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Abstract: A system of two competing species u and v that diffuse over a two-patch environment is
investigated. When u-species has smaller birth rate in the first patch and larger birth rate in the second
patch than v-species, and the average birth rate for u-species is larger than or equal to v-species, it was
shown in a previous publication that two species coexist in a slow diffusion environment, whereas u-
species drives v-species into extinction in a fast diffusion environment. In this paper, we analyze global
dynamics and bifurcations for the same model with identical order of birth rates, but with opposite order
of average birth rates, i.e., the average birth rate of u-species is less than that of v-species. We observe
richer dynamics with two scenarios, depending on the relative difference between the variation in the
birth rates of v-species on two patches and the variation in the average birth rates of two species. When
the variation in average birth rates is relatively large, there is no stability switch for the semitrivial
equilibria. On the other hand, such a stability switch takes place when the variation in average birth
rates is relatively mild. In both cases, v-species, with larger average birth rate, prevails in a fast diffusion
environment, whereas in a slow diffusion environment, the two species can coexist or u-species that
has the greatest birth rate among both species and patches will persist and drive v-species to extinction.

Keywords: competing species; dispersal rate; patchy environment; spatial heterogeneity; global
dynamics; monotone dynamics

1. Introduction

Dispersal of organisms is a topic of central interest in ecology and evolutionary biology. Its effects
on the size, stability, and interactions of populations, as well as biological invasions and the geograph-
ical distribution of populations have attracted considerable studies. Investigation on dispersal strate-
gies which are evolutionarily stable has been the fundamental research goal for theoretical ecologists
[7, 26]. The relationship between diffusion rates, spatial heterogeneity, and coupling from competition
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of species is the target of several recent works. To tackle these problems, continuous diffusion models
expressed by reaction-diffusion systems have been considered in [1, 2, 3, 6, 9, 13, 14, 19, 20, 23, 25].
On the other hand, discrete diffusion models represented by systems of ODEs have been investigated
in [4, 5, 11, 12, 24, 31].

Concerning the interaction between diffusion rates and the heterogeneity of the environment and
mutant invasion, the following competitive Lotka-Volterra model was investigated in [18, 19]:

ut = µ∆u + u[α(x) − u − v],
vt = µ∆v + v[β(x) − u − v], (1.1)

under homogeneous Neumann boundary condition, where µ is the diffusion rate and functions α(x) and
β(x) express the spatially dependent intrinsic growth rates or reproductive rates of u- and v-species,
respectively. Therein, to study the effect of spatially heterogeneous growth rates on the competitive
dynamics, the difference between intrinsic growth rates of two species was set as

α(x) = β(x) + τg(x),

where g(x) is a function describing resource difference between two species from the viewpoint of
spatial heterogeneity, and τ > 0 measures the magnitude of the difference. The case g(x) > 0 on the
considered domain was studied in [18], whereas the situation that g(x) changes sign was investigated
in [19]. The assumption in [19], ∫

Ω

g(x)dx > 0, (1.2)

means that the mutant u-species has better average reproductive rate than v-species, and thus the total
population of u-species has higher growth rate than that of v-species when two populations are identical
in the whole space Ω. However, under such a circumstance, u-species possibly fails to invade when
rare for certain level of diffusion rate. Mathematically, stability of semitrivial solutions (ũ, 0) and (0, ṽ),
which depend on the magnitudes of µ and τ, was analyzed in [19]. The stability may switch according
to the varying diffusion rate µ. In particular, by measuring the level of mutation with the value of
τ, theoretical analysis for the cases of tiny and large mutation was established therein. In the former
case (0 < τ � 1), multiple switches of global convergence to different equilibria was derived and the
relationship between the bifurcation value of the diffusion rate and the value of τ was also established,
while in the latter case (τ � 1), only once switch of global convergence was observed.

The influence from magnitudes of diffusion rates on the competition outcome has been another topic
of interest. It has been shown in [9] that the slower diffuser always prevails if the two species interact
identically with the environment, see also [12, 20, 23]. To focus on the effect of diffusion rates, the
birth rates for all competing species were set equal to the carrying capacity of the environment, see
[2, 5, 6, 13, 15].

Models for competitive species with dispersal expressed by discrete diffusion are also very appeal-
ing. Indeed, organisms are distributed in space, often in patches of habitat scattered over a landscape
and region, and the distribution is determined by the pattern of movement between these patches.
More specifically, it is interesting to see how possible interaction outcome, which can be competitive
exclusion and coexistence, depends on the diffusion rates and the birth rates.

As early as in 1934, Gause [10] formulated the competitive exclusion law which in particular states
that the species with a larger birth rate will outcompete the other one, if the other properties are the
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same. Concerning these issues, Gourley and Kuang [11] then asked how does diffusion affect the com-
petition outcomes of two competing species that are identical in all respects other than their strategies
on how they spatially distribute their birth rates. They studied the following ODE system as a model
for two neutrally competing species on two patches of habitat:

du1
dt = u1(α1 − u1 − v1) + d(u2 − u1)

du2
dt = u2(α2 − u2 − v2) + d(u1 − u2)

dv1
dt = v1(β1 − u1 − v1) + d(v2 − v1)

dv2
dt = v2(β2 − u2 − v2) + d(v1 − v2)

(1.3)

where ui (resp., vi) is the population density of species-u (resp., -v) in patch i, i = 1, 2; the linear
birth rates α1, α2, β1, β2 are positive parameters, and there is a diffusion between the two patches with
same diffusivity (dispersal rate) d for both species. The two species differ only in their birth rates. Let
(ū1, ū2, 0, 0) denote the semitrivial equilibrium with extinct v-species. The following conjectures on the
global dynamics of system (1.3) were posed in [11]:

Conjecture 1. Assume that in system (1.3), β1 − σ = α1 < β1 < β2 < α2 = β2 + σ with 0 < σ < β1,
and d is sufficiently large. If u1(0) + u2(0) > 0, then

lim
t→∞

(u1(t), u2(t), v1(t), v2(t)) = (ū1, ū2, 0, 0).

Conjecture 2. Assume that in system (1.3), β1 −σ = α1 < β1 < β2 < α2 = β2 +σ with 0 < σ < β1, and
d is small enough so that (1.3) has a positive steady state e∗. If u1(0) + u2(0) > 0 and v1(0) + v2(0) > 0,
then

lim
t→∞

(u1(t), u2(t), v1(t), v2(t)) = e∗.

These conjectures, if true, suggest that the species that can concentrate its birth in a single patch
wins, if the diffusion rate is larger than a critical value. That is, the winning strategy is to focus as
much birth in a single patch as possible. In [24], the following global dynamics and bifurcation were
established, which include confirmation of Conjectures 1 and 2:

Theorem 1.1. Suppose that the following condition holds in system (1.3),

(C′) : 0 < α1 = β1 − σ1 < β1 < β2 < α2 = β2 + σ2 with 0 < σ1 ≤ σ2.

Then there is a constant d̃ > 0 which can be expressed or estimated by the birth rates, so that if d ≥ d̃,
(ū1, ū2, 0, 0) is globally asymptotically stable among the initial data in R4

+ satisfying u1(0) + u2(0) > 0;
if d < d̃, (1.3) has a unique positive steady state (u∗1, u

∗
2, v
∗
1, v
∗
2) which is globally asymptotically stable

among the initial data in R4
+ satisfying u1(0) + u2(0) > 0 and v1(0) + v2(0) > 0.

Note that α1 + α2 and β1 + β2 measure the average birth rates of species u and v, respectively.
The condition of Theorem 1.1 means α1 < β1 < β2 < α2 and β1 + β2 ≤ α1 + α2, and indicates that
the birth rate of u-species is larger than that of v-species in the second patch, and less than that of
v-species in the first patch, whereas the average birth rate of u-species is larger than or equal to that
of v-species. For the situation with identical average birth rate: α1 + α2 = β1 + β2, i.e., the case in
these conjectures, Theorem 1.1 implicates that the two species coexist in a slow diffusion environment,
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whereas in a fast diffusion environment, the species that can concentrate its birth in a single patch
drives the other species into extinction. Convincingly, the same scenario prevails when u has further
competitive advantage that its average birth rate is larger than v-species: α1 + α2 > β1 + β2. Along
with such finding is that the semitrivial equilibrium (0, 0, v̄1, v̄2) is always unstable for any diffusion
rate d, as was stated in Proposition 3.11 of [24]. It becomes very interesting to see what happens when
α1 + α2 < β1 + β2, i.e., v-species has larger average birth rate.

In this paper we will examine such interesting situation, i.e., system (1.3) under condition

(C) : 0 < α1 = β1 − σ1 < β1 < β2 < α2 = β2 + σ2 with 0 < σ2 < σ1.

This condition means α1 < β1 < β2 < α2, and α1+α2 < β1+β2, due to (β1+β2)−(α1+α2) = σ1−σ2 > 0.
That is, the birth rate α2 of u-species in the second patch is the biggest among all species and patches,
but the average birth rate of v-species is larger than that of u-species; one may also regard this as that
v-species has more total resources than u-species. Then we ask how the magnitude of the dispersal rate
d is related to the species persistence or extinction. With the framework of monotone dynamics, we
shall target the global dynamics of system (1.3) and the bifurcation with respect to d, under condition
(C).

It turns out that the dynamical scenarios are richer than the case under condition (C′). In particular,
equilibrium (0, 0, v̄1, v̄2) switches from being unstable to stable, as d increases. On the other hand,
there are up to two stability changes for equilibrium (ū1, ū2, 0, 0), as d increases. That is, the property
described as monotone relation between the stability of (ū1, ū2, 0, 0) and the diffusion rate d no longer
holds, cf. [19]. The main results will be summarized in Theorem 4.2. There are two dynamical sce-
narios (see Figure 1): (i) Under σ2β2 < σ1β1, there exists an d∗3 > 0, so that the positive steady state
(u∗1, u

∗
2, v
∗
1, v
∗
2) is globally attractive for d < d∗3 and the semitrivial equilibrium (0, 0, v̄1, v̄2) becomes

globally attractive for d ≥ d∗3. (ii) Under σ2β2 > σ1β1, there exist d∗1, d
∗
2, d

∗
3 with 0 < d∗1 < d∗2 < d∗3,

so that (u∗1, u
∗
2, v
∗
1, v
∗
2) is globally attractive for d < d∗1 or d∗2 < d < d∗3, (ū1, ū2, 0, 0) is globally attractive

for d∗1 ≤ d ≤ d∗2, and (0, 0, v̄1, v̄2) becomes globally attractive for d ≥ d∗3. In addition, d∗1, d
∗
2, d

∗
3 can be

estimated in terms of the system parameters. Our analytical work on the model strongly suggests that,
in a fast diffusion (large dispersal) environment, a species will prevail if its average birth rate is larger
than the other competing species; in a slow diffusion (small dispersal) environment, the two species
can coexist or one species that has the greatest birth rate among both species and patches, even with
smaller average birth rate, will be able to persist and drive the other species to extinction.

We note that α1 + α2 > β1 + β2 in system (1.3) is analogous to condition (1.2) in PDE system
(1.1). The present study, with α1 + α2 < β1 + β2, can be compared to the results in [19] with u and v
reversed. Systems with two competing species over two patches with different dispersal rates and more
general competition coupling have been considered in [21, 29, 30]. While the effect of competition was
studied in [29], herein we aim at investigating the influence of both dispersal rate and birth rates on the
population dynamics and assume the same ability of competition for two species in (1.3). Predator-prey
dynamics on two-patch environments were investigated in [8, 16, 22].

This presentation is organized as follows. In Section 2, we characterize the existence of positive
equilibrium for system (1.3). In Section 3, we analyze the stability of the semitrivial equilibria. In
Section 4, we discuss the existence of positive steady state representing coexistence of two species
and extinction of one species, depending on the magnitude of dispersal rate. Four numerical examples
illustrating the present theory are given in Section 5. We summarize our results with some discussions
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in Sections 6. For reader’s convenience, we review in Appendix I the monotone dynamics theory which
is to be applied to obtain our results. Some qualitative properties of the semitrivial equilibria for system
(1.3) reported in [24] are recalled in Appendix II.

Figure 1. Two dynamical scenarios for system (1.3): the main results, stated in Theorems
2.1 and 4.2.

2. Existence of positive equilibrium

In this section, we characterize the conditions under which the positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2)

of system (1.3) exists. There are five parameters α1, α2, β1, β2, d in system (1.3), which generate a
complication of analysis for such existence. We first derive the following magnitude relationships
which are required in the main result, Theorem 2.1, of this section.

Lemma 2.1. The following parameter relationships hold under condition (C).
(i) 1

σ1−σ2
< β1β2

σ2β
2
2−σ1β

2
1

if and only if (σ2β
2
2 − σ1β

2
1)(σ1β1 − σ2β2) > 0.

(ii) 0 < α1α2
σ2α

2
2−σ1α

2
1
< β1β2

σ2β
2
2−σ1β

2
1
, provided σ2β

2
2 − σ1β

2
1 > 0.

(iii) σ1
σ1−σ2

< β2
σ1+σ2

, provided σ1β1 > σ2β2 and β2 − β1 ≥ σ1 + σ2.

Proof. Recall that σ1 > σ2 in condition (C).
(i) We compute

β1β2

σ2β
2
2 − σ1β

2
1

−
1

σ1 − σ2

=
β1β2(σ1 − σ2) − (σ2β

2
2 − σ1β

2
1)

(σ2β
2
2 − σ1β

2
1)(σ1 − σ2)
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=
(β1 + β2)(σ1β1 − σ2β2)
(σ2β

2
2 − σ1β

2
1)(σ1 − σ2)

.

Thus, β1β2

σ2β
2
2−σ1β

2
1
− 1

σ1−σ2
> 0 if and only if (σ2β

2
2 − σ1β

2
1)(σ1β1 − σ2β2) > 0.

(ii) Suppose σ2β
2
2 − σ1β

2
1 > 0. Then

σ2α
2
2 − σ1α

2
1 > σ2β

2
2 − σ1α

2
1 > σ2β

2
2 − σ1β

2
1 > 0.

The assertion follows from

α1α2

σ2α
2
2 − σ1α

2
1

−
β1β2

σ2β
2
2 − σ1β

2
1

=
(σ2α2β2 + σ1α1β1)(α1β2 − α2β1)

(σ2α
2
2 − σ1α

2
1)(σ2β

2
2 − σ1β

2
1)

< 0,

due to α1β2 − α2β1 = α1β2 − (β2 + σ2)(α1 + σ1) < 0.
(iii) If σ1β1 > σ2β2, then

β2

σ1 + σ2
−

σ1

σ1 − σ2
=

σ1β2 − σ2β2 − σ1(σ1 + σ2)
σ2

1 − σ
2
2

>
σ1β2 − σ1β1 − σ1(σ1 + σ2)

σ2
1 − σ

2
2

=
σ1[(β2 − β1) − (σ1 + σ2)]

σ2
1 − σ

2
2

≥ 0,

provided β2 − β1 ≥ σ1 + σ2. The assertion thus follows. �

The following parameter condition is to be used throughout the discussions:

Condition (P) :
1

σ1 + σ2
<

σ1β1

σ2β
2
2 − σ1β

2
1

.

Certainly condition (P) holds only if σ2β
2
2 − σ1β

2
1 > 0. And a direct computation shows that condition

(P) is equivalent to σ2β
2
2 − σ1β

2
1 > 0 with

σ2β
2
2 < σ1β1(β1 + σ1 + σ2). (2.1)

Accordingly, if condition (P) holds, Lemma 2.1(i) can be recast as

1
σ1 − σ2

<
β1β2

σ2β
2
2 − σ1β

2
1

⇔ σ2β2 < σ1β1;

for convenience of later use, we put this relationship as

σ1σ2

σ1 − σ2
<

σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

⇔ σ2β2 < σ1β1. (2.2)

The condition of Lemma 2.1(iii): σ1β1 > σ2β2 and β2 − β1 ≥ σ1 + σ2 implies

σ1

σ1 − σ2
<

β2

σ1 + σ2
.
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Then, by combining condition (P), we obtain

σ1σ2

σ1 − σ2
<

σ2β2

σ1 + σ2
<

σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

. (2.3)

On the other hand, combining σ1σ2
σ1−σ2

> σ1σ2β1β2

σ2β
2
2−σ1β

2
1
, i.e. σ2β2 > σ1β1 by (2.2), with condition (P) yields

σ2β2

σ1 + σ2
<

σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

<
σ1σ2

σ1 − σ2
. (2.4)

Therefore, by imposing condition (P) additionally, the following relationships can be concluded.

Lemma 2.2. Assume that conditions (C) and (P) hold.
(i) If σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2, then

σ1σ2

σ1 − σ2
<

σ2β2

σ1 + σ2
<

σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

.

(ii) If σ2β2 > σ1β1, then
σ2β2

σ1 + σ2
<

σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

<
σ1σ2

σ1 − σ2
.

It is obvious that the terms in the inequalities in Lemma 2.2 can be simplified. But it is convenient
to keep these forms.

Remark 1. In Lemma 2.2, with (2.1), the condition in (ii): σ2β2 > σ1β1 leads to σ1β1β2 < σ2β
2
2 <

σ1β1(β1 + σ1 + σ2), and thus β2 − β1 < σ1 + σ2, which is contrary to the condition β2 − β1 ≥ σ1 + σ2

in (i). That is, the condition in (i) and the condition in (ii) are opposite cases under assumption (P). In
addition, the condition in Lemma 2.2(i): σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2 further indicates

σ2β
2
2 < σ1β1(β1 + σ1 + σ2) ≤ σ1β1β2, (2.5)

via (2.1).

We characterize the existence of positive equilibrium for system (1.3) in the following theorem.

Theorem 2.1. Consider system (1.3) under conditions (C) and (P).
(i) Under σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2, there exists an d∗3 > 0 so that the system has a unique
positive equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) if and only if 0 < d < d∗3.

(ii) Under σ2β2 > σ1β1, there exist d∗1, d
∗
2, d

∗
3 > 0, with d∗1 < d∗2 < d∗3, so that the system has a unique

positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2) if and only if 0 < d < d∗1 or d∗2 < d < d∗3.

In addition,

σ1σ2α1α2

σ2α
2
2 − σ1α

2
1

< d∗1 <
σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

σ1σ2

σ1 − σ2
< d∗2 <

σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(α2 − α1)

σ1σ2

σ1 − σ2
< d∗3 <

σ1

σ1 − σ2
(α2 − α1).
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Proof. System (1.3) has a positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2) if and only if

(α1 − u∗1 − v∗1) + d(
u∗2
u∗1
− 1) = 0, (α2 − u∗2 − v∗2) + d(

u∗1
u∗2
− 1) = 0,

(β1 − v∗1 − u∗1) + d(
v∗2
v∗1
− 1) = 0, (β2 − v∗2 − u∗2) + d(

v∗1
v∗2
− 1) = 0,

(2.6)

are satisfied for u∗1, u
∗
2, v
∗
1, v
∗
2 > 0. Let (u∗1, u

∗
2, v
∗
1, v
∗
2) be a solution of (2.6) and denote

a :=
u∗2
u∗1
, b :=

v∗2
v∗1
. (2.7)

Combining each pair of equations in (2.6), we obtain

−σ1 + d(a − b) = 0,

σ2 + d(
1
a
−

1
b

) = 0.
(2.8)

This yields
ab =

σ1

σ2
=: k, (2.9)

and k > 1, as 0 < σ2 < σ1. Substituting b = k/a and a = k/b into (2.8) respectively leads to

a =
σ1 +

√
σ2

1 + 4kd2

2d
, b =

−σ1 +

√
σ2

1 + 4kd2

2d
. (2.10)

We thus express a, b in terms of system parameters, and it can be computed that b2 < k < a2 and a > 1.
We substitute (2.7) into (2.6) and obtain

(α1 − u∗1 − v∗1) + d(a − 1) = 0, a(α2 − au∗1 − bv∗1) + d(1 − a) = 0, (2.11)
(β1 − v∗1 − u∗1) + d(b − 1) = 0, b(β2 − bv∗1 − au∗1) + d(1 − b) = 0. (2.12)

Solving the two equations in (2.11), we have{
u∗1 = 1

a2−k [(aα2 − ad + d) − k(α1 + ad − d)]
v∗1 = (α1 + ad − d) − u∗1.

(2.13)

On the other hand, solving the two equations in (2.12), we obtain{
u∗1 = 1

k−b2 [(bβ2 − bd + d) − b2(β1 + bd − d)]
v∗1 = (β1 + bd − d) − u∗1.

(2.14)

In fact, (2.13) and (2.14) are equivalent, as it can be seen by (2.8) that α1 + ad − d = β1 + bd − d and

1
a2 − k

[(aα2 − ad + d) − k(α1 + ad − d)] =
1

k − b2 [(bβ2 − bd + d) − b2(β1 + bd − d)].

Herein, α1 + ad − d > 0 since a > 1. From (2.13) and (2.14), we obtain

v∗1 =
1

a2 − k

[
a2(α1 + ad − d) − (aα2 − ad + d)

]
Mathematical Biosciences and Engineering Volume 16, Issue 2, 909–946
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=
1

k − b2 [k(β1 + bd − d) − (bβ2 − bd + d)].

Observe that u∗1, v
∗
1 > 0 imply u∗2, v

∗
2 > 0, due to (2.7) and a, b > 0. Hence, system (1.3) has a unique

positive equilibrium if and only if

u∗1 =
1

a2 − k
[(aα2 − ad + d) − k(α1 + ad − d)]

=
1

k − b2 [(bβ2 − bd + d) − b2(β1 + bd − d)] > 0, (2.15)

and

v∗1 =
1

a2 − k

[
a2(α1 + ad − d) − (aα2 − ad + d)

]
=

1
k − b2 [k(β1 + bd − d) − (bβ2 − bd + d)] > 0. (2.16)

To explore the range of d where u∗1, v
∗
1 > 0, we denote u∗1(d), v∗1(d) to express the dependence of

u∗1, v
∗
1 on d. Let us discuss the positivity of v∗1 first. The terms in the brackets of (2.16) can be recast as{

a2(α1 + ad − d) − (aα2 − ad + d) = a2α1 − aα2 + d(a2 + 1)(a − 1)
k(β1 + bd − d) − (bβ2 − bd + d) = kβ1 − bβ2 + d(k + 1)(b − 1).

(2.17)

We define two functions to discuss the positivity of v∗1:

Fv∗(d) := a2α1 − aα2 + d(a2 + 1)(a − 1),
Gv∗(d) := kβ1 − bβ2 + d(k + 1)(b − 1).

It follows from (2.16) and (2.17) that

Fv∗(d) =
a2 − k
k − b2 Gv∗(d).

In addition, v∗1 > 0 if and only if Fv∗(d) > 0 if and only if Gv∗(d) > 0, due to b2 < k < a2. In
the following discussions (a)-(e), we analyze the ranges of d within which Fv∗(d) and Gv∗(d) take
positive or negative values. For some situations, analyzing Fv∗ is more convenient than Gv∗ , whereas
the convenience is reverse in other cases.

(a) Fv∗(d) > 0 if d < σ1σ2α1α2
σ2α

2
2−σ1α

2
1
: It can be seen that aα1 > α2 implies Fv∗(d) > 0, due to a > 1. On

the other hand, aα1 > α2 is actually

a =
σ1 +

√
σ2

1 + 4kd2

2d
>
α2

α1
,

which is equivalent to d < σ1σ2α1α2
σ2α

2
2−σ1α

2
1
.

(b) Fv∗(d) > 0 if d >
σ1
√
σ1σ2+σ1σ2

σ2
1−σ

2
2

(α2 − α1): If b > 1, i.e. d > σ1σ2
σ1−σ2

by (2.10), then a < k since

ab = k. From b2 < k < a2, we have 1 < b <
√

k < a < k. Then

Fv∗(d) = a2α1 − aα2 + d(a2 + 1)(a − 1)
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> kα1 − kα2 + d(k + 1)(
√

k − 1)
> 0,

if d > k
(k+1)(

√
k−1)

(α2 − α1) =
σ1
√
σ1σ2+σ1σ2

σ2
1−σ

2
2

(α2 − α1). It is clear that

σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(α2 − α1)

=
σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(β2 − β1) +
σ1
√
σ1σ2 + σ1σ2

σ1 − σ2

>
σ1σ2

σ1 − σ2
.

(c) Gv∗(d) > 0 if σ1σ2
σ1−σ2

< d < σ1σ2β1β2

σ2β
2
2−σ1β

2
1
: Obviously, Gv∗(d) > 0 if kβ1 − bβ2 > 0 and b > 1, which is

k
β1

β2
> b =

−σ1 +

√
σ2

1 + 4kd2

2d
> 1.

This is equivalent to
σ1σ2

σ1 − σ2
< d <

σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

,

by (2.10). Such value of d exists provided σ1σ2
σ1−σ2

< σ1σ2β1β2

σ2β
2
2−σ1β

2
1
.

(d) Gv∗(d) < 0 if σ1σ2β1β2

σ2β
2
2−σ1β

2
1
< d < σ1σ2

σ1−σ2
: Gv∗(d) < 0 provided kβ1 − bβ2 < 0 and b < 1, which is

k
β1

β2
< b =

−σ1 +

√
σ2

1 + 4kd2

2d
< 1,

and equivalent to σ1σ2β1β2

σ2β
2
2−σ1β

2
1
< d < σ1σ2

σ1−σ2
, provided σ1σ2β1β2

σ2β
2
2−σ1β

2
1
< σ1σ2

σ1−σ2
.

(e) G′v∗(d) < 0 if d < min
{
σ1σ2
σ1−σ2

, σ2β2
σ1+σ2

}
and G′v∗(d) > 0 if d > max

{
σ1σ2
σ1−σ2

, σ2β2
σ1+σ2

}
: From (2.10), we

compute

b′ = b′(d) =
σ1b

d
√
σ2

1 + 4kd2
> 0, (2.18)

and G′v∗(d) = (k + 1)(b − 1) + b′(kd − β2 + d). It can be seen that G′v∗(d) < 0, provided b < 1 and
kd − β2 + d < 0, which are equivalent to d < σ1σ2

σ1−σ2
and d < σ2β2

σ1+σ2
. On the contrary, G′v∗(d) > 0, if b > 1

and kd − β2 + d > 0, which are equivalent to d > σ1σ2
σ1−σ2

and d > σ2β2
σ1+σ2

.

For case (i), we will show that v∗1(d) > 0 for all d > 0 if σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2. Recall
Lemma 2.2(i): σ1σ2

σ1−σ2
< σ2β2

σ1+σ2
< σ1σ2β1β2

σ2β
2
2−σ1β

2
1
. From the above (c), (e), we summarize


Gv∗(d) > 0 if σ1σ2

σ1−σ2
< d < σ1σ2β1β2

σ2β
2
2−σ1β

2
1

G′v∗(d) < 0 if d < σ1σ2
σ1−σ2

G′v∗(d) > 0 if d > σ2β2
σ1+σ2

.

(2.19)
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In addition, at d = σ1σ2
σ1−σ2

, i.e., b = 1, we have Gv∗( σ1σ2
σ1−σ2

) = kβ1 − β2 > 0, thanks to σ2β2 < σ1β1.
Therefore, from (2.19), we see that Gv∗(d) > 0 for all d > 0, namely, v∗1(d) > 0 for all d > 0, under
σ2β2 < σ1β1, β2 − β1 ≥ σ1 + σ2, and condition (P).

For case (ii), if σ2β2 > σ1β1, we will show that Gv∗(d) > 0, and hence v∗1(d) > 0, for d in certain
range. Recall Lemma 2.2(ii): σ2β2

σ1+σ2
< σ1σ2β1β2

σ2β
2
2−σ1β

2
1
< σ1σ2

σ1−σ2
. With the above (a), (b), (d), (e), we obtain

Fv∗(d) > 0 if d < σ1σ2α1α2
σ2α

2
2−σ1α

2
1

Gv∗(d) < 0 if σ1σ2β1β2

σ2β
2
2−σ1β

2
1
< d < σ1σ2

σ1−σ2

Fv∗(d) > 0 if d > σ1
√
σ1σ2+σ1σ2

σ2
1−σ

2
2

(α2 − α1)
(2.20)

and {
G′v∗(d) < 0 if d < σ2β2

σ1+σ2

G′v∗(d) > 0 if d > σ1σ2
σ1−σ2

.
(2.21)

Furthermore, if d ≥ σ2β2
σ1+σ2

, i.e. d(k + 1) ≥ β2, and d ≤ σ1σ2
σ1−σ2

, i.e. b ≤ 1, we have

Gv∗(d) = kβ1 − bβ2 − d(k + 1)(1 − b) ≤ kβ1 − bβ2 − β2(1 − b) = kβ1 − β2 < 0,

by σ2β2 > σ1β1. To summarize, Gv∗(d) < 0 if σ2β2
σ1+σ2

≤ d ≤ σ1σ2
σ1−σ2

. Therefore, from (2.20) and (2.21),
there exists a unique d∗1 > 0 so that Gv∗(d) > 0 if d < d∗1 and Gv∗(d∗1) = 0, where

σ1σ2α1α2

σ2α
2
2 − σ1α

2
1

< d∗1 <
σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

,

and there exists a unique d∗2 > 0 so that Gv∗(d) > 0 if d > d∗2, where

σ1σ2

σ1 − σ2
< d∗2 <

σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(α2 − α1).

The two cases for the assertion of v∗1(d) > 0 are thus concluded. Now let us discuss the positivity of
u∗1(d). From (2.15), we have{

(aα2 − ad + d) − k(α1 + ad − d) = aα2 − kα1 − d(k + 1)(a − 1),
(bβ2 − bd + d) − b2(β1 + bd − d) = b(β2 − bβ1) + d(b2 + 1)(1 − b).

(2.22)

Let

Fu∗(d) := aα2 − kα1 − d(k + 1)(a − 1),
Gu∗(d) := b(β2 − bβ1) + d(b2 + 1)(1 − b).

Then

Fu∗(d) =
a2 − k
k − b2 Gu∗(d).

In addition, u∗1 > 0 if and only if Fu∗(d) > 0 if and only if Gu∗(d) > 0, due to b2 < k < a2. Let us discuss
the signs of Fu∗(d) and Gu∗(d) in the following (a’)-(d’).

(a’) Gu∗(d) > 0 if d ≤ σ1σ2
σ1−σ2

: It is clear that b ≤ 1 implies Gu∗(d) > 0, and b ≤ 1 is equivalent to
d ≤ σ1σ2

σ1−σ2
. Thus, Gu∗(d) > 0 if d ≤ σ1σ2

σ1−σ2
.
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(b’) Fu∗(d) < 0 if d > σ1
σ1−σ2

(α2 − α1): If b > 1, then from 1 < b <
√

k < a < k, we have

Fu∗(d) = aα2 − kα1 − d(k + 1)(a − 1)
< aα2 − aα1 − d(a + 1)(a − 1)
= a(α2 − α1) − d(a2 − 1)
< k(α2 − α1) − d(k − 1)
< 0,

if d > k
k−1 (α2 − α1) = σ1

σ1−σ2
(α2 − α1).

(c’) Case (i): σ2β2 < σ1β1, i.e., σ1σ2
σ1−σ2

< σ1σ2β1β2

σ2β
2
2−σ1β

2
1

by (2.2). We claim that F′u∗(d) < 0 for d ≤ σ2β2
σ1+σ2

and G′u∗(d) < 0 for d > σ2β2
σ1+σ2

. Notably,

F′u∗(d) = [β2 + σ2 − d(k + 1)]a′ − (k + 1)(a − 1) (2.23)

and

G′u∗(d) = −(b2 + 1)(b − 1) − 2bb′d(b − 1) − b′[d(b2 + 1) + 2bβ1 − β2], (2.24)

by direct computations, where a′ = a′(d), b′ = b′(d). For the first term of (2.23), we see that

β2 + σ2 − d(k + 1) ≥ σ2 > 0 if d ≤
σ2β2

σ1 + σ2
.

In addition, from (2.10), we compute

a′ = −
σ1a

d
√
σ2

1 + 4kd2
< 0. (2.25)

Hence, in (2.23), we confirm F′u∗(d) < 0 for d ≤ σ2β2
σ1+σ2

, due to a > 1 and a′ < 0. Next, we discuss the
third term of G′u∗(d) in (2.24), and claim that

d(b2 + 1) + 2bβ1 − β2 > 0 if d >
σ2β2

σ1 + σ2
.

From (2.10) and b′ > 0 shown in (2.18), a direct computation shows

b >
−σ1(σ1 + σ2) +

√
σ2

1(σ1 + σ2)2 + 4σ1σ2β
2
2

2σ2β2
if d >

σ2β2

σ1 + σ2
.

For d > σ2β2
σ1+σ2

, we compute directly

d(b2 + 1) + 2bβ1 − β2

>
1

2σ2β2(σ1 + σ2)
[σ2

1(σ1 + σ2)2 + 2σ1σ2β
2
2 + 2σ2

2β
2
2] −

σ1β1(σ1 + σ2)
σ2β2

− β2

+
1

2σ2β2(σ1 + σ2)

[
(2β1 − σ1)(σ1 + σ2)

√
σ2

1(σ1 + σ2)2 + 4σ1σ2β
2
2

]
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=
2β1 − σ1

2σ2β2

[√
σ2

1(σ1 + σ2)2 + 4σ1σ2β
2
2 − σ1(σ1 + σ2)

]
> 0. (2.26)

Note that σ1σ2
σ1−σ2

< σ2β2
σ1+σ2

, according to Lemma 2.2(i). As seen in (b) above, b > 1 is equivalent to
d > σ1σ2

σ1−σ2
. Thus, we see from (2.24) that G′u∗(d) < 0 for d > σ2β2

σ1+σ2
, due to (2.26), b > 1, and b′ > 0.

(d’) Case (ii): σ2β2 > σ1β1, i.e. σ1σ2
σ1−σ2

> σ1σ2β1β2

σ2β
2
2−σ1β

2
1

by (2.2). We claim that the third term of (2.24):

d(b2 +1)+2bβ1−β2 > 0 for d ≥ σ1σ2
σ1−σ2

. If so, then it can be seen from (2.24) and b′ > 0, that G′u∗(d) < 0
for d ≥ σ1σ2

σ1−σ2
which is equivalent to b ≥ 1. For d ≥ σ1σ2

σ1−σ2
, we obtain

d(b2 + 1) + 2bβ1 − β2

≥ 2
σ1σ2

σ1 − σ2
+ 2β1 − β2

=
1

σ1 − σ2
[2σ1σ2 + 2σ1β1 − 2σ2β1 − σ1β2 + σ2β2]

>
1

σ1 − σ2
[2σ1σ2 + 3σ1β1 − 2σ2β1 − σ1β2]

>
1

σ1 − σ2
[2σ1σ2 + 3σ1β1 − 2σ2β1 − σ1(β1 + σ1 + σ2)]

= 2β1 − σ1

> 0,

due to β1 > σ1 > 0 and β2 − β1 < σ1 + σ2, mentioned in Remark 1.
For case (i), we summarize properties (a’)-(c’):

Gu∗(d) > 0 if d ≤ σ1σ2
σ1−σ2

Fu∗(d) < 0 if d > σ1
σ1−σ2

(α2 − α1)
F′u∗(d) < 0 for d ≤ σ2β2

σ1+σ2

G′u∗(d) < 0 for d > σ2β2
σ1+σ2

.

Recall Lemma 2.2(i): σ1σ2
σ1−σ2

< σ2β2
σ1+σ2

< σ1σ2β1β2

σ2β
2
2−σ1β

2
1
, and that Gu∗(d) and Fu∗(d) have identical sign. There

are two possibilities:
(I) Fu∗(

σ2β2
σ1+σ2

) ≥ 0, i.e., Gu∗(
σ2β2
σ1+σ2

) ≥ 0: As G′u∗(d) < 0 for d > σ2β2
σ1+σ2

and Fu∗(d) < 0 if d >
σ1

σ1−σ2
(α2 − α1), there exists a unique d∗3 > 0 such that Gu∗(d∗3) = 0, where

σ2β2

σ1 + σ2
≤ d∗3 <

σ1

σ1 − σ2
(α2 − α1).

(II) Fu∗(
σ2β2
σ1+σ2

) < 0, i.e., Gu∗(
σ2β2
σ1+σ2

) < 0: As Fu∗(d) > 0 for d ≤ σ1σ2
σ1−σ2

, F′u∗(d) < 0 for d ≤ σ2β2
σ1+σ2

, and
G′u∗(d) < 0 for d > σ2β2

σ1+σ2
, we confirm that there exists a unique d∗3 > 0 such that Gu∗(d∗3) = 0, where

σ1σ2

σ1 − σ2
< d∗3 < min

{
σ2β2

σ1 + σ2
,

σ1

σ1 − σ2
(α2 − α1)

}
.
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Both (I) and (II) indicate that there exists a unique d∗3 > 0 such that Gu∗(d∗3) = 0, Gu∗(d) > 0 if d < d∗3,
and Gu∗(d) < 0 if d > d∗3, where

σ1σ2

σ1 − σ2
< d∗3 <

σ1

σ1 − σ2
(α2 − α1).

For case (ii), from the above (a’), (b’), and (d’), we summarize
Gu∗(d) > 0 if d ≤ σ1σ2

σ1−σ2

Fu∗(d) < 0 if d > σ1
σ1−σ2

(α2 − α1)
G′u∗(d) < 0 if d ≥ σ1σ2

σ1−σ2
.

We thus conclude that there exists a unique d∗3 > 0 such that Gu∗(d∗3) = 0, Gu∗(d) > 0 if d < d∗3, and
Gu∗(d) < 0 if d > d∗3, where

σ1σ2

σ1 − σ2
< d∗3 <

σ1

σ1 − σ2
(α2 − α1).

From (2.13), we see that v∗1 → α1 + ad − d > 0 as u∗1 → 0+, i.e., u∗1 and v∗1 can not be zero
simultaneously. From the above discussions, we confirm that d∗2 < d∗3.

Combining the above discussions of two scenarios for v∗1(d) > 0, and one single scenario for u∗1(d) >
0, the assertions are thus justified, see Figure 2. �

Figure 2. The existence of u∗1(d), u∗2(d), v∗1(d), v∗2(d) with respect to d, in cases (i) and (ii) of
Theorem 2.1 respectively.

Remark 2. (I) Under conditions (C) and (P), the proof of Theorem 2.1 actually indicate:
(i) If σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2, then (u∗1, u

∗
2, v
∗
1, v
∗
2) → (0, 0, v̄1, v̄2), as d → (d∗3)−, i.e., the

positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2) degenerates and merges into the semitrivial equilibrium (0, 0, v̄1, v̄2)

at d = d∗3.
(ii) If σ2β2 > σ1β1, then (u∗1, u

∗
2, v
∗
1, v
∗
2) → (ū1, ū2, 0, 0), as d → (d∗1)−, i.e., the positive equilib-

rium (u∗1, u
∗
2, v
∗
1, v
∗
2) degenerates and merges into the semitrivial equilibrium (ū1, ū2, 0, 0) at d = d∗1;
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(ū1, ū2, 0, 0) → (u∗1, u
∗
2, v
∗
1, v
∗
2), as d → (d∗2)+, i.e., the semitrivial equilibrium (ū1, ū2, 0, 0) becomes the

positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2) as the value of d increases through d∗2; (u∗1, u

∗
2, v
∗
1, v
∗
2)→ (0, 0, v̄1, v̄2),

as d → (d∗3)−, i.e., the positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2) again degenerates and merges into the

semitrivial equilibrium (0, 0, v̄1, v̄2) at d = d∗3.
(II) In Theorem 2.1(ii), combining σ2β2 > σ1β1 and condition (P) yields β2 − β1 < σ1 + σ2, which

is contrary to condition β2 − β1 ≥ σ1 + σ2 in case (i), as mentioned in Remark 1.
(III) Although the same symbol d∗3 is used in Theorem 2.1 (i) and (ii), they represent different values

under assumptions in (i) and (ii), respectively.
(IV) With the setting a := u∗2

u∗1
, b := v∗2

v∗1
, and subsequently ab = σ1

σ2
=: k, we always have b2 < k < a2.

Notably, in [24], 0 < k ≤ 1 under assumption σ1 ≤ σ2, and hence b < 1. This is disparate from the
situation in Theorem 2.1 that k > 1, and hence a > 1, due to σ1 > σ2.

3. Stability analysis of semitrivial equilibria

In this section, we analyze the stability of the semitrivial equilibria for system (1.3). We denote
by (ū1, ū2, 0, 0) and (0, 0, v̄1, v̄2) the semitrivial (boundary) equilibria for system (1.3), and by ūi(d) and
v̄i(d), i = 1, 2, to express the dependence of ūi and v̄i on d. In Appendix II, we recall some properties
of semitrivial equilibria of system (1.3) in Propositions 3.7-3.10 of [24], which are independent of
the order between σ1 and σ2. Herein, we add the following additional properties for the semitrivial
equilibria, which shall be employed to discuss the stability of semitrivial equilibria.

Proposition 3.1. (i) If α1 < α2, then ū′1(d) > 0, ū′2(d) < 0, ū′′1 (d) < 0, and ū′′2 (d) > 0, for all d > 0.
(ii) If β1 < β2, then v̄′1(d) > 0, v̄′2(d) < 0, v̄′′1 (d) < 0, and v̄′′2 (d) > 0, for all d > 0.

Proof. (i) (ū1, ū2, 0, 0) is an equilibrium of (1.3) if and only if ū1 and ū2 satisfy

ū1(α1 − ū1) + d(ū2 − ū1) = 0
ū2(α2 − ū2) + d(ū1 − ū2) = 0.

(3.1)

Differentiating (3.1) with respect to d, we obtain

(α1 − 2ū1 − d)ū′1 + dū′2 + ū2 − ū1 = 0
(α2 − 2ū2 − d)ū′2 + dū′1 + ū1 − ū2 = 0,

(3.2)

where ū′i , i = 1, 2, represent the derivatives of ūi with respect to d. Thus,

ū′1 =
(α2 − 2ū2)(ū1 − ū2)

(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2 , (3.3)

ū′2 =
(α1 − 2ū1)(ū2 − ū1)

(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2 . (3.4)

Note that

(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2

= (α1 − 2ū1)(α2 − 2ū2) − d(α1 − 2ū1) − d(α2 − 2ū2)
> 0,
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by Proposition A.3 (in Appendix II). Thus ū′1 > 0 and ū′2 < 0. More detailed descriptions for ū1 and ū2

can be found in Proposition A.5. We further differentiate (3.2) with respect to d, and obtain

(α1 − 2ū1 − d)ū′′1 + dū′′2 = 2ū′1 − 2ū′2 + 2(ū′1)2

(α2 − 2ū2 − d)ū′′2 + dū′′1 = 2ū′2 − 2ū′1 + 2(ū′2)2.

Thus,

ū′′1 = 2
(α2 − 2ū2 − d)[ū′1 − ū′2 + (ū′1)2] − d[ū′2 − ū′1 + (ū′2)2]

(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2

ū′′2 = 2
(α1 − 2ū1 − d)[ū′2 − ū′1 + (ū′2)2] − d[ū′1 − ū′2 + (ū′1)2]

(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2 .

Let us focus on the numerators. For ū′′1 , we have

(α2 − 2ū2 − d)[ū′1 − ū′2 + (ū′1)2] − d[ū′2 − ū′1 + (ū′2)2]
= (α2 − 2ū2 − d)(ū′1)2 + (α2 − 2ū2)(ū′1 − ū′2) − d(ū′2)2

< 0,

due to ū′1 > 0, ū′2 < 0 for all d > 0, and Proposition A.3. Thus, ū′′1 < 0. For ū′′2 , with (3.3) and (3.4), we
have

(α1 − 2ū1 − d)[ū′2 − ū′1 + (ū′2)2] − d[ū′1 − ū′2 + (ū′1)2]
= (α1 − 2ū1 − d)(ū′2)2 + (α1 − 2ū1)(ū′2 − ū′1) − d(ū′1)2

= (α1 − 2ū1 − d)
[

(α1 − 2ū1)(ū2 − ū1)
(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2

]2

+ (α1 − 2ū1)
[

(α1 − 2ū1)(ū2 − ū1)
(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2 −

(α2 − 2ū2)(ū1 − ū2)
(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2

]
− d

[
(α2 − 2ū2)(ū1 − ū2)

(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2

]2

=
(ū2 − ū1)

[(α1 − 2ū1 − d)(α2 − 2ū2 − d) − d2]2 ·{
(α1 − 2ū1 − d)(α2 − ū1 − ū2)(α1 − 2ū1)2 − d(α1 − 2ū1)3

+(α2 − 2ū2)2[(α1 − 2ū1 − d)(α1 − 2ū1) − d(ū2 − ū1)]
}
.

For the first two terms in the bracket,

(α1 − 2ū1 − d)(α2 − ū1 − ū2)(α1 − 2ū1)2 − d(α1 − 2ū1)3 > 0,

by Proposition A.3. For the third term, using (3.1), we have

(α2 − 2ū2)2[(α1 − 2ū1 − d)(α1 − 2ū1) − d(ū2 − ū1)]
= (α2 − 2ū2)2[(α1 − 2ū1)2 − d(α1 − 2ū1) − d(ū2 − ū1)]
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= (α2 − 2ū2)2


[
d
(
1 −

ū2

ū1

)
− ū1

]2

− d
[
d
(
1 −

ū2

ū1

)
− ū1

]
− d(ū2 − ū1)


= (α2 − 2ū2)2

d2
(
1 −

ū2

ū1

)2

− d2
(
1 −

ū2

ū1

)
+ dū2 + ū2

1


> 0,

since ū1 < ū2. Thus, ū′′2 > 0.
Part (ii) can be obtained by arguments similar to those for (i), using

v̄1(β1 − v̄1) + d(v̄2 − v̄1) = 0
v̄2(β2 − v̄2) + d(v̄1 − v̄2) = 0.

(3.5)

This completes the proof. �

Propositions A.3-A.6, in Appendix II, and Proposition 3.1 are independent of the order between
σ1 and σ2. Some of the following properties for the semitrivial equilibria hold under σ2 < σ1. The
following notations will be helpful to recognize various related quantities:

d1 :=
σ1σ2(σ2

1 + σ2
2 + σ2β2 − σ1β1)

(σ1 − σ2)(σ2
1 + σ2

2)
,

d2 :=
σ1σ2

σ1 − σ2
,

d3 :=
β1β2(σ2β1 + σ1β2)
(β2 − β1)(β2

1 + β2
2)
,

d4 :=
σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

,

d5 :=
√
σ1σ2(

√
σ2α2 −

√
σ1α1)

(σ1 + σ2)(
√
σ1 −

√
σ2)

.

Proposition 3.2. Under conditions (C) and (P), the following relationships among parameters hold:
(I) ū2

ū1
(d) is strictly decreasing with respect to d.

(II) If ū2
ū1

= σ1
σ2

, then d = d1.
(III) If ū2

ū1
=

β2
β1

, then d = d3.

(IV) If ū2
ū1

=
√
σ1
√
σ2

, then d = d5.

(V) (i) If σ2β2 < σ1β1, then σ1
σ2
> β2

β1
and d1 < d2 < d3 < d4.

(ii) If σ2β2 > σ1β1, then σ1
σ2
< β2

β1
and d1 > d2 > d3 > d4.

(iii) If σ2β2 = σ1β1, then σ1
σ2

=
β2
β1

and d1 = d2 = d3 = d4.

Proof. (I) The assertion follows from ū′1(d) > 0, ū′2(d) < 0, as in the proof of Proposition 3.1.
(II) If ū2

ū1
= σ1

σ2
, with ū1 and ū2 satisfying (3.1), we have

α1 − ū1 + d(
σ1

σ2
− 1) = 0

α2 −
σ1

σ2
ū1 + d(

σ2

σ1
− 1) = 0.
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By eliminating ū1, we have

d
(
σ3

1 − σ
2
1σ2 − σ

3
2 + σ1σ

2
2

σ2
1σ2

)
=
σ2α2 − σ1α1

σ1
.

Then

d =
σ1σ2(σ2

1 + σ2
2 + σ2β2 − σ1β1)

(σ1 − σ2)(σ2
1 + σ2

2)
= d1,

due to α2 = β2 + σ2 and α1 = β1 − σ1.
Cases (III) and (IV) can be obtained by arguments similar to those for (II). Now let us prove (V),

and the assertions will be justified by the following (a)-(c):
(a) It is clear that

d2 − d1


> 0 if σ2β2 < σ1β1

= 0 if σ2β2 = σ1β1

< 0 if σ2β2 > σ1β1.

(b) We see that

d3 − d2


> 0 if σ2β2 < σ1β1

= 0 if σ2β2 = σ1β1

< 0 if σ2β2 > σ1β1.

as, by a direct calculation,

d3 − d2 =
(σ1β

2
2 + σ2β

2
1)(σ1β1 − σ2β2)

(σ1 − σ2)(β2 − β1)(β2
1 + β2

2)
.

(c) It holds that

d4 − d3


> 0 if σ2β2 < σ1β1

= 0 if σ2β2 = σ1β1

< 0 if σ2β2 > σ1β1

due to

d4 − d3 =
(σ1 + σ2)β2

1β
2
2(σ1β1 − σ2β2)

(σ2β
2
2 − σ1β

2
1)(β2 − β1)(β2

1 + β2
2)
.

This completes the proof. �

In Appendix I, we compute the Jacobian matrix for system (1.3). At (ū1, ū2, 0, 0), the Jacobian
matrix is 

α1 − 2ū1 − d d −ū1 0
d α2 − 2ū2 − d 0 −ū2

0 0 β1 − ū1 − d d
0 0 d β2 − ū2 − d

 , (3.6)
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and at (0, 0, v̄1, v̄2), the Jacobian matrix is
α1 − v̄1 − d d 0 0

d α2 − v̄2 − d 0 0
−v̄1 0 β1 − 2v̄1 − d d
0 −v̄2 d β2 − 2v̄2 − d

 . (3.7)

First, let us focus on the stability of semitrivial equilibrium (ū1, ū2, 0, 0), by calculating the eigenvalues
of the following submatrices in (3.6):[

α1 − 2ū1 − d d
d α2 − 2ū2 − d

]
and

[
β1 − ū1 − d d

d β2 − ū2 − d

]
. (3.8)

Theorem 3.3. Assume that conditions (C) and (P) hold for system (1.3).
(i) If σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2, the semitrivial equilibrium (ū1, ū2, 0, 0) is unstable for all
d > 0.
(ii) If σ2β2 > σ1β1, there exist d̄1, d̄2 > 0, with d̄1 < d̄2, so that the semitrivial equilibrium (ū1, ū2, 0, 0)
is unstable when d < d̄1 or d > d̄2 and is asymptotically stable when d̄1 < d < d̄2.
In addition,

σ1σ2α1α2

σ2α
2
2 − σ1α

2
1

< d̄1 <
σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

,

σ1σ2

σ1 − σ2
< d̄2 <

σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(α2 − α1).

Proof. Under condition (C), the two eigenvalues of the first matrix in (3.8) are negative by Ger-
schgorin’s Theorem and Proposition A.3. Thus, the stability of (ū1, ū2, 0, 0) is determined by the two
eigenvalues, denoted by λ∓, of the second matrix in (3.8). By a direct calculation, the two eigenvalues
are

λ∓ :=
1
2

[
(β1 − ū1 + β2 − ū2 − 2d) ∓

√
(β1 − ū1 − β2 + ū2)2 + 4d2

]
.

First, we consider λ− = λ−(d) and claim λ−(d) < 0 for all d > 0. From condition (C) and Proposition
A.3, we have

β1 − ū1 + β2 − ū2 = (σ1 − σ2) + d
[
2 −

(
ū2

ū1
+

ū1

ū2

)]
,

and

β1 − ū1 − β2 + ū2 = (σ1 + σ2) + d
(
ū1

ū2
−

ū2

ū1

)
.

Then

λ− =
1
2

[
(β1 − ū1 + β2 − ū2 − 2d) −

√
(β1 − ū1 − β2 + ū2)2 + 4d2

]
=

1
2

(σ1 − σ2) − d
(
ū2

ū1
+

ū1

ū2

)
−

√[
(σ1 + σ2) + d

(
ū1

ū2
−

ū2

ū1

)]2

+ 4d2
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<
1
2

[
(σ1 − σ2) − d

(
ū2

ū1
+

ū1

ū2

)
−

∣∣∣∣∣∣(σ1 + σ2) + d
(
ū1

ū2
−

ū2

ū1

)∣∣∣∣∣∣
]
.

We obtain
λ− < −σ2 − d

ū1

ū2
< 0,

if (σ1 + σ2) + d
(

ū1
ū2
−

ū2
ū1

)
≥ 0, and

λ− < σ1 − d
ū2

ū1
< 0,

if (σ1 + σ2) + d
(

ū1
ū2
−

ū2
ū1

)
< 0. Consequently, λ−(d) < 0 for all d > 0.

Next, we identify the sign of λ+ = λ+(d). Note that λ+(d) ≥ 0 if and only if

|β1 − ū1 + β2 − ū2 − 2d| ≤
√

(β1 − ū1 − β2 + ū2)2 + 4d2,

equivalently,
(β1 − ū1)(β2 − ū2) − d(β1 − ū1 + β2 − ū2) ≤ 0. (3.9)

As β1 = α1 + σ1 and β2 = α2 − σ2, (3.9) can be expressed by

(α1 − ū1 + σ1)(α2 − ū2 − σ2) − d[α1 − ū1 + α2 − ū2 + (σ1 − σ2)] ≤ 0,

i.e., [
d
(
1 −

ū2

ū1

)
+ σ1

] [
d
(
1 −

ū1

ū2

)
− σ2

]
− d2

[
2 −

(
ū2

ū1
+

ū1

ū2

)]
− d(σ1 − σ2) ≤ 0,

using (3.1). This inequality can be simplified to

d
(
σ2

ū2

ū1
− σ1

ū1

ū2

)
− σ1σ2 ≤ 0. (3.10)

From (3.10), we define

g(d) := d
(
σ2

ū2(d)
ū1(d)

− σ1
ū1(d)
ū2(d)

)
− σ1σ2. (3.11)

Then λ+(d) ≥ 0 if and only if g(d) ≤ 0. According to Propositions A.3 and A.5, we have that 1 < ū2(d)
ū1(d) <

α2
α1

and ū2(d)
ū1(d) decreases from α2

α1
to 1 as d increases from 0 to∞. Thus, g(0) = −σ1σ2 and g(d)→ −∞ as

d → ∞, because of σ1 > σ2. More precisely,

g(d) = d
(
σ2

ū2

ū1
− σ1

ū1

ū2

)
− σ1σ2

< d
(
σ2
α2

α1
− σ1

α1

α2

)
− σ1σ2

= d
(
σ2α

2
2 − σ1α

2
1

α1α2

)
− σ1σ2

≤ 0, if d ≤
σ1σ2α1α2

σ2α
2
2 − σ1α

2
1

. (3.12)
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Note that ū2(d)
ū1(d) ≤

√
σ1
√
σ2

is equivalent to d ≥ d5, by Proposition 3.2. Hence,

g(d) = d
(
σ2

ū2

ū1
− σ1

ū1

ū2

)
− σ1σ2

≤ d
(
σ2

√
σ1
√
σ2
− σ1

√
σ2
√
σ1

)
− σ1σ2

= −σ1σ2

< 0, if
ū2(d)
ū1(d)

≤

√
σ1
√
σ2
.

Thus,

g(d) < 0 if d ≥ d5. (3.13)

A direct calculation yields

g′(d) =

(
σ2

ū2

ū1
− σ1

ū1

ū2

)
+ d

[
σ2(

ū2

ū1
)′ − σ1(

ū1

ū2
)′
]
. (3.14)

We know σ2( ū2
ū1

)′ − σ1( ū1
ū2

)′ < 0 for all d > 0, due to ū′1 > 0 and ū′2 < 0, as in the proof of Proposition

3.1 or by Proposition A.5; σ2
ū2
ū1
−σ1

ū1
ū2

=
σ2α

2
2−σ1α

2
1

α1α2
> 0 when d = 0, by Lemma 2.1(ii); σ2

ū2
ū1
−σ1

ū1
ū2
→

σ2−σ1 < 0 as d → +∞, due to Propositions A.3 and A.5. That is, σ2
ū2
ū1
−σ1

ū1
ū2

decreases from σ2α
2
2−σ1α

2
1

α1α2

to −(σ1 − σ2) as d increases from 0 to +∞. On the other hand, by (3.1), we have d
(

ū2
ū1

)′
= 1 − ū2

ū1
+ ū′1

d
(

ū1
ū2

)′
= 1 − ū1

ū2
+ ū′2.

(3.15)

With (3.15), we reexpress (3.14) as

g′(d) = σ2 − σ1 + σ2ū′1 − σ1ū′2. (3.16)

It follows that
g′′(d) = σ2ū′′1 − σ1ū′′2 < 0,

by Proposition 3.1. Thus, the graph of g(d) is concave downward. Therefore, there are two possible
situations based on the above analysis: (i) g(d) < 0 for all d > 0, (ii) there exist d̄1, d̄2 > 0 such that
g(d̄1) = g(d̄2) = 0, and {

g(d) < 0 if d < d̄1 or d > d̄2

g(d) > 0 if d̄1 < d < d̄2.

The graphs of g(d) are illustrated in Figure 3. Accordingly, there are two possibilities for λ+: (i) λ+ > 0
for all d > 0, (ii) there exist d̄1, d̄2 > 0 such that λ+ = 0 for d = d̄1, d̄2 and{

λ+ > 0 if d < d̄1 or d > d̄2

λ+ < 0 if d̄1 < d < d̄2.
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Figure 3. Two situations for g(d), regarding the sign of λ+ in Theorem 3.3.

Now we investigate the two situations by analyzing g(d) and the stationary equation (3.1). To
determine the behavior of g, we seek for its equivalent expression. Let w := ū2

ū1
. As ū2

ū1
(d) is strictly

decreasing with respect to d, by Proposition 3.2(I), the one-to-one correspondence between d and w
can be derived from the stationary equation for ū1 and ū2 in (3.1):

d =
α2 − wα1

(w − 1)(w + 1
w )
, (3.17)

where 1 < w < α2
α1

, by Proposition A.5. Then

g(d) = d
(
σ2

ū2

ū1
− σ1

ū1

ū2

)
− σ1σ2

= d
(
σ2w2 − σ1

w

)
− σ1σ2

=

 α2 − wα1

(w − 1)(w + 1
w )

 (σ2w2 − σ1

w

)
− σ1σ2

=
(α2 − wα1)(σ2w2 − σ1) − σ1σ2(w − 1)(w2 + 1)

(w − 1)(w2 + 1)
=: f (w).

Let us define q(w) := (α2 − wα1)(σ2w2 − σ1) − σ1σ2(w − 1)(w2 + 1), which is the numerator of f (w),
and thus f (w) =

q(w)
(w−1)(w2+1) . Note that

q(w) = (α2 − wα1)(σ2w2 − σ1) − σ1σ2(w − 1)(w2 + 1)
= (β2 − wβ1)(σ2w2 − σ1) + w(σ1 + σ2)(σ2w − σ1), (3.18)

by β1 = α1 + σ1 and β2 = α2 − σ2. Thus, we have

g(d) < 0⇔ f (w) < 0⇔ q(w) < 0, (3.19)
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due to (w − 1)(w2 + 1) > 0. In addition,

f ′(w) =
q′(w)(w − 1)(w2 + 1) − q(w)(3w2 − 2w + 1)

(w − 1)2(w2 + 1)2 , (3.20)

where

q′(w) = 2σ2w(β2 − wβ1) + (σ1 + σ2)(σ2w − σ1) − σ2β1w2 + σ2(σ1 + σ2)w + σ1β1. (3.21)

Notice that

f ′(w) < 0⇔ g′(d) > 0,

according to Proposition 3.2(I). By a direct computation in (3.18), we obtain

q(
σ1

σ2
) =

σ1

σ2
2

(σ1 − σ2)(σ2β2 − σ1β1)


< 0 if σ2β2 < σ1β1

= 0 if σ2β2 = σ1β1

> 0 if σ2β2 > σ1β1,

(3.22)

and

q(
β2

β1
) =

β2

β2
1

(σ1 + σ2)(σ2β2 − σ1β1)


< 0 if σ2β2 < σ1β1

= 0 if σ2β2 = σ1β1

> 0 if σ2β2 > σ1β1.

(3.23)

Case (i) σ2β2 < σ1β1, i.e., β2
β1
< σ1

σ2
: We first claim that q(w) < 0 for all β2

β1
< w < σ1

σ2
. Consider

w =
β2
β1

+ δ, with δ > 0 satisfying β2
β1
< w =

β2+δβ1
β1

< σ1
σ2

. Hence, σ2(β2 + δβ1) < σ1β1. From (3.18), we
obtain

q(w =
β2 + δβ1

β1
) = −

δ

β1
[σ2(β2 + δβ1)2 − σ1β

2
1]

−
1
β2

1

{(σ1 + σ2)(β2 + δβ1)[σ1β1 − σ2(β2 + δβ1)]}

< 0,

by σ2β
2
2 − σ1β

2
1 > 0 from condition (P), and σ1β1 > σ2(β2 + δβ1).

Next, we will show that f ′(σ1
σ2

) < 0 and f ′(β2
β1

) > 0. From (3.20) and (3.21), at w = σ1
σ2

, a direct
calculation yields

q′(w)(w − 1)(w2 + 1) − q(w)(3w2 − 2w + 1)

=
σ1(σ1 − σ2)

σ2
2

{
σ2

1

σ2
2

[−σ2β2 + σ2β1 + σ2(σ1 + σ2)] + [−σ1β1 + σ2β1 + σ2(σ1 + σ2)]
}

+
σ1(σ1 − σ2)

σ2
2

(
2
σ1

σ2
+ 1

)
(σ2β2 − σ1β1)

<
σ1(σ1 − σ2)

σ2
2

[
−σ2

(
σ2

1

σ2
2

+ 1
)

(β2 − β1 − σ1 − σ2) −
(
2
σ1

σ2
+ 1

)
(σ1β1 − σ2β2)

]
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< 0,

because of β2 − β1 ≥ σ1 + σ2. Thus, f ′(σ1
σ2

) < 0 by (3.20) and (w − 1)2(w2 + 1)2 > 0. Similarly, from
(3.20) and (3.21), at w =

β2
β1

, we have

q′(w)(w − 1)(w2 + 1) − q(w)(3w2 − 2w + 1)

=
1
β4

1

[(σ1 + σ2)(σ1β1 − σ2β2)(2β3
2 + β3

1 − β1β
2
2)]

+
1
β4

1

{(β2 − β1)(β2
1 + β2

2)[−σ2β
2
2 + σ1β

2
1 + σ2β2(σ1 + σ2)]}

>
1
β4

1

[(σ1 + σ2)(σ1β1 − σ2β2)(β3
2 + 2β3

1 − β
2
1β2)]

> 0,

due to condition (P), i.e., σ2β
2
2 < σ1β1(β1 + σ1 + σ2) in (2.1). Thus, f ′(β2

β1
) > 0 by (3.20) and (w −

1)2(w2 + 1)2 > 0.
Consequently, by (3.19) and concavity of g(d), we conclude f (w) < 0 for all 1 < w = ū2

ū1
< α2

α2
, i.e.,

g(d) < 0 for all d > 0, i.e., λ+ > 0 for all d > 0.
Case (ii) σ2β2 > σ1β1, i.e., β2

β1
> σ1

σ2
: We claim that q(w) > 0 for all β2

β1
> w > σ1

σ2
. Consider

w = σ1
σ2

+ δ, with δ > 0 satisfying β2
β1
> w = σ1+δσ2

σ2
> σ1

σ2
. Hence, σ2β2 > (σ1 + δσ2)β1. From (3.18), we

compute

q(w =
σ1 + δσ2

σ2
) = δ(σ1 + σ2)(σ1 + δσ2)

+
1
σ2

2

[(σ1 + δσ2)2 − σ1σ2][σ2β2 − (σ1 + δσ2)β1]

> 0,

owing to σ1 > σ2 and σ2β2 > (σ1 + δσ2)β1. Combining (3.22) with (3.23), we have q(w) > 0 for all
β2
β1
≥ w ≥ σ1

σ2
. That is, g(d) > 0 if d3 ≤ d ≤ d1, by Proposition 3.2. Recall the relationship between d

and w(d) =
ū2(d)
ū1(d) in Proposition 3.2. We will use the relationship to estimate d̄1 and d̄2. For ū2

ū1
> β2

β1
, we

have d < d3 by Proposition 3.2, and then

g(d) > d
(
σ2β

2
2 − σ1β

2
1

β1β2

)
− σ1σ2 ≥ 0 if d ≥ d4.

Thus, g(d) > 0 if d4 ≤ d < d3. According to (3.12), (3.13), and Proposition 3.2, we obtain
g(d) < 0 if d ≤ σ1σ2α1α2

σ2α
2
2−σ1α

2
1

g(d) > 0 if d4 =
σ1σ2β1β2

σ2β
2
2−σ1β

2
1
≤ d ≤ σ1σ2(σ2

1+σ2
2+σ2β2−σ1β1)

(σ1−σ2)(σ2
1+σ2

2) = d1

g(d) < 0 if d ≥
√
σ1σ2(

√
σ2α2−

√
σ1α1)

(σ1+σ2)(
√
σ1−
√
σ2) = d5.

In addition, we recall Lemma 2.1(ii): 0 < σ1σ2α1α2
σ2α

2
2−σ1α

2
1
< σ1σ2β1β2

σ2β
2
2−σ1β

2
1

= d4 . Accordingly, there exist

d̄1, d̄2 > 0 such that λ+ = 0 for d = d̄1, d̄2 and{
λ+ > 0 if d < d̄1 or d > d̄2

λ+ < 0 if d̄1 < d < d̄2
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where

σ1σ2α1α2

σ2α
2
2 − σ1α

2
1

< d̄1 <
σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

= d4

d1 =
σ1σ2(σ2

1 + σ2
2 + σ2β2 − σ1β1)

(σ1 − σ2)(σ2
1 + σ2

2)
< d̄2 <

√
σ1σ2(

√
σ2α2 −

√
σ1α1)

(σ1 + σ2)(
√
σ1 −

√
σ2)

= d5.

By a direct computation, it can be seen that
√
σ1σ2(

√
σ2α2 −

√
σ1α1)

(σ1 + σ2)(
√
σ1 −

√
σ2)

<
σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(α2 − α1).

Thus, for consistency with the ranges in the assertion of Theorem 2.1, we also write

σ1σ2α1α2

σ2α
2
2 − σ1α

2
1

< d̄1 <
σ1σ2β1β2

σ2β
2
2 − σ1β

2
1

σ1σ2

σ1 − σ2
< d̄2 <

σ1
√
σ1σ2 + σ1σ2

σ2
1 − σ

2
2

(α2 − α1).

This completes the proof. �

Remark 3. Assume that conditions (C) and (P) hold. Under σ2β2 = σ1β1 and β2 − β1 = σ1 + σ1, we
do have g(d1 = d2 = d3 = d4) = 0 and g′(d1 = d2 = d3 = d4) = 0, by Proposition 3.2(V)(iii) and the
proof of Theorem 3.3, and hence d̄1 = d̄2.

Next, let us focus on the boundary equilibrium (0, 0, v̄1, v̄2). We shall discuss the stability of
(0, 0, v̄1, v̄2) through analyzing the eigenvalues of the following submatrices in (3.7):[

α1 − v̄1 − d d
d α2 − v̄2 − d

]
and

[
β1 − 2v̄1 − d d

d β2 − 2v̄2 − d

]
. (3.24)

Theorem 3.4. Consider system (1.3) under condition (C). There exists a d̄3 > 0 so that the boundary
equilibrium (0, 0, v̄1, v̄2) is unstable if d < d̄3 and asymptotically stable if d > d̄3. In addition,

σ1σ2

σ1 − σ2
< d̄3 <

σ1

σ1 − σ2
(α2 − α1).

Proof. Under condition (C), it can be shown that the two eigenvalues of the second matrix in (3.24) are
negative, by Gerschgorin’s Theorem and Proposition A.4 in Appendix II. The stability of (0, 0, v̄1, v̄2)
is thus determined by the two eigenvalues, denoted by λ∓, of the first matrix in (3.24). By a direct
calculation, these two eigenvalues are

λ∓ :=
1
2

[
(α1 − v̄1 + α2 − v̄2 − 2d) ∓

√
(α1 − v̄1 − α2 + v̄2)2 + 4d2

]
.

From Proposition A.4, we have

α1 − v̄1 + α2 − v̄2 − 2d = (β1 − v̄1 + β2 − v̄2) − (σ1 − σ2) − 2d < 0,
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and thus λ− < 0 for all d > 0. Next, let us identify the sign of λ+ = λ+(d). Note that λ+(d) ≥ 0 if and
only if

| α1 − v̄1 + α2 − v̄2 − 2d |≤
√

(α1 − v̄1 − α2 + v̄2)2 + 4d2

⇔ (α1 − v̄1)(α2 − v̄2) − d(α1 − v̄1 + α2 − v̄2) ≤ 0. (3.25)

By α1 = β1 − σ1, α2 = β2 + σ2, (3.5), and Proposition A.4, (3.25) is equivalent to[
d
(
1 −

v̄2

v̄1

)
− σ1

] [
d
(
1 −

v̄1

v̄2

)
+ σ2

]
− d2

[
2 −

(
v̄2

v̄1
+

v̄1

v̄2

)]
+ d(σ1 − σ2) ≤ 0.

This inequality can be simplified to

d
(
σ1

v̄1

v̄2
− σ2

v̄2

v̄1

)
− σ1σ2 ≤ 0. (3.26)

Now, we define

h(d) := d
(
σ1

v̄1

v̄2
(d) − σ2

v̄2

v̄1
(d)

)
− σ1σ2. (3.27)

Then λ+(d) ≥ 0 if and only if h(d) ≤ 0. By Propositions A.4 and A.6, we have 1 < v̄2
v̄1

(d) < β2
β1

and v̄2
v̄1

(d)
decreases from β2

β1
to 1, as d increases from 0 to∞. Hence, h(0) = −σ1σ2 < 0 and h(d)→ ∞ as d → ∞

due to σ1 > σ2.
A direct calculation yields

h′(d) =

(
σ1

v̄1

v̄2
(d) − σ2

v̄2

v̄1
(d)

)
+ d

[
σ1(

v̄1

v̄2
)′(d) − σ2(

v̄2

v̄1
)′(d)

]
. (3.28)

Notably, σ1( v̄1
v̄2

)′ − σ2( v̄2
v̄1

)′ > 0 for all d > 0, σ1
v̄1
v̄2
− σ2

v̄2
v̄1

= −
σ2β

2
2−σ1β

2
1

β1β2
if d = 0, and σ1

v̄1
v̄2
− σ2

v̄2
v̄1
→

σ1 − σ2 > 0 as d → ∞; namely, σ1
v̄1
v̄2
− σ2

v̄2
v̄1

increases from −σ2β
2
2−σ1β

2
1

β1β2
to σ1 − σ2 as d increases from

0 to∞. Moreover, from (3.5), the equations for v̄i, we have d
(

v̄2
v̄1

)′
= 1 − v̄2

v̄1
+ v̄′1

d
(

v̄1
v̄2

)′
= 1 − v̄1

v̄2
+ v̄′2.

(3.29)

With (3.28) and (3.29), we obtain

h′(d) = (σ1 − σ2) + σ1v̄′2 − σ2v̄′1, (3.30)

and then
h′′(d) = σ1v̄′′2 − σ2v̄′′1 > 0,

by Proposition 3.1. Thus, the graph of h(d) is concave upward. Therefore, from the above discussions,
there is a unique d̄3 > 0 such that 

h(d) < 0 if d < d̄3

h(d) = 0 if d = d̄3

h(d) > 0 if d > d̄3
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Figure 4. The graph of h(d), regarding the sign of λ+ in Theorem 3.4.

and accordingly, 
λ+(d) > 0 if d < d̄3

λ+(d) = 0 if d = d̄3

λ+(d) < 0 if d > d̄3.

(3.31)

The graph of h(d) is illustrated in Figure 4.
Now, we estimate the range for the values of d̄3. Function h in (3.27) can be expressed by

h(d) = σ2(β1 − v̄1) − σ1(β2 − v̄2) + d(σ1 − σ2) − σ1σ2, (3.32)

via (3.5). Thus, inequality (3.26) is equivalent to

σ2(β1 − v̄1) − σ1(β2 − v̄2) + d(σ1 − σ2) − σ1σ2 ≤ 0. (3.33)

According to Proposition A.4(i), we have

−σ1(β2 − β1) < σ2(β1 − v̄1) − σ1(β2 − v̄2) < 0.

Then,

h
(
σ1σ2

σ1 − σ2

)
< σ1σ2 − σ1σ2 = 0,

and

h
(

σ1

σ1 − σ2
(α2 − α1)

)
> −σ1(β2 − β1) + σ1(α2 − α1) − σ1σ2

= −σ1(β2 − β1) + σ1(β2 − β1 + σ1 + σ2) − σ1σ2

= σ2
1 > 0.

Consequently, (3.31) holds with
σ1σ2

σ1 − σ2
< d̄3 <

σ1

σ1 − σ2
(α2 − α1).

This completes the proof. �

Mathematical Biosciences and Engineering Volume 16, Issue 2, 909–946



936

4. Coexistence of two species and extinction of one species

Let us summarize the main results in Sections 2 and 3:
(i) Under σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2, the positive equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) exists if d < d∗3

(Theorem 2.1); the semitrivial equilibrium (ū1, ū2, 0, 0) is unstable for all d > 0 (Theorem 3.3) and the
semitrivial equilibrium (0, 0, v̄1, v̄2) is unstable if d < d̄3 and asymptotically stable if d > d̄3 (Theorem
3.4). Besides, the estimated range of d∗3 in Theorem 2.1 coincides with the one of d̄3 in Theorem 3.4.
(ii) Under σ2β2 > σ1β1, the positive equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) exists if d < d∗1 or d∗2 < d < d∗3 (Theorem

2.1); the semitrivial equilibrium (ū1, ū2, 0, 0) is unstable if d < d̄1 or d > d̄2, and asymptotically stable
if d̄1 < d < d̄2 (Theorem 3.3); the semitrivial equilibrium (0, 0, v̄1, v̄2) is unstable if d < d̄3 and
asymptotically stable if d > d̄3 (Theorem 3.4). In addition, the estimated ranges of d∗1 and d∗2 in
Theorem 2.1 respectively coincide with those of d̄1 and d̄2 in Theorem 3.3.

In fact, the following theorem reveals that these critical values of d are consistent in determining the
existence of the positive equilibrium and the stability of semitrivial equilibria, namely, d∗1 = d̄1, d∗2 = d̄2

and d∗3 = d̄3. Such interesting consistency makes precise the global dynamics of this competitive
species model (1.3), under the framework of monotone dynamics. Let us elaborate.

Theorem 4.1. d∗1 = d̄1, d∗2 = d̄2 and d∗3 = d̄3.

Proof. From (3.26), we see that h(d) = 0 if and only if

d
(
σ1

v̄1

v̄2
(d) − σ2

v̄2

v̄1
(d)

)
= σ1σ2.

That is, d̄3 satisfies

d̄3

(
σ1

v̄1

v̄2
(d̄3) − σ2

v̄2

v̄1
(d̄3)

)
= σ1σ2.

Let b̄ := v̄2
v̄1

(d̄3), then

d̄3

(
σ1

1
b̄
− σ2b̄

)
= σ1σ2.

Thus,

b̄ =
−σ1 +

√
σ2

1 + 4kd̄2
3

2d̄3
, (4.1)

where k = σ1
σ2

. Recall the definition of b in (2.7). From Remark 2(I), we see that (u∗1, u
∗
2, v
∗
1, v
∗
2) →

(0, 0, v̄1, v̄2), as d → (d∗3)−. Therefore, recalling (2.10), we obtain

−σ1 +

√
σ2

1 + 4k(d∗3) 2

2d∗3
= lim

d→(d∗3)−
b(d) = lim

d→(d∗3)−

v∗2
v∗1

(d) =
v̄2

v̄1
(d∗3).

Noting that b = b(d) in (2.10) is monotone in d (shown in (2.18)), with (4.1), we thus conclude that
d∗3 = d̄3.
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If σ2β2 > σ1β1, from (3.11), we have g(d̄1) = 0 and g(d̄2) = 0. Let ā1 := ū2
ū1

(d̄1), ā2 := ū2
ū1

(d̄2). Then

ā1 =
σ1 +

√
σ2

1 + 4kd̄2
1

2d̄1
, ā2 =

σ1 +

√
σ2

1 + 4kd̄2
2

2d̄2
. (4.2)

It follows from Remark 2(I) that (u∗1, u
∗
2, v
∗
1, v
∗
2) → (ū1, ū2, 0, 0), as d → (d∗1)−. Notice that a = a(d) in

(2.10) is monotone in d, shown in (2.25). Therefore, recalling (2.10), we have

σ1 +

√
σ2

1 + 4k(d∗1) 2

2d∗1
= lim

d→(d∗1)−
a(d) = lim

d→(d∗1)−

u∗2
u∗1

(d) =
ū2

ū1
(d∗1).

With (4.2), we thus conclude that d∗1 = d̄1. In addition, by Remark 2(I), we see that (ū1, ū2, 0, 0) →
(u∗1, u

∗
2, v
∗
1, v
∗
2) as d → (d∗2)+. Consequently,

lim
d→(d∗2)+

ā2(d) = lim
d→(d∗2)+

ū2

ū1
(d) =

u∗2
u∗1

(d∗2) =
σ1 +

√
σ2

1 + 4k(d∗2)2

2d∗2
.

With (4.2), we conclude that d∗2 = d̄2. This completes the proof. �

Combining the discussions in Sections 2 and 3 with the assertion in Theorem 4.1, we conclude that
for system (1.3), either there exists a positive equilibrium representing the coexistence of two species
or one species drives the other to extinction, depending on the magnitude of the dispersal rate d.

Theorem 4.2. Consider system (1.3) under conditions (C), and (P).
(I) Assume that σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2 hold.
(i) If d < d∗3, then the positive equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) is stable, and

limt→∞(u1(t), u2(t), v1(t), v2(t)) = (u∗1, u
∗
2, v
∗
1, v
∗
2), for all (u1(0), u2(0), v1(0), v2(0)) ∈ R4

+ with u1(0) +

u2(0) > 0 and v1(0) + v2(0) > 0.
(ii) If d ≥ d∗3, then limt→∞(u1(t), u2(t), v1(t), v2(t)) = (0, 0, v̄1, v̄2), for all (u1(0), u2(0), v1(0), v2(0)) ∈ R4

+

with v1(0) + v2(0) > 0.
(II) Assume that σ2β2 > σ1β1 holds.
(i) If d < d∗1 or d∗2 < d < d∗3, then the positive equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) is stable, and limt→∞(u1(t), u2(t),

v1(t), v2(t)) = (u∗1, u
∗
2, v
∗
1, v
∗
2), for all (u1(0), u2(0), v1(0), v2(0)) ∈ R4

+ with u1(0) + u2(0) > 0 and v1(0) +

v2(0) > 0.
(ii) If d∗1 ≤ d ≤ d∗2, then limt→∞(u1(t), u2(t), v1(t), v2(t)) = (ū1, ū2, 0, 0), for all (u1(0), u2(0),
v1(0), v2(0)) ∈ R4

+ with u1(0) + u2(0) > 0.
(iii) If d ≥ d∗3, then limt→∞(u1(t), u2(t), v1(t), v2(t)) = (0, 0, v̄1, v̄2), for all (u1(0), u2(0), v1(0), v2(0)) ∈ R4

+

with v1(0) + v2(0) > 0.

Proof. The assertions are based on the monotone dynamics theory which is reviewed in Appendix I.
(I) Assume that σ2β2 < σ1β1 and β2 − β1 ≥ σ1 + σ2 hold. (i) If d < d∗3, then the positive equilib-
rium (u∗1, u

∗
2, v
∗
1, v
∗
2) is unique, by Theorem 2.1, the semitrivial equilibrium (ū1, ū2, 0, 0) is unstable, by

Theorem 3.3, and the semitrivial equilibrium (0, 0, v̄1, v̄2) is unstable, by Theorem 3.4. Therefore, the
assertion follows from Theorem A.1. (ii) If d > d∗3, then case (a) of the trichotomy in Theorem A.2
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does not hold, since the positive steady state does not exist, by Theorem 2.1; case (b) does not hold
since (ū1, ū2, 0, 0) is unstable, by Theorem 3.3, and (0, 0, v̄1, v̄2) is asymptotically stable, by Theorem
3.4. Therefore, the assertion follows from case (c) of Theorem A.2.

(II) Assume that σ2β2 > σ1β1. (i) If d < d∗1 or d∗2 < d < d∗3, the argument is similar to the one
in (I)(i). (ii) If d∗1 < d < d∗2, then case (a) of the trichotomy in Theorem A.2 does not hold, since
the positive equilibrium does not exist, by Theorem 2.1; case (c) does not hold since (0, 0, v̄1, v̄2) is
unstable, by Theorem 3.4, and (ū1, ū2, 0, 0) is asymptotically stable, by Theorem 3.3. Therefore, the
assertion follows from case (b) of Theorem A.2. (iii) If d > d∗3, the argument is similar to the one in
(I)(ii). This completes the proof. �

Remark 4. That the equilibrium (0, 0, v̄1, v̄2) is globally asymptotically stable for d > d∗3 now follows
from Theorem 4.2. In fact it also holds true for d = d∗3. In this case, the stability for (0, 0, v̄1, v̄2)
can be concluded by some comparison argument. In addition, there is no positive equilibrium and the
equilibrium (ū1, ū2, 0, 0) is unstable in both cases (I) and (II), by Theorem 2.1 and Theorem 3.3. Hence
the trichotomy in Theorem A.2 implies the global convergence to (0, 0, v̄1, v̄2). Similarly, we see that
the equilibrium (ū1, ū2, 0, 0) is globally asymptotically stable for d = d∗1 or d∗2.

5. Numerical illustrations

We arrange two examples to illustrate the global dynamics of system (1.3), and the bifurcation
with respect to the dispersal rate d, which are concluded in Theorem 4.2. We also present two more
examples to demonstrate that the established scenarios still hold without satisfying condition (P).

Example 1. Consider system (1.3) with α1 = 1, α2 = 3, β1 = 1.5 and β2 = 2.8, i.e., σ1 = 0.5 and
σ2 = 0.2. Let us examine the conditions in Theorem 4.2(I): condition (C): α1 = 1 < β1 = 1.5 <

β2 = 2.8 < α2 = 3 with σ2 = 0.2 < σ1 = 0.5; condition (P): σ2β2
σ1+σ2

= 0.8 < σ1σ2β1β2

σ2β
2
2−σ1β

2
1

= 0.948;
σ2β2 = 0.56 < σ1β1 = 0.75, and β2 − β1 = 1.3 ≥ σ1 + σ2 = 0.7. We depict in Figure 5 the bifurcation
diagram with respect to the dispersal rate d. It appears that d∗3 � 1.22, which is consistent with
Theorems 2.1(i) and 4.2(I): σ1σ2

σ1−σ2
= 0.333 < d∗3 <

σ1
σ1−σ2

(α2 − α1) = 3.33. The globally stable positive
equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) exists for d < d∗3 and collides with the semitrivial equilibrium (0, 0, v̄1, v̄2) at

d = d∗3. For d ≥ d∗3, the semitrivial equilibrium (0, 0, v̄1, v̄2) becomes globally attractive.

Example 2. Consider system (1.3) with α1 = 1, α2 = 3, β1 = 1.7 and β2 = 2.5, i.e., σ1 = 0.7 and
σ2 = 0.5. Let us examine the conditions in Theorem 4.2(II): condition (C): α1 = 1 < β1 = 1.7 <

β2 = 2.5 < α2 = 3 with σ2 = 0.5 < σ1 = 0.7; condition (P): σ2β2
σ1+σ2

= 1.042 < σ1σ2β1β2

σ2β
2
2−σ1β

2
1

= 1.35;
σ2β2 = 1.25 > σ1β1 = 1.19. The bifurcation diagram with respect to the dispersal rate d is depicted in
Figure 6. It appears that d∗1 � 0.91, d∗2 � 1.92, d∗3 � 4.15, which are consistent with Theorem 2.1(ii) and
4.2(II): σ1σ2α1α2

σ2α
2
2−σ1α

2
1

= 0.276 < d∗1 <
σ1σ2β1β2

σ2β
2
2−σ1β

2
1

= 1.35, σ1σ2
σ1−σ2

= 1.75 < d∗2 <
σ1
√
σ1σ2+σ1σ2

σ2
1−σ

2
2

(α2 − α1) = 6.36,
and σ1σ2

σ1−σ2
= 1.75 < d∗3 <

σ1
σ1−σ2

(α2 − α1) = 7. The globally stable positive equilibrium (u∗1, u
∗
2, v
∗
1, v
∗
2)

exists for d < d∗1 and collides with the semitrivial equilibrium (ū1, ū2, 0, 0) at d = d∗1. For d∗1 ≤ d ≤ d∗2,
the equilibrium (ū1, ū2, 0, 0) becomes globally attractive and for d∗2 < d < d∗3, the globally stable
positive equilibrium (u∗1, u

∗
2, v
∗
1, v
∗
2) exists. For d ≥ d∗3, the semitrivial equilibrium (0, 0, v̄1, v̄2) becomes

globally attractive.
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Figure 5. Bifurcation diagram, with respect to d, for the equilibria of system (1.3) with
α1 = 1, α2 = 3, β1 = 1.5, β2 = 2.8, σ1 = 0.5 and σ2 = 0.2, where σ2β2 < σ1β1.

Example 3. Consider system (1.3) with α1 = 1, α2 = 3, β1 = 1.4 and β2 = 2.85, i.e., σ1 = 0.4 and
σ2 = 0.15. For such parameter values, condition (C) holds: α1 = 1 < β1 = 1.4 < β2 = 2.85 < α2 = 3
with σ2 = 0.15 < σ1 = 0.4. In addition, σ2β2 = 0.4275 < σ1β1 = 0.56. Such parameter values violate
condition (P), as σ2β2

σ1+σ2
= 0.777 > σ1σ2β1β2

σ2β
2
2−σ1β

2
1

= 0.551. Nevertheless, the same dynamical scenario as
Example 1 takes place, as seen in Figure 7.

Example 4. Consider system (1.3) with α1 = 1, α2 = 3, β1 = 1.35 and β2 = 2.8, i.e., σ1 = 0.35 and
σ2 = 0.2. With such parameter values, condition (C) holds: α1 = 1 < β1 = 1.35 < β2 = 2.8 < α2 = 3
with σ2 = 0.2 < σ1 = 0.35; σ2β2 = 0.56 > σ1β1 = 0.4725. These parameter values violate condition
(P), as σ2β2

σ1+σ2
= 1.0182 > σ1σ2β1β2

σ2β
2
2−σ1β

2
1

= 0.2845. Nevertheless, the dynamical scenario shown in Figure 8
remains identical to Example 2.

6. Discussions and conclusions

We have exhibited the global dynamics for a model on two-species competition in a two-patch
environment, under certain conditions. The main condition (C): α1 < β1 < β2 < α2, (β1 + β2) − (α1 +

α2) = σ1 −σ2 > 0, indicates that the birth rate of u-species in the second patch is the largest among all
birth rates of two species on two patches, yet the average birth rate of v-species is larger than u-species.
This means that the birth rate for v-species is larger than u-species in the first patch. The present
investigation exploited analytically two dynamical scenarios for such competition, as demonstrated in
Examples 1 and 2, respectively. The first scenario takes place under σ2β2 < σ1β1. As expressed by
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Figure 6. Bifurcation diagram, with respect to d, for the equilibria of system (1.3) with
α1 = 1, α2 = 3, β1 = 1.7, β2 = 2.5, σ1 = 0.7 and σ2 = 0.5, where σ2β2 > σ1β1.

σ1
σ2
> β2

β1
> 1, it indicates that the value of σ1 is larger than the value of σ2 in a way that its ratio exceeds

the ratio of β2 over β1. This includes the situation that σ1 is much bigger than σ2, which is denoted
by (β1 + β2) � (α1 + α2). The second scenario comes about under σ2β2 > σ1β1. On the contrary,
as expressed by 1 < σ1

σ2
< β2

β1
, it indicates that the value of σ1 may be merely a little over the value

of σ2, depending on the ratio of β2 over β1. In this case, the average birth rate of v-species may be
merely a little more than and close to the average birth rate of u-species; we denote this situation by
(β1 + β2) ≈ (α1 + α2).

In the first case, including the sense (β1 + β2) � (α1 + α2), coexistence of two species occurs for
dispersal rate d < d∗3, and (0, 0, v̄1, v̄2) is globally attractive for d ≥ d∗3, where d∗3 has been estimated
by system parameters. In this situation, (ū1, ū2, 0, 0) is unstable for any d > 0 and an eigenvalue of
the linearized system at (0, 0, v̄1, v̄2) changes from positive to negative as d, being increasing from 0,
exceeds d∗3, and (0, 0, v̄1, v̄2) becomes stable for d ≥ d∗3.

In the second case, including the sense (β1 + β2) ≈ (α1 + α2), the coexistence of two species takes
place for d < d∗1 or d∗2 < d < d∗3, (ū1, ū2, 0, 0) is globally attractive for d∗1 ≤ d ≤ d∗2, and (0, 0, v̄1, v̄2)
becomes globally attractive for d ≥ d∗3, where d∗1, d

∗
2, d

∗
3 have been estimated. An eigenvalue of the

linearized system at (ū1, ū2, 0, 0) changes from positive to negative at d∗1, and then back to positive at
d∗2. In addition, an eigenvalue of the linearized system at (0, 0, v̄1, v̄2) changes from positive to negative
at d∗3, and d∗2 < d∗3.

Our analytical investigation on this model strongly suggests that, in high-dispersal situations, one
species will prevail if its average birth rate is larger than the other competing species, whereas in low-
dispersal situations, the two species can coexist or one species that has the greatest birth rate in one
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Figure 7. Bifurcation diagram, with respect to d, for the equilibria of system (1.3) with
α1 = 1, α2 = 3, β1 = 1.4, β2 = 2.85, σ1 = 0.4 and σ2 = 0.15, where σ2β2 < σ1β1.

patch among all species and patches will be able to persist and drive the other species to extinction,
even though its average birth rate is lower. Such findings may illuminate some insights into how species
learn to compete and point out the evolution directions.

Condition (C) is a basic assumption for the present results. Although there are additional conditions
(P) and β2 − β1 ≥ σ1 + σ2, due to mathematical technicality, it is believed that such scenarios remain
true under condition (C) only. However, it is very difficult to remove these additional conditions,
as the algebraic operations involving five parameters are rather involved. In Examples 3, 4, we have
demonstrated exactly the same dynamical scenarios for parameter values which do not satisfy condition
(P).

To compare our results with those in [19], we set σ1 = ξσ2, ξ > 1, according to condition (C).
The resource difference between two species can be depicted as (σ1,−σ2) among two patches, where
β1 − α1 = σ1 > 0 means that v-species has an advantage over v-species in competing the resource
in patch-1, while β2 − α2 = −σ2 < 0 means that it is disadvantageous for v-species to compete with
u-species for the resource in patch-2. We rewrite it as σ2(ξ,−1) with fixed ξ > 1, and now the value of
σ2 measures the difference between two species and resembles the value of τ in [19]. We accordingly
rewrite the conditions in Theorem 4.2 to explore how the magnitude of resource difference affects the
invasion of mutant species:

(P)⇔ σ2 > σ
∗
2 :=

β2
2 − ξβ

2
1

ξ(ξ + 1)β1
,
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Figure 8. Bifurcation diagram, with respect to d, for the equilibria of system (1.3) with
α1 = 1, α2 = 3, β1 = 1.35, β2 = 2.8, σ1 = 0.35 and σ2 = 0.2, where σ2β2 > σ1β1.

β2 − β1 ≥ (<) σ1 + σ2 ⇔ σ2 ≤ (>) σ∗∗2 :=
β2 − β1

ξ + 1
,

σ2β2 < (>) σ1β1 ⇔ ξ > (<)
β2

β1
.

Note that the criteria in Theorem 4.2(II) imply β2−β1 < σ1 +σ2. Therefore, by increasing the dispersal
rate d, the global convergence of system (1.1) switches in case (I) of Theorem 4.2 from the coexistence
to extinction of u-species when σ∗2 < σ2 ≤ σ∗∗2 and ξ > β2

β1
; on the other hand, in case (II), the

dynamics switches three times from global convergence to the coexistence to extinction of (mutant)
v-species, again to the coexistence and then the persistence of v-species, when σ2 > σ∗∗2 and ξ < β2

β1
.

This result enhances the understanding on the dynamics of competitive species from the viewpoint
of patchy habitat in the following aspects: Compared to concluding global convergence under small
magnitude of spatial heterogeneity (τ) in [19, Theorem 1.2], our result in Theorem 4.2 admits a large
range of magnitudes (σ2) depicting spatial heterogeneity. The multiple stability switches in Theorem
4.2 are global dynamics, as compared to local dynamics in [19, Theorem 1.1].
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Appendix I. Monotone dynamics theory
For reader’s convenience, we review some theory on monotone dynamical systems from [17] and [28].
Denote by Rn

+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n} the first octant of Rn. For x, y ∈ Rn
+, define

the following order: x ≤m y if y − x ∈ Km, and x �m y whenever y − x ∈ IntKm, where

Km = {x ∈ Rn : xi ≥ 0, 1 ≤ i ≤ k, and x j ≤ 0, k + 1 ≤ j ≤ n} = Rk
+ × (−Rn−k

+ ).

If x ≤m y, we define [x, y]m = {z ∈ Rn
+ : x ≤m z ≤m y} and (x, y)m = {z ∈ Rn

+ : x �m z �m y}.
A semiflow φ is said to be of type-K monotone with respect to Km, provided

φt(x) ≤m φt(y) whenever x ≤m y, t ≥ 0.
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A system of ODEs ẋ = f(x) is called a type-K monotone system with respect to Km if the Jacobian
matrix of f takes the form [

A1 −A2

−A3 A4

]
,

where A1 is an k × k matrix, A4 an (n − k) × (n − k) matrix, A2 an k × (n − k) matrix, A3 an (n − k) × k
matrix, every off-diagonal entry of A1 and A4 is nonnegative, and A2 and A3 are nonnegative matrices,
for some k with 1 ≤ k ≤ n. It was shown in [27] that the flow φt(x) generated by the type-K monotone
system is type-K monotone with respect to the cone Km, i.e., if x, y ∈ Rn

+ with xi ≤ yi for 1 ≤ i ≤ k and
x j ≥ y j for k + 1 ≤ j ≤ n, then for any t > 0, (φt(x))i ≤ (φt(y))i for 1 ≤ i ≤ k and (φt(x)) j ≥ (φt(y)) j for
k + 1 ≤ j ≤ n.

System (1.3) is a type-K monotone system with respect to

Km = {(u1, u2, v1, v2) : ui ≥ 0, vi ≤ 0, i = 1, 2},

since its Jacobian matrix is
α1 − 2u1 − v1 − d d −u1 0

d α2 − 2u2 − v2 − d 0 −u2

−v1 0 β1 − 2v1 − u1 − d d
0 −v2 d β2 − 2v2 − u2 − d

 .
For system (1.3), let us denote by e0 := (0, 0, 0, 0) the trivial equilibrium, by eū := (ū1, ū2, 0, 0),
and ev̄ := (0, 0, v̄1, v̄2), ūi, v̄i > 0, i = 1, 2, the semitrivial equilibria. If (u1, u2, v1, v2) ∈ R4

+, then
(0, 0, v1, v2) ≤m (u1, u2, v1, v2) ≤m (u1, u2, 0, 0), and therefore,

φt((0, 0, v1, v2)) ≤m φt((u1, u2, v1, v2)) ≤m φt((u1, u2, 0, 0)),

for all t ≥ 0. Since φt((0, 0, v1, v2)) → ev̄ and φt((u1, u2, 0, 0)) → eū as t → ∞, for (u1, u2, v1, v2) ∈ R4
+,

and u1 + u2 > 0, v1 + v2 > 0, it follows that all points in R4
+ are attracted to the set

Γ := [0, ū1] × [0, ū2] × [0, v̄1] × [0, v̄2] = [ev̄, eū]m = {w ∈ R4
+ : ev̄ ≤m w ≤m eū}.

If w = (u1, u2, v1, v2) with u1, u2, v1, v2 > 0, then φt(w) � 0 for t > 0. Define E and E+ the sets of all
nonnegative equilibria and all positive equilibria for φt, respectively. Obviously, [ev̄, eū]m contains E
and e∗ ∈ (ev̄, eū)m for any e∗ ∈ E+. The following theorem restates Corollary 4.4.3 in [28] for system
(1.3), see also [27, 31].

Theorem A.1. If eū and ev̄ are both linearly unstable, then system (1.3) is permanent. More precisely,
there exist positive equilibria e∗ and e∗∗, not necessarily distinct, satisfying

ev̄ �m e∗∗ ≤m e∗ �m eū.

The order interval
[e∗∗, e∗]m := {w : e∗∗ ≤m w ≤m e∗}

attracts all solutions evolved from w = (u1, u2, v1, v2) ∈ R4
+, with u1 + u2 > 0 and v1 + v2 > 0. In

particular, if e∗∗ = e∗, then e∗ attracts all such solutions.
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It was shown in [17] that, for models of two competing species, either there is a positive equilibrium
representing coexistence of two species, or one species drives the other to extinction. Note that system
(1.3) satisfies conditions (H1)-(H4) in [17], and thus Theorem B in [17] can be restated as follows.

Theorem A.2. Consider system (1.3). The ω-limit set of every orbit evolved from a point in R4
+ is

contained in Γ and exactly one of the following holds:
(a) There exists a positive equilibrium e∗ of in Γ.
(b) φt(w)→ eū as t → ∞, for every w = (u1, u2, v1, v2) ∈ Γ with u1 + u2 > 0.
(c) φt(w)→ ev̄ as t → ∞, for every w = (u1, u2, v1, v2) ∈ Γ with v1 + v2 > 0.
In addition, if (b) or (c) holds, then either φt(w)→ eū or φt(w)→ ev̄, as t → ∞, for w = (u1, u2, v1, v2) ∈
R4

+ \ Γ.

Appendix II.
We recall some qualitative properties of the semitrivial equilibria for system (1.3) in [24]. The follow-
ing results are independent of the order between σ1 and σ2.
Proposition A.3 (Proposition 3.7 [24]). If α1 < α2, the following hold for all d > 0.
(i) α1 < ū1 < ū2 < α2.
(ii) (α1 − ū1) − (α2 − ū2) =

d(ū2
1−ū2

2)
ū1ū2

< 0, (α1 − ū1) + (α2 − ū2) = d
[
2 −

(
ū2
ū1

+ ū1
ū2

)]
< 0.

(iii) α1 < ū1 <
α1+α2

2 < ū2 < α2.
Proposition A.4 (Proposition 3.8 [24]). If β1 < β2, the following hold for all d > 0.
(i) β1 < v̄1 < v̄2 < β2.
(ii) (β1 − v̄1) − (β2 − v̄2) =

d(v̄2
1−v̄2

2)
v̄1v̄2

< 0, (β1 − v̄1) + (β2 − v̄2) = d
[
2 −

(
v̄2
v̄1

+ v̄1
v̄2

)]
< 0.

(iii) β1 < v̄1 <
β1+β2

2 < v̄2 < β2.
Proposition A.5 (Proposition 3.9 [24]). If α1 < α2, the following hold:
(i) ū1, ū2 →

α1+α2
2 as d → ∞.

(ii) d is strictly decreasing with respect to ū2 on (α1+α2
2 , α2), and d is strictly increasing with respect to

ū1 on (α1,
α1+α2

2 ).
Proposition A.6 (Proposition 3.10 [24]). If β1 < β2, the following hold:
(i) v̄1, v̄2 →

β1+β2
2 as d → ∞.

(ii) d is strictly decreasing with respect to v̄2 on (β1+β2
2 , β2), and d is strictly increasing with respect to

v̄1 on (β1,
β1+β2

2 ).
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