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Abstract: The operating room is one of the most capital-intensive resources for a hospital. To 

achieve further improvements and to restrict cost increases, hospitals may need to operate more 

efficiently with the resources they already possess. The paper considers the joint problem of planning 

and scheduling patients in operating rooms on an operational level (weekly basis) with two 

objectives: maximizing the overall patients’ satisfaction and minimizing the cost of overtime in 

operating rooms as well as the daily cost of operating rooms and recovery beds, which is NP-hard. 

The decision problem is solved using a bi-layer discrete particle swarm optimization, introducing a 

repair mechanism for infeasible solutions, specific operators like crossover, insertion and exchange. 

Moreover, a gap finding scheduling heuristic is designed to solve the surgical case sequencing 

problem. We first compare the performance of the proposed solution method to that of Fei et al. for 

three instances separately, using data of a Chinese hospital. Next, the efficient Pareto solutions for 

the joint problem are presented. The results show that the bi-layer discrete particle swarm 

optimization can solve the operating room scheduling efficiently and effectively. 

Keywords: operating room scheduling; integrated planning and scheduling problem; bi-layer 

discrete particle swarm optimization; patients’ satisfaction; operating room cost 
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1. Introduction 

The operating room is one of the most capital-intensive resources for a hospital. Higher quality 

medical service may lead to higher cost. Hence, the hospital managers need to balance the cost 

control and the service quality. As one of the core departments, the operating room should be 

arranged reasonably and the operating room scheduling is the most direct and effective way to 

balance the cost and the service. For a long time, the head nurse is in charge of scheduling operating 

rooms in China. The scheduling solution depends on her/his experience. This inefficient and 

subjective working ways leads to a low utilization of medical resources and times and sometimes 

even delays a patient’s best treatment chance. Therefore, how to schedule the operating room 

efficiently and effectively is of great importance. 

Many studies on the operating room scheduling problem (ORSP) have been carried out. The 

ORSP has some variants which are featured by the following (1) the type of patients, (2) two levels of 

ORSP, and (3) the three stages of a surgery. Next, we will review the related studies on these variants. 

(1) Studies on the type of patients. According to the severity of the illness, patients are divided 

into elective patients and emergency patients. The existing related studies focused on one or both 

type of patient. For example, Chen et al. [1], Wang et al. [2], Bruni et al. [3] focused on the 

emergency patients. Zhao and Li [4], Neyshabouri and Berg [5], Min and Yih [6] focused on the 

elective patients. Jebali and Diabat [7], Lamiri [8] focused on both the emergency patients and the 

elective patients. 

(2) The term “ORSP” is used to describe the Surgical Case Assignment Problem (SCAP) and 

the Surgical Case Sequencing Problem (SCSP). The SCAP is that the surgery date and operating 

room assigned to each patient selected to be operated on, i.e. the operating room planning problem. 

Then, the SCSP is that each patient is scheduled for a specific period in the day and operating room, 

i.e. the operating room scheduling problem. There are some works focusing on only the SCAP. For 

example, Lamiri [8] developed a stochastic model of the operating room planning problem; they used 

Monte Carlo simulation and mixed integer programming to solve their model. The goal of their 

model is to reduce the cost of operating rooms over the long time horizon. Abedini et al. [9] 

determined a set of elective surgeries over the planning horizon in order to allocate resources. They 

proposed a multi-step approach and a priority-type-duration (PTD) rule to generate the initial 

sequence for bin packing to solve this problem. Dellaert and Jeunet [10] explored a variable 

neighborhood search to solve the planning problem with multiple resources for cardiothoracic 

surgeries. Similarly, there are many works focusing on the SCSP. For example, Yang et al. [11] 

focused on the scheduling problem and designed a scheduling method considering surgeons’ 

preferences to the time segments. Time segments and surgeons were seen as two sides of a matching 

problem. The preference functions of two sides were defined, and the model was built based on the 

two-sided matching theory. Range et al. [12] addressed the patient admission scheduling problem and 

proposed an optimization-based heuristic by integrating the branch-and-bound, the column 

generation, and the dynamic constraint aggregation. Xiang et al. [13] proposed an ant colony 

optimization approach to efficiently solve operating room scheduling problem based on the 

knowledge gained in flexible job-shop scheduling problem (FJSP) by observing similarities between 

the operating room scheduling and a multi-resource constraint FJSP in manufacturing. Riise et al. [14] 

considered the SCSP, proposed a new generalized model for the problem, showed how this model 

extended the multi-project, multi-mode resource constrained project scheduling problem with general 
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time constraints. A search method for solving the proposed model was presented and the algorithm 

used on-line learning to balance computational loads between a construction and an improvement 

method, both working on high level solution representations. Duma and Aringhieri [15] proposed an 

online optimization approach for the Real Time Management (RTM) of operating rooms and 

evaluated the impact of RTM on the performance of a generic surgical clinical pathway for elective 

patients. 

In recent years, more and more studies on integrated planning and scheduling problem have 

been appearing. For example, Guerriero and Guido [16] provided a literature review on how 

operational research can be applied to the surgical planning and scheduling processes. 

Demeulemeester et al. [17] reviewed the literature on the application of operations research to 

operating room planning and scheduling. Hallah and Al-Roomi [18] considered the stochastic 

off-line planning and on-line scheduling of operating rooms, solved the planning and scheduling of 

operating room with simulation. Aringhieri et al. [19] studied the joint operating room planning and 

scheduling problem. A 0–1 linear programming formulations were proposed. A two level 

metaheuristic was developed for solving the problem. Guido and Conforti [20] proposed a 

multi-objective integer linear programming model aiming at planning and managing hospital 

operating rooms efficiently. They proposed a hybrid genetic algorithm (GA) to solve the problem. 

Fei et al. [21] studied the weekly operating room planning and scheduling problem. They solved the 

problem in two steps. The planning problem was described as a set-partitioning integer-programming 

model and was solved with a column-generation-based heuristic. The daily scheduling problem, 

based on the results obtained in the planning phase, was treated as a two-stage hybrid flow-shop 

scheduling problem (HFSP) and solved with a hybrid GA. Molina-Pariente et al. [22] addressed an 

integrated operating room planning and scheduling problem, proposed a mixed integer linear 

programming (MILP) model to optimize the problem and proposed an iterative constructive algorithm 

for the problem. Landa et al. [23] addressed the problem consisted of two interrelated sub-problems 

usually referred to as “advance scheduling” and “allocation scheduling”, proposed an integer linear 

stochastic formulation and developed a hybrid two-phase optimization algorithm to solve the overall 

problem. 

(3) Three stages of a surgery. A surgery usually includes three stages, preoperative (preparing), 

intraoperative (performing) and postoperative (recovering). Generally, the resources in the 

preoperative and the postoperative stages are more adequate than that in the intraoperative stage, 

which determines the efficiency of a hospital to a large extent. Hence many literatures focused only 

on the resource scheduling problem in the intraoperative stage. For example, Fong et al. [24] pointed 

out that the intraoperative period was the period in which the surgeons may have the most influence. 

They systematically reviewed the published efforts to improve intraoperative efficiency, assessed the 

outcomes of these efforts, and proposed the standardized reporting of future studies. For those 

considering two stage or three stages, the problem is modelled as the flow shop problem (FSP) or job 

shop problem. For example, Pham and Klinkert [25] focused on the preoperative, the intraoperative 

and the postoperative stages, proposed a new operating room scheduling approach based on the 

multi-mode blocking job shop problem (MMBJS). They formulated the MMBJS as a MILP problem. 

The problem was solved by the CPLEX solver (https://www.ibm.com/analytics/cplex-optimizer). 

Zhong et al. [26] described the operating rooms as a parallel machine scheduling problem in which a 

job is processed by multiple machines simultaneously, adopted the two-stage approach to solve the 

problem and developed a computerized operating rooms system. Burdett and Kozan [27] focused on the 
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preoperative, the intraoperative and the postoperative stages, introduced a sophisticated FJSP model, 

where the patients, beds, and health care activities were respectively treated as jobs, machines, and 

operations. They developed constructive algorithms and hybrid meta-heuristics to solve the FJSP. Abedini 

et al. [28] considered the intraoperative and postoperative stages. The problem was treated as two-stage 

FSP and solved with simulation. 

Generally, at operational level, the operating room planning problem and the operating room 

scheduling problem were studied separately. For example, Fei et al. [21] divided the problem into 

two stages. At the first stage, a weekly surgery planning problem was solved by assigning a date to 

each surgery. At the second stage, the surgery schedule on each day was solved. Definitely, the 

assignment decision of the planning problem directly affects the daily scheduling decision, but not 

vice versa. The method employed in Fei et al. [21] is a decomposition one and it is possible that a 

bad assignment of surgery date in the first phase will influence the efficiency of the final operating 

room scheduling. In this paper, the main focus is to present an integrated approach to plan and 

schedule operating rooms simultaneously. Solving the ORSP in a given week is to determine: (1) the 

surgery date for each patient, which is referred to as the SCAP; and (2) the operating room and the 

time assigned to each patient, which is referred to as the SCSP. The SCAP is modelled as a 

resource-constrained bin-packing problem, which is NP-complete [21]. The SCSP is modelled as a 

two-stage HFSP with additional consideration of surgeon’s constraints. In the SCSP, patients are 

regarded as the jobs, operating rooms are regarded as the processing machines of the first stage of the 

HFSP, and the recovery beds are regarded as the processing machines of the second stage of the 

HFSP. The two-stage HFSP has been proved to be NP-hard [29]. The constraints of the surgeon 

resource need to be considered. Hence the SCSP is also NP-hard. The ORSP is also NP-hard, which 

cannot be solved within a limited time especially when the problem size increases. Hence, the 

heuristics or the meta-heuristics are employed to solve such combinational optimization problem. 

Li et al. [30] proposed an energy-aware multi-objective optimization algorithm for solving the 

HFSP with consideration of the setup energy consumptions. Li et al. [31] proposed a novel discrete 

artificial bee colony algorithm for solving the multi-objective FJSP with maintenance activities. Liu 

et al. [32] proposed a hybrid particle swarm optimization (PSO) with estimation of distribution 

algorithm to solve permutation flow-shop scheduling problem. Li et al. [33] proposed a hybrid 

variable neighborhood search algorithm for solving the HFSP. Li and Gao [34] proposed an 

algorithm which hybridizes the GA and tabu search for solving the FJSP. In these algorithms, PSO 

has the advantages of memory, few parameters, simple structure and easy implementation. Nowadays, 

it has been well recognized as an efficient method for intelligent search and optimization [35]. For 

example, Ghorbani et al. [36] proposed a Quantum-behaved PSO, embedded into a multi-layer 

perceptron technique, to estimate the evaporation rates over a daily forecast horizon. Hence, in this 

paper, a bi-layer discrete particle swarm optimization (2DPSO) is used to solve the ORSP. 

To the best of our knowledge, this is the first attempt to solving the planning and scheduling 

problem simultaneously with a 2DPSO. The novelties are as following: (1) a 2DPSO is developed to 

solve the integrated optimization model for the operation rooms planning and scheduling problem; (2) 

a discrete particle swarm optimization (DPSO) algorithm is proposed to solve the SCAP or the SCSP. 

There are information exchange and feedback between the two problems; (3) a gap finding method is 

designed to solve the SCSP; (4) repair mechanisms for infeasible solutions are designed to ensure the 

feasibility of solutions. 

The rest of this paper is organized as follows. Section 2 formulates the integrated optimization 
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model; Section 3 develops the 2DPSO algorithm; Section 4 carries out a group of experiments; 

Section 5 is the conclusions. 

2. Formulation 

Generally, a patient chooses a surgeon at the consultation stage and the surgeon often carry out 

the surgery for the patient later. Therefore, we only consider that the surgeon for each surgery is 

determined in advance and cannot be changed. In the period of illness outbreak, a patient often can’t 

be operated immediately after admission. Therefore, the hospital sets the latest surgery date for the 

patient. The effect of the operation date on the patient’s physical condition is different. Some patients 

waiting for surgery have high risk of infection and need to be operated upon as soon as possible. 

Thus, the patients are divided into different priority levels to characterize their condition [6]. The 

patient is divided into r priority levels, and the more urgent the patient needs to be, the higher the 

priority level. This level is given by the surgeon assigned to each patient. For example, if the risk of 

infection worsens, the priority of the critical patient is 3, the priority of the patient with 

cardiovascular and cerebrovascular disease is 2, and the priority of the general patient is 1. 

Given that the surgery schedule is usually determined on Friday before the coming week in 

most hospitals in China, we focus on the surgeries for the elective patients within one week. There 

are a set of operating rooms and a waiting list of patients to be operated. The task to solve the ORSP 

in a given week is to determine the surgery date for each patient and the operating room and the time 

assigned to each patient. 

For a patient, the sooner the surgery is performed, the better. For a hospital, the lower the 

operating room opening costs, the better. An earlier surgery date leads to a higher patient’s 

satisfaction. Increasing patient’s satisfaction will inevitably lead to a result that the operating room is 

open overtime in the first days of one week and is idle in the next days of one week. Therefore, how 

to balance the patient’s satisfaction and the opening time of the operating rooms is of great 

importance. In this paper, the surgery date for patients is arranged according to the patient’s 

satisfaction and the overtime cost of operating rooms in the SCAP; the operating room and time for 

patients are scheduled according to the daily operating cost in the SCSP. 

To simplify the ORSP, some assumptions are as follows: 

(1) Emergency cases are not taken into consideration because patients admitted from the emergency 

department are usually carried out immediately and hence only the surgeries for the elective patients 

are considered. 

(2) Human resources and all material resources except for the recovery beds and the surgeons are 

always available whenever needed. No surgeon however can operate on more than one patient at the 

same time; similarly, no recovery bed can be occupied by more than one patient at the same time. 

(3) All operating rooms open simultaneously, and all recovery beds are available at the beginning. 

(4) Once started, an operation cannot be interrupted until it is finished. Moreover, once transferred to a 

recovery bed, a patient will stay there until the pre-defined recovery time elapses. 

(5) The preparation time for each operation and the clean-up time before leaving the operating room 

are included in the operating time. 

The notations of the variables are listed in Table 1. 
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Table 1. Notations. 

Notations Description 

T The planning period, a day is indexed by   

J The number of patients waiting for operations, a patient is indexed by   

M The number of operating rooms, an operating room is indexed by m 

RM The number of the recovery beds 

Q The number of the departments, a department is indexed by   

L The number of the surgeons, a surgeon is indexed by   

  
  The allowed maximum surgery time for the  -th surgeon on the t-th day 

  
  The number of the regular opening hours of the m-th operating room on the t-th day. If the m-th 

operating room is unavailable on the t-th day,   
  = 0 

  
  The allowed maximal number of the overtime hours for the m-th operating room on the t-th day 

E The allowed maximal amount of the surgery on every day 

   The number of patients assigned to the t-th day 

   
   

 
The completion time of the operation in the m-th operating room on the t-th day 

     The completion time of the operation in the recovery beds on the t-th day 

   The maximal scheduled time for all surgeries on the t-th day 

Dt The total duration of all surgeries on the t-th day 

      The starting time of the j-th patient operated by the l-th surgeon on the t-th day 

      The ending time of the j-th patient operated by the l-th surgeon on the t-th day 

   The date unavailable for the l-th surgeon 

   The latest surgery date for the j-th patient 

   The priority of the j-th patient 

   The duration of the surgery for the j-th patient 

        = 1 if the l-th surgeon is in charge of the j-th patient, otherwise     = 0 

        = 1 if the m-th operating room is available for the j-th patient, otherwise     = 0 

        = 1 if the j-th patient is assigned to the t-th day, otherwise     = 0 

   The date of the surgery for the j-th patient 

          = 1 if the j-th patient is in charge by the l-th surgeon and is assigned to the t-th day, 

otherwise      = 0 

          = 1 if the j-th patient is scheduled to be operated on the t-th day in the m-th operating room, 

otherwise       = 0 

β The cost ratio of a regular working hour to an overtime hour, i.e. the penalty cost of the overtime 

  The cost ratio of operating room working hour to recovery room working hour 

In the SCAP, for all patients, it is necessary to design a principle to coordinate the operation 

order. Given the latest surgery date    of the j-th patient, the surgery date of the j-th patient is Eq 1. 

         
 
              (1) 

Hence, the j-th patient’s satisfaction degree    can be formulated as Eq 2. 
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           (2) 

Combining the j-th patient’s priority and his/her satisfaction, the weighted satisfaction for all the 

patients can be formulated as Eq 3. 

        
 
              (3) 

The other objective is to minimize the overtime cost of the operating room, which can be 

formulated in Eq 4. 

                
   

   
     

     
   
   

   
 
       (4) 

In the SCSP, the objective is to minimize the daily operating cost including the cost of both the 

operating rooms and the recovery beds, which can be formulated in Eq 5. 

              
       

         
              (5) 

Hence, the integrated optimization model for the ORSP can be formulated as follows. 

           
 
             (6) 

                    
      

     
     

      
   

 
        (7) 

                   
       

         
              (8) 

               
               (9) 

           
  
              (10) 

                                       (11) 

           
               (12) 

           
      

                 (13) 

             
                  (14) 

            
    

              
        (15) 

                                                               (16) 
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       (17) 

      
                                                   

        
           

     (18) 

      
                                                          

                  
           

    (19) 

Eq 6, Eq 7 and Eq 8 are the objectives, the objective function (6) is to maximize the patients’ 

satisfaction, the objective function (7) is to minimize the overtime cost of the operating rooms, and 

the objective function (8) is to minimize the daily operating cost. Constraint (9) indicates that a 

patient can only be assigned to a certain date in the planning period. Constraint (10) indicates that the 

patient’s surgery date can’t be later than the latest surgery date. Constraint (11) indicates that the 

surgery date assigned to the patient can’t be the date unavailable to his/her surgeon. Constraint (12) 

indicates that the amount of surgery must not exceed the allowed maximal amount of surgery in 

every day. Constraint (13) indicates that the maximum surgery time of the surgeon should not exceed 

the allowed maximal workload for the surgeon in every workday. Constraint (14) indicates that the 

patient can only be assigned to one operating room. Constraint (15) indicates that the total operating 

time of the m-th operating room on the t-th day would not exceed the allowed maximal opening 

hours of the operating room. Constraint (16) indicates that the surgeon can’t carry out two operations 

at the same time. Constraints (17), (18), (19) are about the decision variables. 

3. The bi-layer discrete particle swarm optimization (2DPSO) algorithm 

As described in Section 2, the SCAP is to provide a surgery date for each patient and the SCSP 

is to determine the sequence of operations in each operating room in each day. The SCAP is affected 

by the feedback obtained from the SCSP, while SCSP is based on the results obtained from the SCAP. 

The SCAP is modelled as a resource-constrained bin-packing problem and solved by a discrete 

particle swarm optimization (DPSO4A) algorithm. The SCSP is modelled as a two-stage HFSP with 

additional consideration of surgeon’s constraints and solved by a discrete particle swarm 

optimization (DPSO4S). The ORSP is NP-hard, which cannot be solved within a limited time 

especially when the problem size increases. We propose a bi-layer discrete particle swarm 

optimization algorithm (2DPSO) to solve the integrated optimization model. The structure of the 

2DPSO is shown in Figure 1. The result of DPSO4A algorithm is regarded as the input of the 

DPSO4S. The scheduling result obtained by the DPSO4S algorithm is used as the feedback guiding 

the assignment of the SCAP. 

DPSO4A DPSO4S

assign the patients’ surgery date

feedback the operating room, operating time  

Figure 1. The structure of the 2DPSO. 
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3.1. The PSO algorithm 

Particle Swarm Optimization (PSO) is a swarm intelligence algorithm proposed by Kennedy 

and Eberhart in 1995 [37]. In this algorithm, each particle of the swarm represents a solution in the 

solution space, and the particles adjust their flight according to their flight experience and the peer’s 

flight experience. In the course of the evolution, each particle maintains its own historical best 

position, i.e. the local best; the swarm maintains the historical best position, i.e. the global best. By 

evaluating the fitness of the particles, the local best and the global best are updated. Each particle 

updates itself continuously through the local best, the global best and its own flight speed. Thereby a 

new generation of the swarm is generated. The flowchart of the PSO is shown in Figure 2. The 

particle’s flight speed and its location are updated according to Eq 20 and Eq 21. 

  
        

               
                   

       (20) 

  
      

    
             (21) 

Where   
    is the i-th particle’s flight speed in the k-th iteration, which is limited in the interval 

[    ,     ];    is the i-th particle’s location in the k-th iteration;    
  is the local best of the i-th 

particle;    
  is the global best;      ,       are a random number in [0, 1];   is the inertia 

weight, which controls the influence of the previous speed on the current speed and balances the 

ability of the algorithm to explore and exploit in the search process;    is the cognitive coefficient to 

adjust particles moving to the    
 ;    is the social coefficient to adjust particles moving to the 

   
 . 

Start

Initialization

Terminal 

condition

Update each particle’s flight 

speed and location

Evaluate the particles

Update the particle local best 

Update the global best 

End

N

Y

Output the global best

 

Figure 2. The flowchart of PSO. 
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The basic PSO algorithm is mainly suitable for solving continuous optimization problems. 

However, the ORSP is a combinational optimization problem. Therefore, a 2DPSO algorithm is 

designed to solve the ORSP referring to the discrete particle swarm optimization algorithm (DPSO) 

by Pan et al. [38]. The flowchart of 2DPSO is shown in Figure 3. The details are described in 

Section 3.2 and Section 3.3. 

Start

Initialization

Evaluate the particles

Terminal condition

Generate random numbers 

r1、r2、r3

Select non-dominated 

solutions A1 ;update the 

global best set B

Update the particle local best 

and the global best set B 

The  particle is 

the global best 

r1≥w，r2≥c1，

r3≥c2？

Implement particle position 

updating method

Implement local 

search method

Output the global best set B

Y

N

Y

Y

N

N

End

Initialization

Evaluate the particles, obtain 

the particle local best and the 

global best

Terminal condition

Generate random numbers 

r1、r2、r3

Evaluate the particles

Update the particle local best 

and the global best 

The  particle is 

the global best 

r1≥w，r2≥c1，

r3≥c2？

Implement particle position 

updating method

Implement local 

search method

Output the global best

Y

N

Y

Y

N

N

DPSO4S algorithm

DPSO4S algorithm

DPSO4A algorithm

Select non-dominated 

solutions A and regard A as 

the initial global best set B  

Obtain the particle local best 

and the global best

Evaluate the particles

 

Figure 3. The flowchart of 2DPSO. 
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3.2. The DPSO4A algorithm 

The steps of the PSO4A algorithm are as follows. 

Step 1. Initialize parameters (w,   ,   , the size of swarm S and the number of cycles P); initialize a 

swarm, each particle in which represents the date assigned to each patient’s surgery. In this process, it 

is possible to generate an infeasible solution. For example, the work schedule of a patient’s surgeon 

conflicts with the assignment results. Therefore, it is necessary to design a particle legalized function 

as shown in Section 3.2.2. 

Step 2. For each particle, the scheduling results are obtained with the DPSO4S algorithm. 

Step 3. Calculate the patients’ satisfaction according to Eq 3, the overtime cost of the operating 

rooms according to Eq 4, which is determined with the DPSO4S. 

Step 4. Select all the non-dominated solutions A and regard A as the initial global best set B. 

Step 5. Find the particle local best; select a solution as the global best from the global best set B. 

Step 6. Updating. 

Step 6.1. Update the parameters (w,   ,   ) and the particles’ position. Similarly, in this step, the 

updated particles may be infeasible solutions, it is necessary to correct infeasible solutions with the 

particle legalized function as shown in Section 3.2.2; 

Step 6.2. Evaluate the two objectives of the updated particles; 

Step 6.3. Select all the non-dominated solutions A1 in the updated particle swarm, update the global 

best set B; 

Step 6.4. Update the particle local best and the global best; 

Step 6.5. Increase iteration counter. 

Step 7. If the terminal condition is satisfied, stop the iteration and output the global best set B; 

otherwise return to the Step 6 to continue a new iteration. 

The details of the DPSO4A are designed as follows. 

3.2.1. The particle representation 

Each particle is a feasible assignment of all patients’ surgery date. We represent it as an integer 

vector of J. Each position corresponds to a patient, and the value in each position is the assigned date 

for the patient. An example is shown in Figure 4. There are 10 patients waiting for operating, the 

planning horizon is 5 weekdays, the first patient is assigned to Friday, the second patient is assigned 

to Thursday, and so on. 

 

Figure 4. An example of the particle representation. 

3.2.2. The particle legalized function 

There are three Constraints (10), (11), (13) in the SCAP, both the initial particles and the 

updated particles may be infeasible. Therefore, it is necessary to design a particle legalized function. 

The details are as follows. 
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Step 1. According to Constraints (10), (11) to find out the infeasible assignment for patients of a 

particle. 

Step 2. For an infeasible assignment for the patient i with a surgery date   , reassign surgery date   

meeting both Constraints (10), (11), in addition, in order to ensure the balance of the number of 

surgery on every day, if there is an assignment for the patient j (j i) who is operated on date   and 

   ∉   (    = 1) and    ≥   , then select the assignment for the patient j and replace the surgery 

date with   , otherwise, don’t replace, correct the next infeasible assignment. Repeat until all the 

infeasible assignments are corrected. 

Step 3. For the corrected particle, sum the workload for each surgeon. 

Step 4. Find out the surgeon l that is overloaded with work and the corresponding date   . 

Step 5. A patient is randomly selected from all patients assigned to date    and operated by surgeon l, 

assign the patient to the date meeting the constraint of both Constraints (10), (11) with the least 

amount of surgery. Repeat until all surgeons are corrected in every day. 

Step 6. Output the feasible solution. 

3.2.3. The particle location updating method 

In PSO, particles update their locations by flying. Hence, a method is designed to update the 

particle location. 

(1) Updating method 

The location updating method is as shown in Eq 22: 

  
                    

      
      

       (22) 

The location updating equation is divided into three parts, namely: 

(a) Free fly 

  
 =      

  =  
     

         

  
        

       (23) 

It indicates that particles will consider their own flight speed. The Insert operator is applied such 

that the position of the particle is updated to a better position by sharing knowledge with itself. 

Hence,      
   is implemented with “Insert” method. 

Insert: Select two positions a, b (b > a) randomly, the information at position b is inserted into 

the front of the information at position a. An example is shown in Figure 5. 

 

Figure 5. An example for the Insert method. 



843 

Mathematical Biosciences and Engineering  Volume 16, Issue 2, 831–861. 

(b) Learn from the swarm 

  
 =       

     
  =  

     
     

          

  
         

     (24) 

It indicates that the particles adjust the location according to the particle local best location. The 

crossover operator is applied such that the position of the particle is updated to a better position by 

sharing knowledge with the local best particle. Hence,      
     

   is implemented with 

“Crossover” method. 

(c) Learn from the history 

  
   =       

     
  =  

     
     

          

  
         

      (25) 

It indicates that the particles adjust the location according to the global best location. The 

crossover operator is applied such that the position of the particle is updated to a better position by 

sharing knowledge with the global best particle. Hence,       
     

   is implemented with 

“Crossover” method. 

Crossover: A fragment is randomly selected from the particle X to replace the corresponding 

location of the particle local best (or the global best), and the replaced particle local best (or the 

global best) is taken as the updated particle X. An example is shown in Figure 6. 

 

Figure 6. An example for the Crossover method. 

(2) The adaptive parameters’ setting 

 ,    and    are adjusted by adaptive adjustment method, the specific operations are as follows. 

The inertia weight w is used to adjust the influence of the previous speed on the current speed, 

which can be set to a certain value ranging from 0 to 1. In the DPSO4A algorithm, to balance the 

ability of global exploration and local exploitation in the search process, w decreases linearly with 

the number of iterations increasing. While w is large, the particle retains more historical information, 

which is beneficial to the diversity of the swarm, thereby the DPSO4A algorithm has the strong 

ability of global exploration; on the contrary, the particle retains less historical information, which is 

beneficial to the concentration of the swarm, thereby the DPSO4A algorithm has the strong ability of 

local exploitation [38]. Eq 26 formulates this setting. 

     
    

 
          (26) 
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Where    is the initial value;    is the total length of inertia weight declining; k is the current 

number of iterations; P is the total number of iterations. 

The cognitive coefficient    is to adjust particles moving to the    
  which is usually set to a 

fixed value of 2 in the basic PSO algorithm [37]. In order to balance the diversity and convergence of 

the DPSO4A algorithm dynamically, an adaptive method is used to adjust the value of    [38]. The 

distance d between two particles is expressed by the number of different information of the current 

particle and the particle local best at the same location. When the distance is large, in order to 

maintain the concentration of the swarm, we should increase the value of    , accelerate the speed of 

particles moving to the particle local best; when the distance is small, in order to maintain the 

diversity of the swarm, we should reduce the value of   , slow down the speed of particles moving to 

the particle local best. 

   
 

 
  
            (27) 

Where n is the length of the particle; d is the distance between two particles (the current particle and 

the particle local best);   
  is an initial value. 

The social coefficient    is to adjust particles moving to the    
 

, which is usually set to a fixed 

value of 2 in the basic PSO algorithm [37]. In order to balance the diversity and convergence of the 

DPSO4A algorithm dynamically,    is adjusted by an adaptive method similar to the adaptive 

method of     [38]. 

   
 

 
  
           (28) 

Where n is the length of the particle; d is the distance between two particles (the current particle and 

the global best);   
  is an initial value. 

(3) Local search 

In order to improve the local search ability of the algorithm, when the particle i is the global 

best or the location updating equation doesn’t work, a local search operator should be performed. 

The local search operator is to exploit a better particle with the neighbour of the original particle, 

which only needs to make some minor changes to the particles. Hence, the local search is 

implemented with “Exchange” method. 

Exchange: The exchange method is to generate randomly two positions (a and b), and exchange 

their value. An example is shown in Figure 7. 

 

Figure 7. An example of the exchange method. 
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3.3. The DPSO4S algorithm 

The DPSO4S algorithm works in the inner layer of the 2DPSO to solve the SCSP. The SCSP is 

modelled as a two-stage HFSP with the additional consideration of surgeon’s constraints. The steps 

of the DPSO4S algorithm are as follows. 

Step 1. Initialize parameters (w,   ,   , S and P); initialize a swarm, each particle of which 

represents a daily surgery schedule. The procedure for generating the initial swarm is as follows: 

Step 1.1. Given that patients are sorted in ascending order of admission time, they will be first 

successively scheduled into a random-chosen operating room available on the given date; 

Step 1.2. When all patients have been scheduled into the operating rooms, they are re-sorted by their 

completion time in ascending order; 

Step 1.3. Each of them is scheduled to a randomly-chosen available recovery bed in the recovery 

room. It is possible that a patient is scheduled to a recovery bed while he/she comes around in the 

operating room. The reason is that the recovery bed is not always available. In this case, when the 

assigned recovery bed is available, he/she is moved from the operating room to the recovery room 

immediately. 

Step 2. Decode the particles with the scheduling heuristic, the details of the scheduling heuristic are 

shown in Section 3.3.3; calculate the objective; find the particle local best and the global best based 

on the objective. 

Step 3. Updating. 

Step 3.1. Update the parameters (w,   ,   ) and the particle’s location. In this process, it is possible 

to generate an infeasible solution. It is necessary to design a particle legalized function as shown in 

Section 3.3.2; 

Step 3.2. Calculate the objective of the updated particles; 

Step 3.3. Update the particle local best and the global best; 

Step 3.4. Increase iteration counter. 

Step 4. If the terminal condition is satisfied, stop the searching and output the global best; otherwise 

return to the Step 3 to continue a new iteration. 

The details of the DPSO4S are as follows. 

3.3.1. The particle representation 

Each particle, i.e. a feasible daily surgery schedule, is represented as an integer array, consisting 

of three parts: 

(1) V1: A vector of size    (the number of patients assigned to the t-th day), storing the number of 

patients assigned to the t-th day. Each member of V1 corresponds a patient. 

(2) V2: A vector of size   , containing the indexes of the operating rooms in the same order as 

that in V1. 

(3) V3: A vector of size   , containing the indexes of the recovery beds in the same order as the 

patients given in V1. 

Figure 8 shows an example of the representation for a scheduling problem. There are 5 patients 

waiting for operation on the t-th day, the first patient is assigned to the first operating room and the 

first recovery bed, the second patient is assigned to the second operating room and the first recovery 

bed. Similarly, the fifth patient is assigned to the third operating room and the third recovery bed. 
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Figure 8. An example of the particle representation for DPSO4S. 

3.3.2. The particle legalized function 

In the SCSP, in the process of updating, it is possible to generate infeasible solutions. Therefore, 

it is necessary to design a particle legalized function. The details are as follows. 

Step 1. Find out all infeasible assignment for patients who were assigned to unavailable operating 

rooms. 

Step 2. For an infeasible assignment for patient i with operating room   , reassign patient i to the 

available operating room  , in addition, in order to ensure the balance of the number of surgeries in 

each operating room, if there is a patient j (j i) who is operated on operating room  , then select 

patient j and replace the operating room with   , otherwise, do not replace, correct the next 

infeasible assignment for patients. Repeat until all infeasible assignments are corrected. 

Step 3. For the corrected particle, sum the workload assigned to each operating room. 

Step 4. Find out the operating rooms in which there is overwork. 

Step 5. Select a patient randomly from the assigned operating room with overwork and assign 

him/her to an operating room with the least amount of surgery in all operating rooms available to the 

patient. Repeat until all the overloading operating rooms are corrected. 

Step 6. Output the feasible solution. 

3.3.3. The scheduling heuristic 

Wu et al. [39] proposed the gap finding method to make a scheduling solution. Before arranging 

the job’s operation, the status of a machine is checked if it has an idle time from the beginning to the 

current time to insert into the current operation. This method pushes the job’s operation forward 

continuously. As long as the machine is idle, the job’s operation is inserted as early as possible, so 

that the operation on each machine can be arranged in a compact manner to achieve active 

scheduling. The gap finding method has been proved to be an effective heuristic to minimize the 

makespan [39]. Hence, we design a gap finding method to solve the SCSP. Before arranging the 

starting time     of the patient j, the surgeon’s available gap and the available gap of operating 

room assigned to patient j until now needs to be calculated first and then calculate     according to 

the following four cases. The flowchart of the scheduling heuristic is shown in Figure 9. 



847 

Mathematical Biosciences and Engineering  Volume 16, Issue 2, 831–861. 

Start

j=1

j >J

Calculate the surgeon’s available gap 

and the available gap of operating 

room assigned to patient j so far

the operating room 

has no available gap

the surgeon has 

no available gap

the surgeon has 

no available gap

Case 1 Case 3 Case 4Case 2

j=j+1

End
Y

N

Y N

Y

N N

Y

 

Figure 9. The flowchart of the scheduling heuristic. 

Table 2. Variable. 

abbreviations Full name 

OR_et The operation ending time in the operating room 

S_et The operation ending time of the surgeon 

OR_est The earliest starting time of the operating room 

S_est The earliest starting time of the surgeon 

U_sg The upper bound of the surgeon’s gap 

L_sg The lower bound of the surgeon’s gap 

U_org The upper bound of the operating room’s gap 

L_org The lower bound of the operating room’s gap 

Case 1. If neither the surgeon nor the operating room has available gap. 

Set     = max {OR_et, S_et} 

Case 2. If the surgeon has available gaps, the operating room has no available gap. 

Set the operation ending time in the operating room as the earliest starting time for the patient 

and then search the available gap of the patient after the earliest starting time. If an available gap is 



848 

Mathematical Biosciences and Engineering  Volume 16, Issue 2, 831–861. 

found, insert patient j into the gap, otherwise calculate     according to Case 1. The detailed steps 

are as follows. 

Step 1. Start from the first available gap of the surgeon. 

Step 2. Calculate a, a = {U_sg − max {OR_est, L_sg}}. 

If a >   , insert the patient into the gap,     = max {OR_est, L_sg}, otherwise, compare the next 

gap until all the gaps are compared. Finally, if all gaps are unavailable, calculate     according to 

Case 1. 

Case 3. If the operating room has available gaps, the surgeon has no available gap. 

Set the operation ending time of the surgeon as the earliest starting time for the patient and 

then search the available gap of the patient after the earliest starting time. If an available gap is 

found, insert patient j into the gap, otherwise calculate     according to Case 1. The detailed 

steps are as follows. 

Step 1. Start from the first available gap of the operating room. 

Step 2. Calculate a, a = {U_org − max {S_est, L_org}}. 

If a >   , insert the patient into the gap,     = max {S_est, L_org}, otherwise, compare the 

next gap until all the gaps are compared. Finally, if all gaps are unavailable, calculate     

according to Case 1. 

Case 4. If both the operating room and the surgeon have available gaps. 

We match all the gaps of the surgeon with all the gaps in the operating room. If an available 

common gap is found, then insert patient j into the common gap, otherwise follow the Case 1. The 

detailed steps are as follows. 

Step 1. 

If max {U_org} > S_et, update the surgeon’s gaps as follow: Set [S_et, max {U_org}] as a 

surgeon’s gap; 

If max {U_sg} > OR_et, update the operating room gaps as follow: Set [OR_et, max {U_sg}] as 

an operating room’s gap. 

Step 2. Obtain the common gaps of the surgeon’s gaps and the operating room gaps. 

Step 3. Start from the first common gap. 

Step 4. Calculate a, b. a = max {L_org, L_sg}, b = max {U_org, U_sg}. 

Common gap = b−a. 

If b−a >   , insert the common gap,     = a, otherwise, compare the next common gap until 

all the gaps are compared. Finally, if all common gaps are unavailable,     is calculated 

according to Case 1. 

To explain the gap finding method clearer, an example is shown in Figure 10. There are 5 

patients waiting to be operated; the duration of the surgery for these patients is 3, 2, 3, 3 and 3 

respectively; the surgeon for these patients is 1, 1, 1, 2 and 2 respectively; the operating room for 

these patients is 1, 2, 3, 1 and 2. The numbers in each rectangle indicate “patient number” and the 

same filled color indicates patients operated by same surgeon. Patients 1, 2, 3 and 4 have been 

sequenced and now it is the patient 5 turn to be sequenced. As can be seen from Figure 10, if we 

don’t consider the existed idle time slots, the patient 5 is placed after the patient 2. However, if the 
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idle time slot is considered, the patient 5 is placed before the patient 2. The complete time for the 

patient 5 will be greatly reduced and the utilization of operating rooms will be increased. 

1

2

41

2

3 3

5

2 4 6 8 100

5

 

Figure 10. An example of how the gap finding method works. 

4. Experiment study 

4.1. Design of experiments 

4.1.1. Experiment setting 

All the experiments are conducted in a desktop computer with an Inter Core i5-3230 2.60 GHz 

CPU, 4.0RAM, WIN-7 OS, and Matlab©. 

4.1.2. The experiment data 

In order to evaluate the performance of the proposed approach in improving the practical 

arrangement of surgical cases in the operating theatre, real data of a hospital in China, are used in 

this study. Normally, all the operating rooms are open from 8:00 am to 4:00 pm. The recovery room 

open simultaneously with operating rooms and remain open until all patients transferred out of the 

operating room are recovered. 

In this study, the experiments are based on 16383 data from the operating theatre, which were 

provided by a hospital in China over a 5-months period (from June 1, 2015 to October 5, 2015). The 

data mainly consists of date of surgery, the starting time and the ending time of surgery, time of the 

patient’s leaving recovery room, corresponding specialty, surgeon, surgery assistants and nurses for 

each surgical case together with some personnel information (such as the patient’s birth date, 

gender, etc.). In principle, these all 16383 data can be used. In order to verify the superiority of the 

proposed method, we select the data in one week with a large number of patients waiting to be 

operated. In order to evaluate the performance of the proposed method in the round, three 

experiments with different size (the small-size instance, the medium-size instance and the large-size 

instance) are carried out. The details of three experiments are listed in Table 3. 

file:///E:/Program%20Files/Youdao/Dict/7.5.2.0/resultui/dict/
file:///E:/Program%20Files/Youdao/Dict/7.5.2.0/resultui/dict/
file:///E:/Program%20Files/Youdao/Dict/7.5.2.0/resultui/dict/
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Table 3. Details of three experiments. 

Instance Department Patient Surgeon Operating room Recovery bed 

The small-size instance 5 28 12 2 2 

The medium-size 

instance 

7 75 21 4 4 

The large-size instance 10 111 36 8 8 

4.1.3. Parameters setting 

The parameters are set as Table 4. The penalty cost of the overtime β is the same as that in 

Tessler et al. [40] and the cost ratio of operating room working hour to recovery room working 

hour   is the same as that in Schuster et al. [41]. The inertia weight   is generally set to 

decrement from 0.9 to 0.4 linearly [42]. Hence, the initial inertia weight    and the total length of 

inertia weight declining    are set to 0.9 and 0.5 respectively. In the 2DPSO algorithm, the 

cognitive coefficient   
  or the social coefficient   

  controls the probability of performing the 

“Crossover” method. Hence,   
  and   

  is the same as crossover probability Pc in Wu and Sun [43]. 

PSO doesn’t require a large swarm size. Generally the size of swarm S takes 20–40 to achieve good 

solutions [42]. Hence, the size of swarm S is set to 30. The number of cycles P is determined by the 

decision problem. In order to balance the quality of solutions and the computational time, the number 

of cycles P is set to 100 by experiment. 

Table 4. Parameters setting. 

parameter Value 

β 1.5 [40] 

  10.9 [41] 

   0.9 

   0.5 

  
  0.8 

  
  0.8 

S 30 

P 100 

4.1.4. The aim 

In order to evaluate the performance of the proposed method, two groups of experiment are 

carried out. 

(1) Comparative experiment. The resources and constraints considered in Fei et al.’ study [21] are 

the same as those considered in our study and Fei et al.’s experiment results [21] are 

representative. Hence, we recode the algorithm in Fei et al. [21] and compare its performance 

with the proposed method on solving three instances to prove the superiority of 2DPSO. 

(2) Numerical experiment for practical example. Design experiments with the practical example to 

solve bi-objective problem, to prove the diversity of solutions. 
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4.2. Results 

4.2.1. Comparative experiment 

In the following section, the small-size instance, the medium-size instance, and the large-size 

instance experiments have been carried out, scheduling Gantt charts are obtained and compared with 

the scheduling Gantt chart in Fei et al. [21]. Then, the scheduling results are presented in Table 5. 

Due to the medium-size instance scheduling results table and the large-size instance scheduling 

results table have too much data, we put these two tables in Appendix A. 

(1) The small-size instance numerical experiment result 

 

Figure 11. The Gantt chart for the small-size instance. 

 

 

  

 

 

 

The solution obtained by the proposed method The solution obtained by Fei et al.’ [21] method 
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Table 5. Scheduling results for the small-size instance. 

Day OR 
Patient 

ID 

Starting time 

(operating room) 

Leaving time 

(operating room) 

Starting time 

(recovery room) 

Leaving time 

(recovery room) 

1 1 1 8:00 10:00 10:00 10:05 

1 1 18 10:00 10:42 10:42 10:47 

1 1 24 10:42 15:54 15:54 15:58 

1 2 17 8:00 13:24 13:24 13:54 

1 2 21 13:24 14:30 14:30 14:57 

1 2 26 14:30 15:48 15:48 15:53 

2 1 27 8:00 9:24 9:24 9:56 

2 1 13 9:48 11:24 11:24 11:43 

2 1 15 11:24 15:30 15:30 15:35 

2 2 2 8:00 9:48 9:48 9:53 

2 2 8 9:48 11:36 11:36 11:42 

2 2 14 11:36 15:30 15:30 16:35 

3 1 5 8:00 11:12 11:12 11:17 

3 1 28 11:12 15:42 15:42 16:10 

3 2 6 8:00 11:00 11:00 11:05 

3 2 11 11:00 14:12 14:12 14:17 

3 2 19 14:12 16:06 16:06 16:11 

4 1 7 8:00 10:54 10:54 11:00 

4 1 9 10:54 15:54 15:54 15:58 

4 2 3 8:00 12:18 12:18 12:22 

4 2 22 12:18 13:54 13:54 13:58 

4 2 25 13:54 15:24 15:24 15:32 

5 1 16 8:00 9:36 9:36 9:36 

5 1 10 10:48 14:30 14:30 14:30 

5 1 23 14:30 15:48 15:48 15:53 

5 2 4 8:00 10:48 10:48 10:53 

5 2 12 10:48 12:18 12:18 12:18 

5 2 20 12:18 15:48 15:48 15:50 

For the solution obtained by the proposed method, the value of F2 equals 2.85; sum up       

  , denoted as f, the value of f equals 943.86. For the solution obtained by Fei et al.’ [21] method, the 

value of F2 equals 4.72, the value of f equals 936.33. The comparison shows that, our method and Fei 

et al.’ [21] method all obtained excellent scheduling result, the value of F2 obtained by the proposed 

method is better than that obtained by Fei et al.’ [21] method, but, the value of f obtained by the 

proposed method is worse than that obtained by Fei et al.’ [21] method. 

(2) The medium-size instance numerical experiment result 
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The solution obtained by the proposed method The solution obtained by Fei et al.’ [21] method 

  

Figure 12. The Gantt chart for the medium-size instance. 

For the solution obtained by the proposed method, the value of F2 equals 15.85; the value of f 

equals 996.66. For the solution obtained by Fei et al.’ [21] method, the value of F2 equals 34.91, the 

value of f equals 1055.99. The comparison shows that, both the value of F2 and the value of f 

obtained by the proposed method are better than those obtained by Fei et al.’ [21] method. 

(3) The large-size instance numerical experiment result 
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The solution obtained by the proposed method The solution obtained by Fei et al.’ [21] method 

  

Figure 13. The Gantt chart for the large-size instance. 

For the solution obtained by the proposed method, the value of F2 equals 46.80; the value of f 

equals 1018.15. For the solution obtained by Fei et al.’ [21] method, the value of F2 equals 129.89, 
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the value of f equals 1150.36. The comparison shows that, both the value of F2 and the value of f 

obtained by the proposed method are better than those obtained by Fei et al.’ [21] method. 

4.2.2. Numerical experiment for practical example 

The proposed method can take into account both patients’ satisfaction and operating room costs, 

and obtains Pareto sets showed in Figure 14, which proved the diversity of solutions. We choose a 

solution from Pareto sets and get its scheduling Gantt chart, as shown in Figure 15. The scheduling 

results are presented in Table 6. Based on Pareto sets, hospital managers can balance patients’ 

satisfaction and operating room costs to choose one of solutions as the final solution. 

 

Figure 14. The Pareto set. 

 

 

Figure 15. The scheduling Gantt chart of a solution. 
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Table 6. The scheduling results. 

Day OR 
Patient 

ID 

Starting time 

(operating room) 

Leaving time 

(operating room) 

Starting time 

(recovery room) 

Leaving time 

(recovery room) 

1 1 1 8:00 10:00 10:00 10:04 

1 1 2 10:00 11:48 11:48 11:53 

1 1 13 11:48 13:24 13:24 13:43 

1 1 22 13:24 15:00 15:00 15:04 

1 2 14 8:00 11:54 11:54 12:58 

1 2 27 11:54 13:18 13:18 13:50 

1 2 18 13:24 14:06 14:06 14:10 

1 2 21 14:06 15:12 15:12 15:39 

2 1 4 8:00 10:48 10:48 10:52 

2 1 5 10:48 14:00 14:00 14:04 

2 1 8 14:00 15:48 15:48 15:54 

2 2 7 8:00 10:54 10:54 11:00 

2 2 15 10:54 15:00 15:00 15:04 

3 1 6 8:00 11:00 11:00 11:05 

3 1 11 11:00 14:12 14:12 14:16 

3 1 19 14:12 16:06 16:06 16:10 

3 2 23 8:00 9:18 9:18 9:22 

3 2 24 9:18 14:30 14:30 14:34 

3 2 25 14:30 16:00 16:00 16:07 

4 1 3 8:00 12:18 12:18 12:22 

4 1 28 12:18 16:48 16:48 17:16 

4 2 9 8:00 13:00 13:00 13:04 

4 2 12 13:00 14:30 14:30 14:30 

5 1 16 8:00 9:36 9:36 9:36 

5 1 17 9:36 15:00 15:00 15:30 

5 1 26 15:00 16:18 16:18 16:22 

5 1 10 8:00 11:42 11:42 11:42 

5 1 20 11:42 15:12 15:12 15:13 

4.3. Discussions 

In order to compare comprehensively, we consider not only F2 and f, but also the total number 

of overtime hours in planning period (denoted as OT) and the total number of idle hours during the 

regular open period of operating rooms in planning period (denoted as IT). The comparison between 

the solution obtained by the proposed method and the solution obtained by Fei et al.’ [21] method is 

shown in Table 7. 
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Table 7. The comparison results. 

Instance Method      OT (hours) IT (hours) 

The small-size instance 
a 2.85 943.86 0.1 4.5 

b 4.72 936.33 0.2 4.6 

The medium-size instance 
a 15.85 996.66 10.5 1.6 

b 34.91 1055.99 21 12.1 

The large-size instance 
a 46.80 1018.15 17.6 32.6 

b 129.89 1150.36 60 75 

a: The solution obtained by the proposed method. b: The solution obtained by Fei et al.’ [21] method. 

It can be seen from Table 7 that, for the small-size instance, the value of F2 and OT obtained by 

the proposed method are better than those obtained by Fei et al.’ [21] method, however, the value of f 

and IT obtained by Fei et al.’ [21] method are better than those obtained by the proposed method. 

Hence, the proposed method is comparable to Fei et al.’ [21] method. For the medium-size and 

large-size instances, the value of F2, f, OT and IT obtained by the proposed method are better than 

those obtained by Fei et al.’ [21] method. Hence, the proposed method is better than Fei et al.’ [21] 

method. To sum up, with the size increasing, the operating room scheduling solutions obtained by the 

proposed method have less idle time between two surgical cases, much higher utilization of operating 

rooms and produce less overtime. 

The fact that the solution obtained by the proposed method is superior to that obtained by 

Fei et al. [21] method can be analysed from both the model and the algorithm. 

In term of the model, our proposed method integrates the planning problem and the scheduling 

problem. For each allocation result obtained in the SCAP, there are n kinds of solutions in the SCSP. 

Therefore, when there are m kinds of allocation results in the SCAP, there are total (m   n) kinds of 

solutions. The solution space is huge. The method employed in Fei et al. [21] is a decomposition one, 

at first, in the SCAP, just determined an allocation result from m kinds of allocation result. Then, for 

this allocation result, there are n kinds of solutions in the scheduling layer. Therefore, the solution 

space is n. After comparison, it is obvious that the integrated method has a greater solution space and 

can find a better solution. 

In term of the algorithm, a 2DPSO algorithm is proposed to solve this problem. In the 2DPSO 

algorithm, (1) parameters w,   ,     are adjusted adaptively. w decreases linearly with the number of 

iterations increasing. While w is large, the particle keeps more historical information, leading to the 

diversity of swarm; on the contrary, while w is small, leading to the concentration of the swarm.     

(  ) is adjusted adaptively according to the distance between the current particle and the local best 

(the global best), which balances the diversity and concentration of the swarm effectively; (2) 

crossover, insertion and exchange operators are designed to update the particle position, which 

balance the global exploration and local exploitation of the 2DPSO algorithm; (3) in the scheduling 

layer, the gap finding method is designed, This method pushes patients’ operation time forward 

continuously. As long as the operating room is idle, the patient is inserted as early as possible, so that 

the patients’ operation time can be arranged in a compact manner to achieve active scheduling. 

Hence, the utilization of operating rooms is increased. Moreover, as the size of instances increases, 

the optimization effect becomes more and more obvious. 
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5. Conclusions 

The aim of this paper is to solve the joint problem of planning and scheduling patients in 

operating rooms on an operational level (weekly basis). We study how to optimize the operating 

rooms planning and scheduling problem simultaneously. A multi-objective optimization model is 

established. An integrated optimization approach is proposed and a group of experiments are carried 

out. The main conclusions are as follows. 

(1) An integrated multi-objective integer programming model is proposed to plan and schedule 

the operating rooms in a hospital efficiently. The aim is to maximize the overall patients’ satisfaction 

and minimize the cost of overtime in operating room as well as the daily cost of operating room and 

recovery beds. 

(2) A bi-layer discrete particle swarm optimization algorithm is proposed to solve this problem. 

The Surgical Case Assignment Problem is modelled as a resource-constrained bin-packing problem 

and solved by discrete particle swarm optimization algorithm. The Surgical Case Sequencing 

Problem, based on the results obtained in the planning phase, is modelled as a two-stage hybrid 

flow-shop problem with additional consideration of surgeon’s constraints and solved by discrete 

particle swarm optimization algorithm. 

(3) The results of the numerical experiment show the proposed algorithm outperformed 

Fei et al.’ [21] algorithm and can solve the operating room scheduling problem effectively and 

efficiently. 

However, there are many limitations in our study. In term of the bi-layer discrete particle swarm 

optimization algorithm, the time computational complexity is high and the algorithm should be 

simplified. In term of the model of operating room scheduling problem, firstly, emergency cases are 

not taken into consideration and only the surgeries for the elective patients are considered; secondly, 

the constraints of some human resources and material resources are not taken into consideration, 

such as nurses, surgical equipment, etc.; finally, the preparation time for each operation and the 

clean-up time before leaving the operating room are included in the operating time. It is increases the 

doctors’ operating time. Hence, in the future, the bi-layer discrete particle swarm optimization 

algorithm should be further improved and the model considered should be more practical. 
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