3 ≥ 0.

Set 0 = (0, 0, 0)T and M = (M1,M2,M3)T =

(
a
b
, g−1

(
rµa
pb

)
,

rkµa
qpb

)T

. Denote

[0,M]X ,
{
φ =

(
φ1, φ2, φ3

)
∈ X : 0 ≤ φi (x) ≤ Mi,∀ x ∈ Ω̄

}
,

[0,M]C ,
{
φ =

(
φ1, φ2, φ3

)
∈ Lip ([−h, 0] , X) : φ (θ) ∈ [0,M]X ,∀ θ ∈ [−h, 0]

}
.

Lemma 3.1. Let τ j in Lemma 2.3 be valid. Assume that (H1)-(H4) are satisfied. Then [0,M]C is
invariant i.e., for each initial value φ =

(
φ1, φ2, φ3

)
∈ [0,M]C , the unique classical solution of initial

value problem (3) − (5) satisfies ut ∈ [0,M]C for all t ≥ 0.

Proof. The existence and uniqueness of solution is proven as above Lemma 2.3. Let K = [0,M]X ,

S (t, s) = e−A(t−s), B (t, φ) = F (φ) . The proof of the invariance part follows the invariance result of
( [12, Corollary 4] or [27, Corollary 8.1.3]) with the almost Lipschitz property of F by the nomenclature
of [11]. Next we check the estimates for the subtangential condition. For any φ ∈ [0,M]C and any
% ≥ 0, we obtain

φ (x, 0) + ρF (φ) (x) =


φ1 (x, 0) + ρa − ρbφ1 (x, 0) − ρ f

(
φ1 (x, 0) , φ3 (x, 0)

)
φ2 (x, 0) + ρr f

(
φ1 (x,−τ1 (φ)) , φ3 (x,−τ1 (φ))

)
− ρpg

(
φ2 (x, 0)

)
φ3 (x, 0) + ρkg

(
φ2 (x,−τ2 (φ))

)
− ρqφ3 (x, 0)

 .
Note that (H2) . Thus, for any 0 ≤ ρ ≤ min

{
1

b + µ
,

1
pλ
,

1
q

}
, we have

φ (x, 0) + ρF (φ) (x) ≥


φ1 (x, 0) − ρbφ1 (x, 0) − ρµφ1 (x, 0)

φ2 (x, 0) − ρpλφ2 (x, 0)
φ3 (x, 0) − ρqφ3 (x, 0)


=


[
1 − ρ (b + µ)

]
φ1 (x, 0)

(1 − ρpλ) φ2 (x, 0)
(1 − ρq) φ3 (x, 0)

 ≥


0
0
0


and

φ (x, 0) + ρF (φ) (x)

≤


φ1 (x, 0) + ρa − ρbφ1 (x, 0)
φ2 (x, 0) + ρrµφ1 (x,−τ1 (φ)) − ρpg

(
φ2 (x, 0)

)
φ3 (x, 0) + ρkg

(
φ2 (x,−τ2 (φ))

)
− ρqφ3 (x, 0)



≤



a
b

+ ρa − ρb
a
b

g−1

(
rµa
pb

)
+ ρrµ

a
b
− ρpg

(
g−1

(
rµa
pb

))
rkµa
qpb

+ ρkg
(
g−1

(
rµa
pb

))
− ρq

rkµa
qpb


=



a
b

g−1

(
rµa
pb

)
rkµa
qpb


= M.

Then we obtain φ (x, 0) + ρF (φ) (x) ∈ [0,M]X . This implies that

lim
ρ→0+

1
ρ

dist (φ (x, 0) + ρF (φ) (x) , [0,M]X) = 0, ∀φ ∈ [0,M]C .
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We complete the proof.

Remark 3.2. It should be pointed out that K is a subset of X. However, such fact is often ignored in
some works [13, 17, 29], where K had been chosen a subset of C.

3.2. Stationary solution

Let us discuss stationary solutions of (2). By such solutions we mean time independent u∗ which,
in general, may depend on x ∈ Ω. Since stationary solutions of (2) do not depend on the type of delay
(state-dependent or constant) we have

0 = a − bu∗1 − f
(
u∗1, u

∗
3

)
0 = r f

(
u∗1, u

∗
3

)
− pg

(
u∗2

)
0 = kg

(
u∗2

)
− qu∗3.

(7)

It is easy to see that the trivial stationary solution (
a
b

, 0, 0) always exists if f
(
u∗1, 0

)
= 0 and g (0) = 0.

We are interested in nontrivial stationary solutions of (2) . Based on (7) , we have u∗2 = g−1
(
(a−bu∗1)r

p

)
and u∗3 =

k(a−bu∗1)r
pq . This gives the condition on the coordinate u∗1 which should belong to (0,

a
b

]. Denote

E f (z) , f
(
z,

k (a − bz) r
pq

)
− a + bz. (8)

Incidentally, we assume that(
H f

)
E f (z) = 0 has at most finite roots on (0,

a
b

].

Remark 3.3. (i) Since Ω is a connected set, a function w ∈ C
(
Ω̄
)

may take either one or continuum

values. The assumption
(
H f

)
implies u∗1 (x) = u∗1, then

(
u∗1, u

∗
2, u

∗
3

)
is independent of x. Moreover, if

(H4) holds, then we know exactly one root of E f (s) = 0, such as the DeAngelis-Bendington functional
response [2, 6]

f (u1, u3) =
k1u1u3

1 + k2u1 + k3u3
, k1, k2 ≥ 0 and k3 > 0, (9)

the saturated functional response [3, 26]

f (u1, u3) =
k1u1u3

1 + k2u3
, k1 ≥ 0 and k2 > 0, (10)

the Crowley-Martin functional response [19, 30]

f (u1, u3) =
k1u1u3

(1 + k2u1) (1 + k3u3)
, k1 ≥ 0 and k2, k3 > 0. (11)

And for more general class of f , under additional conditions, one has exactly one root of E f (s) = 0.
(ii) It should be pointed out that in study of stability properties of stationary solutions for virus

infection model one usually uses conditions on the so-called reproduction numbers. Then one can
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use such conditions to separate the case of a unique stationary solution. In this work, taking into
account the state-dependence of the delay, the conditions on the reproduction numbers do not appear
explicitly here, but could be seen as particular sufficient conditions for

(
H f

)
. As a consequence, such

models admit of multiple equilibria. Then we believe this framework provides a way to model more
complicated situations with rich dynamics.

(iii) Based on (H2) and
(
H f

)
, we have

a − bu∗1 = f
(
u∗1, u

∗
3
)
≤ µu∗1, for u∗1 ∈ (0,

a
b

].

And then we know that the interior equilibrium
(
u∗1, u

∗
2, u

∗
3

)
belongs to the invariant set [0,M]C by

(
H f

)
and the monotone property of g.

3.3. Stability of the interior equilibrium
(
u∗1, u

∗
2, u

∗
3

)
In this subsection, we discuss the stability of the interior equilibrium

(
u∗1, u

∗
2, u

∗
3

)
from a dynamical

systems point of view. Next we work out the stability of (3) − (5) with smooth initial value belonging
to X f .

In the following, we assume that

(H5) f is increasing for u1, u3 > 0 and differentiable in a neighborhood of
(
u∗1, u

∗
3

)
,

(H6)

u3

u∗3
−

f (u1, u3)

f
(
u1, u∗3

)
 f (u1, u3)

f
(
u1, u∗3

) − 1

 > 0 for u1, u3 > 0.

The assumption (H6) implies that
f (u1, u3)

f
(
u1, u∗3

) lies between
u3

u∗3
and 1 (c.f. with the non-strict

property [13, p.74] and [17, p.8]). And it is easy to verify that the general class of nonlinear functional
responses including (9), (10), and (11) is often appropriate for (H6) .

According to constructing a dynamical system on X f , we prove the stability of the interior
equilibrium of (2) by choosing a novel Lyapunov functional. Then we arrive at the following theorem.

Theorem 3.4. Let τ j, ( j = 1, 2) be locally Lipschitz on C and be continuously differentiable in a
neighbourhood of the equilibrium

(
u∗1, u

∗
2, u

∗
3

)
. If (H1) − (H6) and

(
H f

)
hold, then the non-trivial

steady-state solution
(
u∗1, u

∗
2, u

∗
3

)
is asymptotically stable (in X f ∩ [0, M]C).

Remark 3.5. For u ∈ C1 ([−h, s), X) , we get

d
dt
τ j (ut) =

[(
Dτ j

)
(ut)

] (dut

dt

)
, t ∈ [0, s),

where
[(

Dτ j

)
(·)

]
, j = 1, 2, is the Fréchet derivative of τ j at point ut. Hence, for a solution in

ε−neighborhood of the stationary solution ψ∗, the estimate∣∣∣∣∣ d
dt
τ j (ut)

∣∣∣∣∣ ≤ ∥∥∥∥(Dτ j

)
(ut)

∥∥∥∥
C(C, R)

∥∥∥∥∥dut

dt

∥∥∥∥∥
C
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≤ ε
∥∥∥∥(Dτ j

)
(ut)

∥∥∥∥
C(C, R)

guarantees ∣∣∣∣∣ d
dt
τ j (ut)

∣∣∣∣∣ ≤ M j
ε, with M j

ε → 0 as ε→ 0,

due to Lemma 3.1 and the boundedness of
∥∥∥∥(Dτ j

)
(ψ)

∥∥∥∥
C(C, R)

as ε→ 0 (here ‖ψ − ψ∗‖C < ε).

Proof. Based on D (A) ⊂ D
(
A

1
2

)
, we are sufficient to set D

(
A−

1
2

)
= X in [18]. Thus, according

to [18, p.831], we get that (3) − (5) is described a dynamical system on X f . And then we use Lemma
2.4. Define a Lyapunov functional with state-dependent delays along a solution of (2)

V sd (t) =

∫
Ω

V sd x (x, t) dx,

where

V sd x (x, t) , u1 (x, t) − u∗1 −
∫ u1(x,t)

u∗1

f
(
u∗1, u

∗
3

)
f
(
s, u∗3

) ds +
1
r

u2 (x, t) − u∗2 −
∫ u2(x,t)

u∗2

g
(
u∗2

)
g (s)

ds


+

p
rk

u∗3v
(
u3 (x, t)

u∗3

)
+ f

(
u∗1, u

∗
3
) ∫ t

t−τ1(ut(x,θ))
v

 f (u1 (x, s) , u3 (x, s))

f
(
u∗1, u

∗
3

)  ds

+
p
r

g
(
u∗2

) ∫ t

t−τ2(ut(x,θ))
v

g (u2 (x, s))

g
(
u∗2

)  ds, θ ∈ [−h, 0] .

According to Lemma 3.1, it follows that u1, u2, and u3 are bounded and nonnegative. And then

Lyapunov functional is well-define. Next we shall show that
dV sd (t)

dt
is non-positive.

Let us consider
d
dt

V sd (t) =

∫
Ω

∂

∂t
V sd x (x, t) dx

and start with the term ∂
∂t V

sd x (x, t) .
By computations, we have

∂

∂t
V sd x (x, t) = RDdi f f x (x, t) +

1 − f
(
u∗1, u

∗
3

)
f (u1 (x, t) , u3)

 [a − bu1 (x, t) − f (u1 (x, t) , u3 (x, t))
]

+

1 − g
(
u∗2

)
g (u2 (x, t))

 (r f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut))) − pg (u2 (x, t)))

+

(
1 −

u∗3
u3 (x, t)

)
(kg (u2 (x, t − τ2 (ut))) − qu3 (x, t))

+ f
(
u∗1, u

∗
3
)

Dsd (x, t) + f
(
u∗1, u

∗
3
)

dsd (x, t) ,

where

RDdi f f x (x, t) ,

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) d14u1 (x, t) +
1
r

1 − g
(
u∗2

)
g (u2 (x, t))

 d24u2 (x, t)
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+
p
rk

(
1 −

u∗3
u3 (x, t)

)
d34u3 (x, t)

Dsd (x, t) , v

 f (u1 (x, t) , u3 (x, t))

f
(
u∗1, u

∗
3

)  − v

 f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) 
+v

g (u2 (x, t))

g
(
u∗2

)  − v

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

) 
dsd (x, t) , v

 f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

)  dτ1 (ut)
dt

+v

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  dτ2 (ut)
dt

.

From 
u∗1 =

a− f(u∗1,u
∗
3)

b

pg
(
u∗2

)
= r f

(
u∗1, u

∗
3

)
u∗3 =

kg(u∗2)
q ,

we get

∂

∂t
V sd x (x, t) = RDdi f f x (x, t) + bu∗1

1 − f
(
u∗1, u

∗
3

)
f (u1 (x, t) , u3)

 (1 − u1 (x, t)
u∗1

)
+ f

(
u∗1, u

∗
3
)

Z (x, t) + f
(
u∗1, u

∗
3
)

Dsd (x, t) + f
(
u∗1, u

∗
3
)

dsd (x, t) ,

where

Z (x, t) ,

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

)
1 − f (u1 (x, t) , u3 (x, t))

f
(
u∗1, u

∗
3

) 
+

1 − g
(
u∗2

)
g (u2 (x, t))


 f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) −
g (u2 (x, t))

g
(
u∗2

) 
+

(
1 −

u∗3
u3 (x, t)

) g (u2 (x, t − τ2 (ut)))

g
(
u∗2

) −
u3 (x, t)

u∗3

 . (12)

After a simple computation, (12) is equivalent to

Z (x, t) = 3 −
f (u1 (x, t) , u3 (x, t))

f
(
u∗1, u

∗
3

) −
f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) +
f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) f (u1 (x, t) , u3 (x, t))

f
(
u∗1, u

∗
3

)
+

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) −
g (u2 (x, t))

g
(
u∗2

)
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−
g
(
u∗2

)
g (u2 (x, t))

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

)
+

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

) −
u3 (x, t)

u∗3
−

u∗3
u3 (x, t)

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

) . (13)

By the definition of v (s) = s − 1 − ln (s) , (13) is rewritten as

Z (x, t) = −v

 f (u1 (x, t) , u3 (x, t))

f
(
u∗1, u

∗
3

)  − v

 f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) + v

 f (u1 (x, t) , u3 (x, t))

f
(
u1 (x, t) , u∗3

) 
+v

 f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) 
−v

 g
(
u∗2

)
g (u2 (x, t))

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) 
+v

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  − v
(
u3 (x, t)

u∗3

)
− v

g (u2 (x, t))

g
(
u∗2

) 
−v

 u∗3
u3 (x, t)

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  .
Then we obtain

∂

∂t
V sd x (x, t) = bu∗1

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) (1 − u1 (x, t)
u∗1

)

+ f
(
u∗1, u

∗
3
)
{−

v (
u3 (x, t)

u∗3

)
− v

 f (u1 (x, t) , u3 (x, t))

f
(
u1 (x, t) , u∗3

) 


−v

 g
(
u∗2

)
g (u2 (x, t))

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) 
−v

 u∗3
u3 (x, t)

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  − v

 f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

)}
+RDdi f f x (x, t) + f

(
u∗1, u

∗
3
)

dsd (x, t) .

Denote
RDdi f f (t) ,

∫
Ω

RDdi f f x (x, t) dx.

Based on the Divergence Theorem and the Neumann boundary condition, we have

RDdi f f (t) =

∫
Ω

RDdi f f x (x, t) dx
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= −d1 f
(
u∗1, u

∗
3
) ∫

Ω

1[
f
(
u1 (x, t) , u∗3

)]2

d f
(
u1 (x, t) , u∗3

)
du1

‖Ou1‖
2 dx

−
d2

r
g
(
u∗2

) ∫
Ω

1[
g (u2 (x, t))

]2 ‖Ou2‖
2 dx − d3

p
rk

u∗3

∫
Ω

1
(u3 (x, t))2 ‖Ou3‖

2 dx.

According to
d f

(
u1, u∗3

)
du1

≥ 0, we obtain RDdi f f (t) ≤ 0.

Thus we summarize what we have worked out as follows

d
dt

V sd (t) =

∫
Ω

∂

∂t
V sd x (x, t) dx

= RDdi f f (t) + bu∗1

∫
Ω

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) (1 − u1 (x, t)
u∗1

)
dx

+ f
(
u∗1, u

∗
3
) ∫

Ω

{−

v (
u3 (x, t)

u∗3

)
− v

 f (u1 (x, t) , u3 (x, t))

f
(
u1 (x, t) , u∗3

) 


−v

 g
(
u∗2

)
g (u2 (x, t))

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) 
−v

 u∗3
u3 (x, t)

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  − v

 f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

)}dx

+ f
(
u∗1, u

∗
3
) ∫

Ω

dsd (x, t) dx. (14)

According to (H5), one gets

∫
Ω

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) (1 − u1 (x, t)
u∗1

)
dx ≤ 0.

Based on (H6) and the monotonicity of the function v, we have∫
Ω

v (
u3 (x, t)

u∗3

)
− v

 f (u1 (x, t) , u3 (x, t))

f
(
u1 (x, t) , u∗3

) 
 ds ≥ 0.

Now we prove
d
dt

V sd (t) ≤ 0 in a small neighbourhood of the stationary solution with the equality

only in case of (u1, u2, u3) =
(
u∗1, u

∗
2, u

∗
3

)
. In the particular case of constant delay, one has dsd (x, t) = 0

which may lead to the global stability of
(
u∗1, u

∗
2, u

∗
3

)
.

In the following, we rewrite (14) as

d
dt

V sd (t) = f
(
u∗1, u

∗
3
) ∫

Ω

(
−Qsd (x, t) + dsd (x, t)

)
dx + RDdi f f (t)

Mathematical Biosciences and Engineering Volume 16, Issue 2, 947–966.



958

+bu∗1

∫
Ω

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) (1 − u1 (x, t)
u∗1

)
dx,

where

Qsd (x, t) ,

v (
u3 (x, t)

u∗3

)
− v

 f (u1 (x, t) , u3 (x, t))

f
(
u1 (x, t) , u∗3

) 


+v

 g
(
u∗2

)
g (u2 (x, t))

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) 
+v

 u∗3
u3 (x, t)

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  + v

 f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) .

Let us consider the zero-set
dV sd (t)

dt
. We start with

∫
Ω

1 − f
(
u∗1, u

∗
3

)
f
(
u1, u∗3

) (1 − u1

u∗1

)
dx = 0 due to u1 =

u∗1. Note that v (s) = 0 if and only if s = 1. For Qsd (x, t) = 0, we obtain u2 = u∗2 and u3 = u∗3. Then
one sees f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut))) = f

(
u∗1, u

∗
3

)
. Furthermore, RDdi f f (t) = 0 implies that

u1, u2, and u3 are independent of x. The zero set dsd (x, t) = 0 includes g (u2 (x, t − τ2 (ut))) = g
(
u∗2

)
,

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut))) = f
(
u∗1, u

∗
3

)
or d

dtτ j (ut) = 0 along a solution. Thus the zero-set

consists of just the positive equilibrium
(
u∗1, u

∗
2, u

∗
3

)
which is also a subset of dsd (x, t) = 0. We remind

that Qsd (x, t) ≥ 0, while the sign of dsd (x, t) is undefined. We would show that there is a small
neighbourhood of

(
u∗1, u

∗
2, u

∗
3

)
such that

∣∣∣dsd (x, t)
∣∣∣ < Qsd (x, t) . In order to prove such result, we need

the statement (iv) in Proposition 2.5.
The following discussions are in part analogous to [16, p.1559]. Based on Proposition 2.5 (iv), let

us first consider the following auxiliary functions Q (y) and D (y) , defined on R6, where we simplify
y = (y1, y2, y3, y4, y5, y6) ∈ R6 for y1 = u1 (x, t) , y2 = u2 (x, t) , y3 = u3 (x, t) , y4 = u1 (x, t − τ1) ,
y5 = u2 (x, t − τ2) , y6 = u3 (x, t − τ1) ,

Q (y) ,

g
(
u∗2

)
g (y2)

f (y4, y6)

f
(
u∗1, u

∗
3

) − 1


2

+

u∗3
y3

g (y5)

g
(
u∗2

) − 1


2

+

 f
(
u∗1, u

∗
3

)
f
(
y1, u∗3

) − 1


2

,

and

D (y) , α1 · v

 g (y5)

g
(
u∗2

) + α2 · v

 f (y4, y6)

f
(
u∗1, u

∗
3

) , α1, α2 ≥ 0.

According to Proposition 2.5 (iv) and Remark 3.5, it is observed that Q (y) ≤ Qsd (x, t) and
∣∣∣dsd (x, t)

∣∣∣ ≤
D (y). And it should be pointed out that Q (y) = 0 if and only if y =

(
u∗1, u

∗
2, u

∗
3, u

∗
1, u

∗
2, u

∗
3

)
. Now we
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change the coordinates in R6 to the spherical ones

y1 = u∗1 + r cos ξ1

y2 = u∗2 + r sin ξ1 cos ξ2

y3 = u∗3 + r sin ξ1 sin ξ2 cos ξ3

y4 = u∗1 + r sin ξ1 sin ξ2 sin ξ3 cos ξ4

y5 = u∗2 + r sin ξ1 sin ξ2 sin ξ3 sin ξ4 cos ξ5

y6 = u∗3 + r sin ξ1 sin ξ2 sin ξ3 sin ξ4 sin ξ5

r ≥ 0, ξ j ∈
[
−π2 ,

π
2

]
, j = 1, . . . 4, ξ5 ∈ [0, 2π).

One can check that Q (y) = r2 · Φ
(
r, ξ1, . . . ξ5

)
, where Φ

(
r, ξ1, . . . ξ5

)
is continuous and

Φ
(
r, ξ1, . . . ξ5

)
, 0 for r , 0. It is proved by way of contradiction. If Φ

(
r, ξ1, . . . ξ5

)
= 0 for r , 0, then

it is easy to see that this contradicts Proposition 2.5 (iv). Hence the classical extreme value theorem
shows that the continuous function on a closed neighborhood of

(
u∗1, u

∗
2, u

∗
3

)
has a minimum Φmin > 0.

It follows that Q (y) ≥ r2 · Φmin.

According to Proposition 2.5 (iv), we have

D (y) ≤ α1 ·

 g (y5)

g
(
u∗2

) − 1


2

+ α2 ·

 f (y4, y6)

f
(
u∗1, u

∗
3

) − 1


2

.

Next we adopt the analogous procedure as in the discussion of Q (y). Remind that Remark 3.5. Then
we obtain that D (y) ≤ βεr2 where the constant βε = max {α1, α2} → 0 as ε → 0. Finally, we choose a

small enough ε such that βε < Φmin which proves
d
dt

V sd (t) < 0. We complete the proof.

We now apply the above results to consider the following example.

Example 3.6. Consider the system (2) with

f (u1, u3) =
k1u1u3

1 + k2u1 + k3u3
, k1, k2 ≥ 0 and k3 > 0,

g (u2) = k4u2, k4 > 0,

τ j (ϕ) =

∫ 0

−h j

w j (ϕ (s)) ds, ϕ ∈ C and h j > 0, ( j = 1, 2) (15)

where w j, j = 1, 2 is locally Lipschitz on X. We know that f and g are continuously differentiable on R2

and R, respectively. Moreover, f is increasing and nonnegative on R2
+. And g is increasing on R. Then

it is easy to see that (H1) and (H3)-(H5) are satisfied. By choosing µ = max{k1, b} and λ = k4 + 1, we
get that for ui ≥ 0, i = 1, 2, 3

| f (u1, u3)| = f (u1, u3) ≤
k1u3

1 + k3u3
u1 ≤ k1u1 ≤ µu1 and

|g (u2)| = g (u2) = k4u2 ≤ λu2,

which implies that (H2) holds. If 0 <
pq + ak3kr

bk3kr + k1kr − k2 pq
≤

a
b
, we know that the equation

E f (z) = f
(
z,

k (a − bz) r
pq

)
− a + bz
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=
(a − bz)

[
k1zkr − (pq + k2 pqz + k3k (a − bz) r)

]
pq + k2 pqz + k3k (a − bz) r

= 0

has two roots z =
a
b

and z =
pq + ak3kr

bk3kr + k1kr − k2 pq
. It follows that

(
H f

)
is satisfied. Then we obtain the

non-trivial steady-state solution(
u∗1, u

∗
2, u

∗
3
)

=

(
pq + ak3kr

bk3kr + k1kr − k2 pq
,

r (ak1kr − ak2 pq − bpq)
k4 p (bk3kr + k1kr − k2 pq)

,
kr (ak1kr − ak2 pq − bpq)
pq (bk3kr + k1kr − k2 pq)

)
with 0 <

pq + ak3kr
bk3kr + k1kr − k2 pq

≤
a
b

and ak1kr − ak2 pq − bpq > 0. And we have

f (u1, u3)

f
(
u1, u∗3

) =
1 + k2u1 + k3u∗3
1 + k2u1 + k3u3

·
u3

u∗3

lies between
u3

u∗3
and 1 for u1, u3 > 0, which means that (H6) holds. For τ j, j = 1, 2, we get

d
dt
τ j (ut) =

d
dt

∫ 0

−h j

w j (ut (s)) ds

=
d
dt

∫ t

t−h j

w j (u (θ)) dθ = w j (u (t)) − w j

(
u
(
t − h j

))
.

Thus, in the ε−neighborhood of
(
u∗1, u

∗
2, u

∗
3

)
, we have∣∣∣∣∣ d

dt
τ j (ut)

∣∣∣∣∣ ≤ ∣∣∣∣w j (u (t)) − w j

(
u
(
t − h j

))∣∣∣∣
≤ 2Lw jε = M j

ε → 0 as ε→ 0,

where Lw j , j = 1, 2, is Lipschitz constant of w j.

Based on the above analysis and Lemma 3.1, we have the invariant set

[0,M]C =
{
φ =

(
φ1, φ2, φ3

)
∈ Lip ([−h, 0] , X) : φ (θ) ∈ [0,M]X ,∀ θ ∈ [−h, 0]

}
where

[0,M]X =
{
φ =

(
φ1, φ2, φ3

)
∈ X : 0 ≤ φi (x) ≤ Mi,∀ x ∈ Ω̄

}
with M = (M1,M2,M3)T =

(
a
b
,

rµa
k4 pb

,
rkµa
qpb

)T

. It is now evident to see that
(
u∗1, u

∗
2, u

∗
3

)
is asymptotically

stable (in X f ∩ [0, M]C) from Theorem 3.4.
Next we perform numerical simulations of system (15) with the parameters a = 0.8, b = 0.2,

r = 0.1, p = 0.1, k = 0.3, q = 0.2, d1 = 0.2, d2 = 0.1, d3 = 0.7, k1 = 0.3, k2 = 0.01, k3 =

0.5, and k4 = 0.8. By substituting the parameters, it follows that the non-trivial steady-state solution(
u∗1, u

∗
2, u

∗
3

)
= (2.712, 0.322, 0.386) exists. According to choosing

τ1 (ut) = 0.2
∫ 0

−3

3∑
i=1

(ui)t (s) ds and τ2 (ut) = 0.08
∫ 0

−2

3∑
i=1

(ui)t (s) ds,
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(a) (b)

(c)

0 0.5 1 1.5 2 2.5 3 3.5 0

0.2

0.4

0.6

0.8

0

0.2

0.4

0.6

0.8

u
2
(x,t)

 → (u
1
∗  , u

2
∗  , u

3
∗  )

u
1
(x,t)

 → the initial value

u
3
(x

,t
)

(d)

Figure 1. Numerical simulations of system (15) with the initial value (ψ1, ψ2, ψ3) =

(3 cos2 x + 0.027, 0.5 cos2 x + 0.032, 0.5 cos2 x + 0.038). (a)-(c) The non-trivial steady-state
solution

(
u∗1, u∗2, u∗3

)
= (2.712, 0.322, 0.386) is asymptotically stable. (d) Phase portrait of

the asymptotically stable equilibrium
(
u∗1, u∗2, u∗3

)
.
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we have that τ1 (·) and τ2 (·) are locally Lipschitz in C and are continuously differentiable in a
neighbourhood of the equilibrium

(
u∗1, u∗2, u∗3

)
. Now one can check that (H1)-(H6) and

(
H f

)
are

satisfied. Consequently, based on Theorem 3.4, we infer that
(
u∗1, u

∗
2, u

∗
3

)
= (2.712, 0.322, 0.386) is

asymptotically stable (in X f ∩ [0, M]C) which is illustrated in Figure 1, where

X f =
{
φ ∈ C1

(
[−3, 0] , [C ([0, π] ,R)]3

)
: φ (0) ∈ D (A) , φ̇ (0) + Aφ (0) = F (φ)

}
,

[0,M]C = {φ =
(
φ1, φ2, φ3

)
∈ Lip

(
[−3, 0] , [C ([0, π] ,R)]3

)
: φ (θ) ∈ [0,M][C([0,π],R)]3 ,

∀ θ ∈ [−3, 0]}

with

[0,M][C([0,π],R)]3 = {φ =
(
φ1, φ2, φ3

)
∈ [C ([0, π] ,R)]3 : 0 ≤ φ1 (x) ≤ 4,

0 ≤ φ2 (x) ≤ 1.5, 0 ≤ φ3 (x) ≤ 1.8, ∀ x ∈ [0, π]}.

4. Discussion

In this section, we generalize the above type of Lyapunov functional to such model with Logistic
growth rate. Then the model is described as follows:

∂u1 (x, t)
∂t

= au1 (x, t)
(
1 −

bu1 (x, t)
R

)
− f (u1 (x, t) , u3 (x, t)) + d14u1 (x, t)

∂u2 (x, t)
∂t

= r f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut))) − pg (u2 (x, t)) + d24u2 (x, t)
∂u3 (x, t)

∂t
= kg (u2 (x, t − τ2 (ut))) − qu3 (x, t) + d34u3 (x, t) .

(16)

In the following, these results are completed by the method analogous to that used above.

Lemma 4.1. Let τ j in Lemma 2.3 be valid. Suppose (H1) and (H2) hold. Then initial value problem
has a unique global classical solution for t ≥ 0.

Denote M̂ ,
(

R
b , g

−1
(

rµR
pb

)
, rkµR

qpb

)T
.

Lemma 4.2. Let τ j in Lemma 2.3 be valid. Assume that (H1)-(H4) are satisfied. Then
[
0, M̂

]
C

is

invariant i.e., for each initial value φ =
(
φ1, φ2, φ3

)
∈

[
0, M̂

]
C
, the unique classical solution of initial

value problem satisfies ut ∈
[
0, M̂

]
C

for all t ≥ 0.

Next we are interested in nontrivial stationary solutions of (16). Consider
0 = au∗1

(
1 − bu∗1

R

)
− f

(
u∗1, u

∗
3

)
0 = r f

(
u∗1, u

∗
3

)
− pg

(
u∗2

)
0 = kg

(
u∗2

)
− qu∗3.

(17)

Then we have u∗2 = g−1
(

ar
p u∗1

(
1 − bu∗1

R

))
and u∗3 = kar

pq u∗1
(
1 − bu∗1

R

)
. Set

Ē f (z) , f
(
z,

kar
pq

z
(
1 −

bz
R

))
− az

(
1 −

bz
R

)
. (18)
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In the sequel the following assumption will be need.(
H̄ f

)
Ē f (z) = 0 has at most finite roots on (0,

R
b

].

We now obtain the following result.

Theorem 4.3. Let τ j, ( j = 1, 2) be locally Lipschitz on C and be continuously differentiable in a
neighbourhood of the equilibrium

(
u∗1, u∗2, u∗3

)
. If (H1) − (H6) and

(
H̄ f

)
hold, then the non-trivial

steady-state solution
(
u∗1, u∗2, u∗3

)
is asymptotically stable (in X f ∩

[
0, M̂

]
C

).

In the proof we use the following Lyapunov functional with state-dependent delay along a solution
of (16). Choose the Lyapunov functional

V sd (t) =

∫
Ω

V sd x (x, t) dx

where

V sd x (x, t) , u1 (x, t) − u∗1 −
∫ u1(x,t)

u∗1

f
(
u∗1, u

∗
3

)
f
(
s, u∗3

) ds +
1
r

u2 (x, t) − u∗2 −
∫ u2(x,t)

u∗2

g
(
u∗2

)
g (s)

ds


+

p
rk

u∗3v
(
u3 (x, t)

u∗3

)
+ f

(
u∗1, u

∗
3
) ∫ t

t−τ1(ut(x,θ))
v

 f (u1 (x, s) , u3 (x, s))

f
(
u∗1, u

∗
3

)  ds

+ f
(
u∗1, u

∗
3
) ∫ t

t−τ2(ut(x,θ))
v

g (u2 (x, s))

g
(
u∗2

)  ds, θ ∈ [−h, 0] .

It is easy to verify that
d
dt

V sd (t) =

∫
Ω

∂

∂t
V sd x (x, t) dx

where

∂

∂t
V sd x (x, t) =

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) d14u1 (x, t) +
1
r

1 − g
(
u∗2

)
g (u2 (x, t))

 d24u2 (x, t)

+
p
rk

(
1 −

u∗3
u3 (x, t)

)
d34u3 (x, t) +

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) ba
(
u∗1

)2

R

1 − u2
1 (x, t)(
u∗1

)2


+

1 − f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

) au∗1

(
u1 (x, t)

u∗1
− 1

)
+ f

(
u∗1, u

∗
3
)

[−v

 f
(
u∗1, u

∗
3

)
f
(
u1 (x, t) , u∗3

)
−

v (
u3 (x, t)

u∗3

)
− v

 f (u1 (x, t) , u3 (x, t))

f
(
u1 (x, t) , u∗3

) 
 − v

 u∗3
u3 (x, t)

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

) 
−v

 g
(
u∗2

)
g (u2 (x, t))

f (u1 (x, t − τ1 (ut)) , u3 (x, t − τ1 (ut)))

f
(
u∗1, u

∗
3

) ]
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+ f
(
u∗1, u

∗
3
)

v

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  dτ2 (ut)
dt

+ f
(
u∗1, u

∗
3
)

v

g (u2 (x, t − τ2 (ut)))

g
(
u∗2

)  dτ2 (ut)
dt

.

The next works are similar to the proof of Theorem 3.4. We do not repeat here detailed calculations.

5. Conclusion

In this paper, we study a virus dynamics model with diffusion, a general nonlinear functional
response and state-dependent delays. Such delays τ1 (ut) and τ2 (ut) which are both related to the
number of system populations, represent the latent period that the cell survives once the virus contacts
the target cell and the time that the newly produced viruses are infectious, respectively. We mainly
establish asymptotic stability of the interior equilibrium by applying a novel Lyapunov functional.
Moreover, we generalize such type of Lyapunov functional to such model with Logistic growth rate.
More specifically, target cells, infected cells, and free viruses do not extinct and ultimately survive at
the equilibrium level

(
u∗1, u

∗
2, u

∗
3

)
if the following conditions are satisfied:

(I) target cells and free viruses have strong intercellular infection, i.e., | f (u1, u3)| ≤ µu1,
f (u1, u3)

f
(
u1, u∗3

)
lies between

u3

u∗3
and 1 for u1, u3 > 0.

(II) the death rate of the infected cells is of a linear growth bound, i.e., |g (u2)| ≤ λu2 for u2 > 0.
(III) the rate of change with respect to time of the state-dependent delays is limited, i.e.,

∣∣∣ d
dtτ j (ut)

∣∣∣ ≤
M j

ε.
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