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Abstract: In this paper, we have set up a mathematical model on the basic life cycle of clonorchiasis
to fit the data of human clonorchiasis infection ratios of Guangzhou City of Guangdong Province in
China from 2006-2012. By this model, we have proved that the condition of the basic reproductive
number R0 > 1 or R0 < 1 corresponds the globally asymptotically stable of the endemic equilibrium
or the disease-free equilibrium, respectively. The basic reproductive number is estimated as 1.41 with
those optimal parameters. Some efficient strategies to control clonorchiasis are provided by numerical
analysis of the mathematical model.
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1. Introduction

An estimated 15 million people are infected with clonorchiasis, predominantly in east Asia (ie,
China, South Korea, northern Vietnam, and parts of Russia) [1, 2]. Clonorchiasis infection is primarily
related to liver and biliary disorders, especially cholangiocarcinoma.

The first report on clonorchiasis in the medical literature was published in the Lancet on August
21, 1875 [3]. In 1910, Kobayashi first proved that freshwater fish act as the second intermediate host,
and Muto discovered in 1918 that freshwater snails serve as the first intermediate host [4]. The life
cycle of clonorchiasis is characterised by an alternation of sexual and asexual reproduction in different
hosts [5, 6, 7]. Eggs laid by hermaphroditic adult worms, which can reach the intestine with bile fluids
and are taken away with the faeces [8]. After freshwater snails ingest the eggs, miracidia hatch in the
intestine and penetrate into the intestinal wall. By asexual reproduction, sporocysts, rediae, and then
cercariae are produced. Cercariae escape from the snails, adhere to freshwater fish, and then develop
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into mature metacercariae in the subcutaneous tissues or muscles of the fish. When people eat raw
or insufficiently cooked infected fish, metacercariae will enter the human body through gastric juice
digestion as the final host (Figure 1).

Figure 1. Life cycle of Clonorchis sinensis.

Mathematical models have played significant roles for understanding and controlling of infectious
diseases since the publication [9]. This work was motivated by the recent work for mathematical mod-
eling of clonorchiasis [10], which had considered the transmission dynamic of clonorchiasis among
human beings, snails and fish. However, snails are infected only after ingested eggs in faeces produced
by parasitic worms in the bile ducts of infectious human being, fish are infected only after cercariae
escaped from infectious snails and adhere to freshwater fish. In order to investigate the efficient strate-
gies to control clonorchiasis, we must set up a mathematical model which responds the basic life cycle
of clonorchiasis, and consider eggs both in an infected individual and in freshwater, cercariae both in
infectious snails and in freshwater. Praziquantel and albendazole are recommended drugs for treatment
of clonorchiasis. The efficacy of those drugs depends on the treatment schedule and infection intensity.
We will consider the treatment (or recovery) rate in our mathematical model of clonorchiasis such that
we can compare the efficacy of different control strategy.

This paper is organized as follows. In section 2, we will set up a mathematical model to describe
the transmission dynamic of clonorchiasis, calculate the basic reproductive number, and analyze the
relationship between the the basic reproductive number and the global property of the model. In sec-
tion 3, we will fit the data of human clonorchiasis infection ratios of Guangzhou City of Guangdong
Province in China from 2006-2012 by using the Genetic Algorithm and calculate the 95% confidence
intervals of infection ratios of human. In section 4, we will give the prevention and control strategy of
clonorchiasis.
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2. Mathematical modeling of clonorchiasis

2.1. Mathematical modeling

Both clonorchiasis and schistosomiasis have an important intermediate medium snail as vector.
There are many papers to study the infectious mechanisms and control strategies of schistosomiasis [11,
12, 13, 14, 15, 16, 17]. They use the qualitative and the quantitative analysis to study the human−snail
transmission of schistosomiasis. Especially, Chen et. al [12] investigated the human−cattle−snail
transmission of schistosomiasis.

In order to investigate the control strategies of clonorchiasis, we set up the following S hIhRh

ES sIsCS f I f model by the the life cycle of clonorchiasis:



S
′

h(t) = λh − βhS h(t)I f (t) − µhS h(t),
I
′

h(t) = βhS h(t)I f (t) − γIh(t) − µhIh(t),
R
′

h(t) = γIh(t) − µhRh(t),
E
′

(t) = θe peIh(t) − δeβsS s(t)E(t) − µeE(t),
S
′

s(t) = λs − βsS s(t)E(t) − µsS s(t),
I
′

s(t) = βsS s(t)E(t) − µsIs(t),
C
′

(t) = θc pcIs(t) − δcβ f S f (t)C(t) − µcC(t),
S
′

f (t) = λ f − β f S f (t)C(t) − qS f (t) − µ f S f (t),

I
′

f (t) = β f S f (t)C(t) − qI f (t) − µ f I f (t),

(2.1)

where S h(t), Ih(t) and Rh(t) denote the number of the susceptible, the infectious and the recovered for
human beings, E(t) and C(t) denote the number of eggs and cercariae, S s(t) and Is(t) denote the number
of the susceptible and the infectious for snails, S f (t) and I f (t) denote the number of the susceptible and
the infectious for freshwater fish.

Parameters in system (2.1) are summarized in Table 1 and all parameters are assumed to be non-
negative. δe and δc denote the consumption rate of eggs per snail and consumption rate of cercariae per
fish, respectively. pe denotes the egg proliferation rate by hermaphroditic adult worms in an infected
individual, those eggs are attached with the faeces. Only a part of the faeces flows into fresh water.
Parameter θe denotes the ratio of eggs in fresh water. Similarly, pc denotes the cercaria proliferation
rate per infected snail in fresh water. θc denotes the proportion of cercariae survival in fresh water.
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Table 1. Description of model parameters and their values (unit:year−1).

Parameter Value Interpretation Source
λh 2.2404 × 105 The recruitment rate of human population fitting
λs 4.2741 × 109 The recruitment rate of snail population fitting
λ f 3.5799 × 109 The recruitment rate of fish population fitting
βh 3.6 × 10−12 Transmission rate from infected fish to human fitting
βs 4.25 × 10−11 Transmission rate from egg to snail [13]
β f 9.784 × 10−9 Transmission rate from cercaria to fish fitting
µh 0.0128 Death rate of human being [14]
µs 1 Death rate of snail [12, 13]
µ f 0.5 Death rate of fish fitting
µe 0.3519 Death rate of egg fitting
µc 0.4616 Death rate of cercaria fitting
γ 0.79 Recovery rate of human being [14]
pc 2.22 × 103 The cercariae proliferation rate per infected snail [13]
pe 3.33 × 106 The egg proliferation rate per infected individual [15]
θe 0.3499 The ratio of eggs in fresh water fitting
θc 0.9 The proportion of cercariae survive in fresh water fitting
q 4.5 The harvest rate of fish fitting

The number of eggs consumed by snails compared to the number of eggs in the environment is too
small [17]. Thus, the term δeβsS s(t)E(t) can be removed from the fourth equations of system (2.1).
Similarly, the term δcβ f S f (t)C(t) can be removed from the seventh equations of system (2.1). System
(2.1) can be written in the following form:



S
′

h(t) = λh − βhS h(t)I f (t) − µhS h(t),
I
′

h(t) = βhS h(t)I f (t) − γIh(t) − µhIh(t),
R
′

h(t) = γIh(t) − µhRh(t),
E
′

(t) = θe peIh(t) − µeE(t),
S
′

s(t) = λs − βsS s(t)E(t) − µsS s(t),
I
′

s(t) = βsS s(t)E(t) − µsIs(t),
C
′

(t) = θc pcIs(t) − µcC(t),
S
′

f (t) = λ f − β f S f (t)C(t) − qS f (t) − µ f S f (t),

I
′

f (t) = β f S f (t)C(t) − qI f (t) − µ f I f (t).

(2.2)

In this paper, we assume that all solutions of system (2.2) satisfy the following initial conditions:

S h(0) ≥ 0, Ih(0) ≥ 0,Rh(0) ≥ 0, E(0) ≥ 0, S s(0) ≥ 0, Is(0) ≥ 0,C(0) ≥ 0, S f (0) ≥ 0, I f (0) ≥ 0.
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Let

Ω = {(S h(t), Ih(t),Rh(t), E(t), S s(t), Is(t),C(t), S f (t), I f (t)) ∈ R9
+ |

S h(t) + Rh(t) + Ih(t) ≤
λh

µh
, S s(t) + Is(t) ≤

λs

µs
, S f (t) + I f (t) ≤

λ f

µ f + q
,

E(t) ≤
θe peλh

µeµh
, C(t) ≤

θc pcλs

µcµs
}.

Lemma 2.1. The solutions of system (2.2) are positive if all initial values are positive and Ω is a
positively invariant set of system (2.2).

Proof. At first, we will prove the positivity of the solution of system (2.2). By system (2.2), we have



S
′

h(t) ≥ −βhS h(t)I f (t) − µhS h(t),
I
′

h(t) ≥ −γIh(t) − µhIh(t),
R
′

h(t) ≥ −µhRh(t),
E
′

(t) ≥ −µeE(t),
S
′

s(t) ≥ −βsS s(t)E(t) − µsS s(t),
I
′

s(t) ≥ −µsIs(t),
C
′

(t) ≥ −µcC(t),
S
′

f (t) ≥ −β f S f (t)C(t) − qS f (t) − µ f S f (t),

I
′

f (t) ≥ −qI f (t) − µ f I f (t),

for t ≥ 0. Considering the following auxiliary system:



S̃
′

h(t) = −βhS̃ h(t)Ĩ f (t) − µhS̃ h(t),

Ĩ
′

h(t) = −γĨh(t) − µh Ĩh(t),

R̃
′

h(t) = −µh Ĩh(t),

Ẽ
′

(t) = −µeẼ(t),

S̃
′

s(t) = −βsS̃ s(t)Ẽ(t) − µsS̃ s(t),

Ĩ
′

s(t) = −µs Ĩs(t),

C̃
′

(t) = −µcC̃(t),

S̃
′

f (t) = −β f S̃ f (t)C̃(t) − qS̃ f (t) − µ f S̃ f (t),

Ĩ
′

f (t) = −qĨ f (t) − µ f Ĩ f (t).
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We can obtain
S̃ h(t) = S̃ h(0)e

∫ t
0 (−βh Ĩ f (s)−µh)ds,

Ĩh(t) = Ĩh(0)e
∫ t

0 (−γ−µh)ds,

R̃h(t) = R̃h(0)e
∫ t

0 −µhds,

Ẽ(t) = Ẽ(0)e
∫ t

0 −µeds,

S̃ s(t) = S̃ s(0)e
∫ t

0 (−βsẼ(s)−µs)ds,

Ĩs(t) = Ĩs(0)e
∫ t

0 −µsds,

C̃(t) = C̃(0)e
∫ t

0 −µcds,

S̃ f (t) = S̃ f (0)e
∫ t

0 (−β f C̃(s)−q−µ f )ds,

Ĩ f (t) = Ĩ f (0)e
∫ t

0 (−q−µ f )ds.

By the comparison principle, we have obtained that all solutions of system (2.2) are positive when their
initial values are positive. Therefore, R9

+ = {(S h(t), Ih(t),Rh(t), E(t), S s(t), Is(t), C(t), S f (t), I f (t)) ∈ R9 |

S h(t) ≥ 0, Ih(t) ≥ 0,Rh(t) ≥ 0, E(t) ≥ 0, S s(t) ≥ 0, Is(t) ≥ 0,C(t) ≥ 0, S f (t) ≥ 0, I f (t) ≥ 0} is positive
invariant with respect to system (2.2).

And then, we will prove that Ω is a positively invariant set of system (2.2). Let X(t) =

(S h(t), Ih(t),Rh(t), E(t), S s(t), Is(t),C(t), S f (t), I f (t)) be any positive solution of system (2.2) with ini-
tial condition X(0) ∈ Ω. Let Nh(t) = S h(t) + Rh(t) + Ih(t), Ns(t) = S s(t) + Is(t), and N f (t) = S f (t) + I f (t)
denote the total population of human beings, the total population of snails, and the total population of
fish, respectively. The total population of human beings satisfies the differential equation:

N
′

h(t) = λh − µhNh(t).

This implies that Nh(t)→ λh
µh

as t → +∞, or limt→+∞(S h(t) + Ih(t) + Rh(t)) = λh
µh

. Similarly, we have

N
′

s(t) = λs − µsNs(t),

N
′

f (t) = λ f − (q + µ f )N f (t),

Ns(t)→ λs
µs

and N f (t)→
λ f

µ f +q as t → +∞, or limt→+∞(S s(t)+Is(t)) = λs
µs

and limt→+∞(S f (t)+I f (t)) =
λ f

µ f +q .

By the 4th and 7th equation of system (2.2), we have

E
′

(t) ≤ θe pe
λh

µh
− µeE(t),

C
′

(t) ≤ θc pc
λs

µs
− µcC(t),

limt→+∞ E(t) ≤ θe peλh
µeµh

, limt→+∞C(t) ≤ θc pcλs
µcµs

. Thus, Ω being a positively invariant set of system (2.2) has
been proven. �

2.2. The basic reproduction number

The basic reproduction number of system (2.2) can be derived by the next generation matrix as
in Diekmann et al. [18, 19], Van den Driessche and Watmough [20]. Let x = (Ih, Is, I f , E,C, S h,Rh,
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S s, S f )T . System (2.2) can be written as the following form:

x
′

= F (x) − V (x),

where V (x) = V −(x) − V +(x), which denotes the transfer rate of individuals into or out of each
population set and F (x) denotes the rate of occurrence of new infections and

F (x) =



βhS h(t)I f (t)
βsS s(t)E(t)
β f S f (t)C(t)

0
0
0
0
0
0


, V +(x) =



0
0
0

θe peIh(t)
θc pcIs(t)
λh

γIh(t)
λs

λ f


,

V −(x) =



(µh + γ)Ih(t)
µsIs(t)

(q + µ f )I f (t)
µeE(t)
µcC(t)

βhS h(t)I f (t) + µhS h(t)
µhRh(t)

βsS s(t)E(t) + µsS s(t)
β f S f (t)C(t) + qS f (t) + µ f S f (t)


.

According to the method in Diekmann et al. [18], the derivatives DF (x) and DV (x) are partitioned as

DF (x) =

(
F 0
0 0

)
, DV (x) =

(
V 0
J1 J2

)
,

where F,V, J1 and J2 are given by

F =



0 0 βh
λh
µh

0 0
0 0 0 βs

λs
µs

0
0 0 0 0 β f

λ f

q+µ f

0 0 0 0 0
0 0 0 0 0


, V =


µh + γ 0 0 0 0

0 µs 0 0 0
0 0 q + µ f 0 0
−θe pe 0 0 µe 0

0 −θc pc 0 0 µc


, (2.3)

J1 =


0 0 βh

λh
µh

0 0
−γ 0 0 0 0
0 0 0 βs

λs
µs

0
0 0 0 0 β f

λ f

q+µ f

 , J2 =


µh 0 0 0
0 µh 0 0
0 0 µs 0
0 0 0 q + µ f

 .
Mathematical Biosciences and Engineering Volume 16, Issue 2, 881–897
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We can obtain the inverse matrix of V as

V−1 =



1
µh+γ

0 0 0 0
0 1

µs
0 0 0

0 0 1
q+µ f

0 0
θePe

µe(µh+γ) 0 0 1
µe

0
0 θcPc

µcµs
0 0 1

µc


.

The basic reproduction number is defined as the spectral radius of the nonnegative matrix FV−1

[20]. Therefore, we have obtained the formula of the basic reproduction number:

R0 = ρ(FV−1) =
3

√
βhβsβ fλhλsλ f θc pcθe pe

µ2
s(q + µ f )2µcµeµh(µh + γ)

.

2.3. Global stability of the system (2.2)

At first, we will prove that the system (2.2) admits a unique endemic equilibrium x∗ = (S ∗h, I
∗
h,R

∗
h,

E∗, S ∗s, I
∗
s ,C

∗, S ∗f , I
∗
f ). And then, we will prove that x∗ is globally asymptotically stable in the region

R9
+. Here S ∗h, I

∗
h,R

∗
h, E

∗, S ∗s, I
∗
s ,C

∗, S ∗f , I
∗
f satisfy the following equilibrium equations:

λh = βhS ∗hI∗f + µhS ∗h,

βhS ∗hI∗f = γI∗h + µhI∗h,

µhR∗h = γI∗h,
µeE∗ = θe peI∗h,
λs = βsS ∗sE∗ + µsS ∗s,
µsI∗s = βsS ∗sE∗,
µcC∗ = θc pcI∗s ,
λ f = β f S ∗f C

∗ + (q + µ f )S ∗f ,

(q + µ f )I∗f = β f S ∗f C
∗.

(2.4)

By solving equations (2.4), we have

I∗f =
µeµcµ

2
s(q + µ f )2µh(γ + µh)(R3

0 − 1)
θe peλhβhβs(θc pcβ fλs(µ f + q) + µcµs(µ f + q)2) + µeµcµ2

s(µ f + q)2βh(γ + µh)
,

S ∗h =
λh

βhI∗f + µh
, I∗h =

λhβhI∗f
(γ + µh)(µh + βhI∗f )

, R∗h =
γI∗h
µh
, E∗ =

θe peI∗h
µe

,

S ∗s =
λs

βsE∗ + µs
, I∗s =

βsS ∗sE∗

µs
, C∗ =

θc pcI∗s
µc

, S ∗f =
λ f

β f C∗ + q + µ f
.

It is obvious to follow that I∗f > 0 if and only if R0 > 1. By the equations (2.4) and R0 > 1, there is
only one x∗ ∈ Ω for system (2.2). We have the following result.

Theorem 2.2. If R0 > 1, then the endemic equilibrium x∗ is globally asymptotically stable in the
interior of R9

+.
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Proof. The existence of x∗ of system (2.2) has been shown in above. We will only prove that x∗ of
system (2.2) is globally asymptotically stable in the interior of R9

+ when R0 > 1. Let g(a) = 1−a + ln a.
It is easy to verify that for ∀a > 0,

g(a) = 1 − a + ln a ≤ 0,

and the equality holds if and only if a = 1.
Let L1 =

∫ S h

S ∗h

z−S ∗h
z dz+Ih−I∗h−ln Ih

I∗h
, L2 =

∫ S s

S ∗s

z−S ∗s
z dz+Is−I∗s−ln Is

I∗s
, L3 =

∫ S f

S ∗f

z−S ∗f
z dz+I f−I∗f−ln I f

I∗f
, L4 =

E − E∗ − E∗ ln E
E∗ , L5 = C − C∗ − C∗ ln C

C∗ . Differentiating L1, L2, L3, L4 and L5 with respect to t along
solution curves of system (2.2), we have

L
′

1 =(1 −
S ∗h
S h

)S
′

h + (1 −
I∗h
Ih

)I
′

h

=(1 −
S ∗h
S h

)[µhS ∗h(1 −
S h

S ∗h
) + βhS ∗hI∗f (1 −

S hI f

S ∗hI∗f
)] + βhS ∗hI∗f (1 −

I∗h
Ih

)(
S hI f

S ∗hI∗f
−

Ih

I∗h
)

≤βhS ∗hI∗f (1 −
S hI f

S ∗hI∗f
)(1 −

S ∗h
S h

) + βhS ∗hI∗f (1 −
I∗h
Ih

)(
S hI f

S ∗hI∗f
−

Ih

I∗h
)

=βhS ∗hI∗f (2 −
Ih

I∗h
−

S ∗h
S h
−

S hI f I∗h
S ∗hI∗f Ih

+
I f

I∗f
)

≤βhS ∗hI∗f (
I f

I∗f
− ln

I f

I∗f
+ ln

Ih

I∗h
−

Ih

I∗h
),

where 1 − S ∗h
S h
≤ − ln S ∗h

S h
, 1 − S hI f I∗h

S ∗hI∗f Ih
≤ − ln S hI f I∗h

S ∗hI∗f Ih
.

L
′

2 =(1 −
S ∗s
S s

)S
′

s + (1 −
I∗s
Is

)I
′

s

=(1 −
S ∗s
S s

)(βsS ∗sE∗(1 −
S sE
S ∗sE∗

) + usS ∗s(1 −
S s

S ∗s
)) + βsS ∗sE∗(1 −

I∗s
Is

)(
S s

S ∗sE∗
−

Is

I∗s
)

≤βsS ∗sE∗(2 −
S ∗s
S s
−

Is

I∗s
+

E∗

E
−

S sEI∗s
S ∗sE∗Is

)

≤βsS ∗sE∗(
E
E∗
− ln

E
E∗

+ ln
Is

I∗s
−

Is

I∗s
).

L
′

3 =(1 −
S ∗f
S f

)S
′

f + (1 −
I∗f
I f

)I
′

f

=(1 −
S ∗f
S f

)(β f S ∗f C
∗(1 −

S f C
S ∗f C

∗
) + (q + µ f )S ∗f (1 −

S f

S ∗f
)) + β f S ∗f C

∗(1 −
I∗f
I f

)(
S f C
S ∗f C

∗
−

I f

I∗f
)

≤β f S ∗f C
∗(

C
C∗
− ln

C
C∗

+ ln
I f

I∗f
−

I f

I∗f
).

L
′

4 = (1 −
E∗

E
)E

′

= θe peI∗h(1 −
E
E∗

+
Ih

I∗h
−

Ih

I∗h

E∗

E
) ≤ θe peI∗h(

Ih

I∗h
− ln

Ih

I∗h
+ ln

E
E∗
−

E
E∗

).
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L
′

5 = (1 −
C∗

C
)C

′

= θc pcI∗s (1 −
C
C∗

+
Is

I∗s
−

Is

I∗s

C∗

C
) ≤ θc pcI∗s (

Is

I∗s
− ln

Is

I∗s
+ ln

C
C∗
−

C
C∗

).

Hence, we can define the following Lyapunov function:

L =
L1

βhS ∗hI∗f
+

L2

βsS ∗sE∗
+

L3

β f S ∗f C
∗

+
L4

θe peI∗h
+

L5

θc pcI∗s
.

It follows that

L
′

=
1

βhS ∗hI∗f
L
′

1 +
1

βsS ∗sE∗
L
′

2 +
1

β f S ∗f C
∗
L
′

3 +
1

θe peI∗h
L
′

4 +
1

θc pcI∗s
L
′

5

≤(
I f

I∗f
− ln

I f

I∗f
+ ln

Ih

I∗h
−

Ih

I∗h
) + (

E
E∗
− ln

E
E∗

+ ln
Is

I∗s
−

Is

I∗s
) + (

C
C∗
− ln

C
C∗

+ ln
I f

I∗f
−

I f

I∗f
)

+ (
Ih

I∗h
− ln

Ih

I∗h
+ ln

E
E∗
−

E
E∗

) + (
Is

I∗s
− ln

Is

I∗s
+ ln

C
C∗
−

C
C∗

)

=0.

Moreover, the equality L
′

= 0 holds if and only if Ih = I∗h, Is = I∗s , I f = I∗f , E = E∗,C = C∗, S h =

S ∗h,Rh = R∗h, S s = S ∗s and S f = S ∗f . Therefore, x∗ of system (2.2) is globally asymptotically stable in
the region R9

+ if R0 > 1. �

If R0 < 1, the endemic equilibrium x∗ of system (2.2) does not exist. There is only the disease-free
equilibrium x0, where x0 = (S 0

h, 0, 0, 0, S
0
s , 0, 0, S

0
f , 0). We have the following result.

Theorem 2.3. If R0 < 1, then the disease-free equilibrium x0 of system (2.2) is globally asymptotically
stable in the region R9

+.

Proof. In order to prove the Theorem 2.3, at first we will prove that the origin of a subsystem of system
(2.2) is globally asymptotically stable in R5

+, where R5
+ = {(Ih(t), Is(t), I f (t), E(t),C(t)) ∈ R5 | Ih(t) ≥

0, Is(t) ≥ 0, I f (t) ≥ 0, E(t) ≥ 0,C(t) ≥ 0}. And then, we will prove that the x0 of system (2.2) is globally
asymptotically stable in the region R9

+.
Step 1 Let x = (Ih, Is, I f ,G,C)T . By system (2.2), we have the following subsystem.

I
′

h(t) = βhS h(t)I f (t) − γIh(t) − µhIh(t),
I
′

s(t) = βsS s(t)E(t) − µsIs(t),
I
′

f (t) = β f S f (t)C(t) − qI f (t) − µ f I f (t),

E
′

(t) = θe peIh(t) − µeE(t),
C
′

(t) = θc pcIs(t) − µcC(t).

(2.5)

The origin x0 = (0, 0, 0, 0, 0) is an equilibrium of the subsystem (2.5). All solutions of system (2.5)
remain nonnegative and

Ω0 = {(Ih(t), Is(t), I f (t), E(t),C(t)) ∈ R5
+ | 0 ≤ Ih(t) ≤

λh

µh
, 0 ≤ Is(t) ≤

λs

µs
,

0 ≤ I f (t) ≤
λ f

p + µ f
, 0 ≤ E(t) ≤

θe peλh

µeµh
, 0 ≤ C(t) ≤

θc pcλs

µcµs
}
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is positively invariant for system (2.5). If the origin x0 is globally stable for ∀x ∈ Ω0, then, x0 is
globally stable for ∀x ∈ R5

+.
By system (2.5), for ∀x ∈ Ω0 we can obtain the following inequalities

x
′

≤ (F − V)x, (2.6)

where F and V are expressed as (2.3). We construct a new linear system

x
′

= (F − V)x, (2.7)

where x ∈ R5
+. By the Perron-Frobenius Theorem [21], there is a nonnegative left eigenvector ν of

the nonnegative matrix V−1F corresponding to the eigenvalue ρ(V−1F) = R0, that is νT V−1F = R0ν
T .

Define a Lyapunov function
V0 = νT V−1x.

Then the derivative of V0 along with system (2.7) is

V
′

0 = νT V−1x
′

= νT V−1(F − V)x = νT V−1Fx − νT x ≤ (R0 − 1)νT x.

If R0 < 1, then V
′

0 ≤ 0. Let

Ψ = {(Ih(t), Is(t), I f (t), E(t),C(t)) ∈ Ω0 | V
′

0 = 0}.

If R0 < 1, V
′

0 = 0 implies that νT x = 0. Thus, Ih = 0, Is = 0, I f = 0,G = 0,C = 0. Therefore,
the largest invariant set of Ψ is the point {x0}. By LaSalle Invariance Principle [22], x0 of the new
linear system (2.7) is globally asymptotically stable in R5

+. By inequalities (2.6) and the comparison
theorem of ordinary differential equation, each component of the system (2.5) must approach to zero
when its initial value in Ω0. We have finished the proof that the origin of the system (2.5) is globally
asymptotically stable in the region Ω0 when R0 < 1.

Step 2 Now, we will prove that x0 of system (2.2) is globally asymptotically stable in the region
R9

+. By Step 1, for ∀ε > 0, there exists a T > 0 such that for t > T, we have

0 ≤ Ih(t) < ε, 0 ≤ Is(t) < ε, 0 ≤ I f (t) < ε, 0 ≤ E(t) < ε, 0 ≤ C(t) < ε.

When t > T, by the first equation of system (2.2), we have

λh − βhS h(t)ε − µhS h(t) ≤ S
′

h(t) ≤ λh − µhS h(t).

We construct the following equations:

S
′

1(t) = λh − µhS 1(t), lim
t→+∞

S 1(t) =
λh

µh
.

S
′

2(t) = λh − βhS 2(t)ε − µhS 2(t), lim
t→+∞

S 2(t) =
λh

µh + βhε
.

By the comparison theorem of ordinary differential equation, we have

λh

µh + βhε
≤ lim

t→+∞
S h(t) ≤

λh

µh
.
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Let ε > 0 be sufficiently small. We have

lim
t→+∞

S h(t) =
λh

µh
.

Similarly, from the third, fifth and eighth equations of system (2.2), we can prove

lim
t→+∞

Rh(t) = 0, lim
t→+∞

S s(t) =
λs

µs
, lim

t→+∞
S f (t) =

λ f

µ f + p
.

It follows that the disease-free equilibrium x0 = (λh
µh
, 0, 0, 0, λs

µs
, 0, 0, λ f

p+µ f
, 0) of system (2.2) is globally

asymptotically stable. �

3. Data and numerical simulations

The data are infection ratios of human in Guangzhou City of Guangdong Providence in China from
2006-2012 [23] (see Figure 2). The infection ratio of human in model (2.2) is determined by the
formula Ih(t)

Nh(t) . The initial values of system (2.2) are given by S h(0) = 9.4652 × 106, Ih(0) = 1.968 ×
104,Rh(0) = 2.33 × 106, E(0) = 120, S s(0) = 6.95 × 103, Is(0) = 130,C(0) = 100, S f (0) = 2.2628 ×
105, I f (0) = 1.87 × 104. Some parameter values are cited from references, the other parameter values
are estimated by calculating the minimum sum of square (MSS):

MS S =

2012∑
i=2006

(datai −
Ih(i)
Nh(i)

)2.

The minimum sum of square (MSS) can be regarded as an optimization problem which is solved using
Genetic Algorithm [24, 25]. The efficiency of Genetic Algorithm depends on the appropriate choice
of the starting population along with other associated parameters. The initial population size plays an
important role in the quality and efficiency of the algorithm, and small population size results in local
convergence or requirement of large generations. To avoid this, the population size 1000 and the gene
size 50 are chosen. A crossover probability of 0.55 and mutation probability of 0.15 are chosen to
maitain diversity in the population. By the parameter values in Table 1, we can estimate that the basic
reproduction number of human clonorchiasis is R0 = 1.41. This result is shown that clonorchiasis will
be epidemic in Guangzhou City. Figure 3 presents the prediction of human clonorchiasis infection
ratios and of the 95% confidence intervals.
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Figure 2. The solid red lines represent the data reported by the epidemiological research
and investigation [23] while the solid blue lines are simulated by using the model (2.2), the
vertical segments are shown the 95% confidence intervals of infection ratios of human.
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Figure 3. The prediction of human clonorchiasis infection ratios in Guangzhou City.
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Figure 4. The relationship between R0 and γ, θe, βh.

Table 2. Comparison of different control strategies (FTH:Transmission rate from infected
fish to human, REFW: Ratio of the eggs in fresh water).

Plan FTH Recovery rate REFW R0 Extinction Permanence
1 βh ÷ 2 γ × 1 θe × 1 1.1269 No Yes
2 βh × 1 γ = 1 θe × 1 1.3140 No Yes
3 βh × 1 γ × 1 θe ÷ 2 1.1162 No Yes
4 βh ÷ 2 γ = 1 θe × 1 1.0429 No Yes
5 βh ÷ 2 γ × 1 θe ÷ 2 0.8859 Yes No
6 βh × 1 γ = 1 θe ÷ 2 1.0330 No Yes
7 βh ÷ 2 γ = 1 θe ÷ 2 0.7050 Yes No

4. Conclusion and discussion

By simulation of the data of human clonorchiasis infection ratios of Guangzhou City of Guangdong
Province from 2006–2012 (see Figure 2), we have obtained that the basic reproduction number is R0 =

1.41 which indicates that clonorchiasis will be epidemic in Guangzhou City. The wide distribution
of intermediate hosts and reservoir hosts, human eating habits, the lack of the food safety supervision
of freshwater fish, and relatively undeveloped techniques for detection and treatment are contributing
to the prevalence of clonorchiasis [23]. Therefore, it is very difficult to eradicate clonorchiasis even
if some chemotherapy and control programmes have been implemented over several years in a few
endemic areas [26, 27].

In Table 2, we have proposed seven types of control strategies dealing with three parameters βh, γ,
θe which mean decreasing the transmission rate from infected fish to human, increasing the recovery
rate of human being, and decreasing the ratio of the eggs in fresh water. If we decrease by half of the
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transmission rate from infected fish to human, increase to one for the recovery rate of human being, and
decrease by half of the ratio of the eggs in fresh water, respectively, it is still impossible to eradicate
the clonorchiasis, which means that single measure is difficult to eradicate the clonorchiasis. However,
increasing the recovery rate has small effect on the epidemic of the clonorchiasis (see Figure 4(a)),
decreasing the transmission rate from infected fish to human or decreasing the ratio of the eggs in fresh
water has obvious effect on the epidemic of the clonorchiasis (see Figure 4(b),(c)).

The prevention and control strategy of clonorchiasis must be a combination of two or more mea-
sures, including health education, health promotion, chemotherapy and environmental reconstruction
[28, 29]. Health education includes the broadcast of educational programmes on television, broadcast
and VCDs, billboard/propaganda paintings, the distribution of health guide booklets, and the transmis-
sion of disease-related knowledge to residents and school children. The contents of health education
are avoid to eat raw or undercooked freshwater fish. Health promotion includes the investigation of
the infection rates and distribution of freshwater fish and snails in endemic areas, under surveillance of
the infected ponds, rapid, convenient and accurate detection of metacercaria-tainted fish. Environment
reconstruction includes removing toilets and pigsties from fishpond areas.
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