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Abstract: Time-varying individual host susceptibility to a disease due to waning and boosting of
immunity is known to induce rich long-term behavior of the disease transmission dynamics. Simulta-
neously, the impact of the time-varying heterogeneity of host susceptibility on the short-term behavior
of epidemics is not well-studied despite the availability of a large amount of epidemiological data on
short-term epidemics. This paper proposes a parsimonious mathematical model describing the short-
term transmission dynamics by taking into account waning and enhancing susceptibility following the
infection. In addition to the common classification in the standard SIR model, i.e., “no epidemic” as
R0 ≤ 1 or normal epidemic as R0 > 1, the proposed model also shows the “delayed epidemic” class
when an epidemic takes off after the negative slope of the epidemic curve at the initial phase of the
epidemic. The condition for each of the three classes is derived based on the obtained explicit solution
for the proposed model.

Keywords: epidemic model; short-term disease transmission dynamics; boosting of immunity; final
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1. Introduction

Modelling is often used to understand the transmission dynamics of infectious diseases. The
susceptible-infective-removed (SIR) model is known to be the simplest model to describe these trans-
mission dynamics [1, 10]. The SIR model describes the transmission of pathogens from infected to
susceptible individuals and the removal of infected individuals from the targeted host population due
to the establishment of immunity or the host’s death or immigration. Due to the wide variation in the
natural history of pathogens, many extensions of the basic SIR model have been proposed so far.
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An important extension is the inclusion of the evolution of susceptibility to an infection along with
a pathogen. The basic SIR model assumes that the host immunity perfectly protects the host from
reinfection over time and reinfection can never occur. However, reinfection events are frequently ob-
served for many infectious diseases such as tuberculosis [31] and those caused by coronavirus [20],
respiratory syncytial virus [15] and hepatitis C virus [30]. One of the important mechanisms of re-
infection is waning immunity. Decreased herd immunity by waning immunity of individuals induces
re-emergence of an epidemic, and boosting immunity by re-vaccination is required to control the epi-
demic [4]. Another mechanism is imperfection of immunity by an infection event. A booster dose
of a vaccine is required to establish a high enough immunity level to protect hosts from reinfection
[29], which implies that multiple exposures to the pathogen is required to establish the high enough
immunity level. Moreover, the enhancement of susceptibility to reinfection is also observed for several
infectious diseases [32, 24].

An epidemic model incorporating variable susceptibility of recovered individuals was formulated by
Kermack and McKendrick [22, 23]. However, the authors did not obtain a clear biological conclusion
[8, 18]. In [17, 18] the author performed stability analysis for the Kermack and McKendrick’s reinfec-
tion model formulated as a system of partial differential equations. The existence and bifurcation of the
endemic equilibrium was analyzed in detail. Destabilization of the endemic equilibrium was shown to
be possible for epidemic models with waning immunity [9, 16, 28]. Previous modeling studies showed
that waning and natural-boosting immunity by exposing to pathogens can trigger a counter-intuitive
effect of vaccination [27]. It is suggested that waning immunity in vaccinated hosts can trigger back-
ward bifurcation of the endemic equilibrium [2, 6, 26]. Estimating vaccine effectiveness is essential to
control epidemics. However, vaccine effectiveness reflects the complicated epidemiological dynamics
which is scaled by waning and natural-boosting immunity, e.g., waning and boosting of immunity can
induce periodic epidemic outbreaks as part of the long-term behavior of the epidemic [3].

Unlike the long-term behavior of an epidemic, its short-term behavior with waning and boosting of
immunity is not well understood despite many field data of short-term epidemics have been analyzed
using models that do not consider waning and boosting of immunity. For the short-term behavior of
epidemics, the dynamics with the constant immune protection rate against reinfection has been studied
so far. However, waning and boosting of immunity change the immune protection rate. In [21] the
author analyzed transient dynamics of a reinfection epidemic model, while ignoring the demographic
process in the model. In the model, reinfection of recovered individuals occurs assuming that these
individuals have suitable susceptibility to the disease. It was shown that the disease transmission
dynamics changes qualitatively when the basic reproduction number crosses the reinfection threshold.
See also [13] for the model with demographic process.

This paper presents a mathematical model taking into account waning and enhancing susceptibility
following an infection. We suppose that reinfection can reduce the immune protection level, e.g., as it
is the case in antibody-dependent enhancement [5].

The timescale of natural-waning immunity, which is not due to reinfection, is relatively longer
than that of the transmission dynamics e.g., the minimum annual waning rate of immunity is −2.9%
for rubella and −1.6% for measles [25], compared to the infectious periods of 11 days for rubella
[11] and 14 days for measles [1]. Hence the proposed model focuses only on waning and enhancing
susceptibility triggered following an infection.

Since the waning and boosting of immunity can induce periodic infection outbreak on the long-term
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disease transmission dynamics ([3]), a complicated epidemic curve can be observed in the model for
the short-term disease transmission dynamics as well. In this paper, an explicit solution for a number
of infective individuals in terms of a number of susceptible individuals is obtained. Consequently, the
impact of waning and enhancing susceptibility following an infection on the short-term behavior of the
transmission dynamics is explored. The shape of the short-term epidemic curve is analyzed in detail.

The paper is organized as follows. In Section 2 an epidemic model taking into account waning
and enhancing susceptibility following an infection is formulated as a nonlinear system of differential
equations. The model includes the standard SIR epidemic model and the reinfection epidemic model
studied in [21] as special cases. Section 3 studies the disease transmission dynamics when the basic
reproduction number R0 exceeds one. The epidemic peak is shown to be one, as is the case for the
standard SIR epidemic model. Section 4 considers the disease transmission dynamics when R0 ≤ 1.
It demonstrates that the epidemic occurs even if R0 ≤ 1 due to the enhancement of susceptibility of
recovered individuals. The shape of the epidemic curve is analyzed in detail. In Section 5, the relatiton
of final epidemic size with the model parameters is derived from the obtained explicit solutions. Plans
for future work are discussed in Section 6.

2. An epidemic model with waning and enhancing susceptibility following infection

First of all let us introduce the epidemic model studied in [21]. In the model it is assumed that the
infectious disease induces partial immunity. Denote by S (t), I(t) and R(t) the proportions of susceptible
population, infective population and recovered population at time t, respectively. The partial immunity
model is formulated as

S ′(t) = −βS (t)I(t), (2.1a)
I′(t) = βS (t)I(t) + βσR(t)I(t) − γI(t), (2.1b)
R′(t) = γI(t) − βσR(t)I(t). (2.1c)

The positive parameters β and γ are the transmission coefficient and the recovery rate, respectively.
The parameter σ is the relative susceptibility of recovered individuals, who have been infected at least
once and have recovered from the infection. We obtain the standard SIR epidemic model, if σ = 0,
i.e., recovered individuals are completely protected from the infection.

In this paper the partial immunity model (2.1) is modified as follows. When a recovered individual
is exposed to the force of infection, immunity is boosted with probability 1 − α so that one obtains
permanent immunity to the disease, while one contracts the disease again with probability α. The
partial immunity model (2.1) is modified as

S ′(t) = −βS (t)I(t), (2.2a)
I′(t) = βS (t)I(t) − γI(t) + βσαI(t)R(t), (2.2b)
R′(t) = γI(t) − βσI(t)R(t), (2.2c)
B′(t) = βσ (1 − α) I(t)R(t) (2.2d)

with the following initial conditions

S (0) = S 0 > 0, I(0) = I0 > 0, R(0) = R0 ≥ 0, B(0) = B0 ≥ 0,
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S 0 + I0 + R0 + B0 = 1.

Here B(t) denotes the proportion of population with permanent immunity at time t. We obtain the
model (2.1) by α = 1 and the SIR model by α = 0. Throughout the paper, we assume the following
two conditions

0 < σ, (2.3)
0 < α < 1. (2.4)

We first prove a basic result for asymptotic behavior of the solution.

Lemma 1. There exist limt→∞ S (t), limt→∞ I(t), limt→∞ R(t) and limt→∞ B(t). It holds that

lim
t→∞

I(t) = 0. (2.5)

Proof. One easily sees that S , R and B are respectively monotone bounded functions. Specifically S
is a monotone decreasing function, while B is a monotone increasing function. Therefore, S , R and B
tend to some constants. Since S (t) + I(t) + R(t) + B(t) = 1 holds for t ≥ 0, limt→∞ I(t) also exists. We
now claim that (2.5) holds. From (2.2a), (2.2b) and (2.2c) one has

S ′(t) + I′(t) + αR′(t) = −γ (1 − α) I(t).

Suppose that limt→∞ I(t) > 0. Integrating the above equation, we derive a contradiction. Hence (2.5)
holds. �

3. One epidemic peak for R0 > 1

We define the basic reproduction number by

R0 := b (S 0 + ασR0) ,

where b =
β

γ
. The basic reproduction number is the expected number of secondary cases produced by

one infective individual in the expected one infectious period, 1
γ

in the initial phase of epidemic. Noting
that both susceptible and recovered populations, which compose the initial host population, have sus-
ceptibility to the disease, we may call R0 the basic reproduction number, although R0 is conventionally
called the effective reproduction number [19].

From (2.2a) and (2.2b) one obtains the following

dI
dS

= −
1

bS
(R(S ,R) − 1) (3.1)

and
dI(t)

dt
= γI(t) (R(S (t),R(t)) − 1) , (3.2)

where
R(S ,R) := b (S + ασR) , S ≥ 0, R ≥ 0.
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Noting that R (S 0,R0) = R0, it is easy to see that

R0 > 1⇔I′(0) > 0,
R0 = 1⇔I′(0) = 0,
R0 < 1⇔I′(0) < 0,

i.e., if R0 > 1 then the epidemic curve initially grows, while if R0 < 1 then the epidemic curve initially
decays.

First we show that R(t) can be expressed in terms of S (t).

Proposition 1. It holds that

R(t) =
1
σb

(
1 − (1 − σbR0)

(
S (t)
S 0

)σ)
, t ≥ 0. (3.3)

Proof. Assume that 1 − σbR0 , 0 holds. From the equations (2.2a) and (2.2c) we have

dR
dS

= −
1 − σbR

bS
. (3.4)

Using the separation of variables, we obtain(
S (t)
S 0

)σ
=

1 − σbR (t)
1 − σbR0

, (3.5)

thus (3.3) follows. It is easy to see that the equality in (3.3) also holds, if 1 − σbR0 = 0. �

From Lemma 1 we have
R(t) = r(S (t)), (3.6)

where

r(S ) :=
1
σb

(
1 − (1 − σbR0)

(
S
S 0

)σ)
, 0 ≤ S ≤ S 0. (3.7)

Then we can show that I(t) and B(t) are explicitly expressed in terms of S (t) and R(t).

Proposition 2. It holds that

I(t) =I0 + (S 0 − S (t)) + (1 − α)
1
b

ln
(
S (t)
S 0

)
+ α (R0 − R(t)) , (3.8)

B(t) =B0 + (1 − α)
{
−

1
b

ln
(
S (t)
S 0

)
+ (R0 − R(t))

}
(3.9)

for t ≥ 0.

Proof. From (2.2a) and (2.2b) we have

dI
dS

= −1 +
1

bS
− ασ

R
S
. (3.10)
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One can compute, using (3.6) and (3.7),∫
σR
S

dS =σ

∫
1
S

[
1
σb

(
1 − (1 − σbR0)

(
S
S 0

)σ)]
dS

=
1
b

[∫
1
S

dS − (1 − σbR0)
∫ (

S
S 0

)σ 1
S

dS
]
.

From (3.5) and (3.4) in the proof of Lemma 1 we get∫ S (t)

S 0

(
S
S 0

)σ 1
S

dS = −b
∫ R(t)

R0

(
1 − σbR
1 − σbR0

)
1

1 − σbR
dR = −b

1
1 − σbR0

∫ R(t)

R0

dR.

= −b
1

1 − σbR0
(R(t) − R0) .

Therefore, we get ∫ S (t)

S 0

σR
S

dS =
1
b

ln
(
S (t)
S 0

)
+ (R(t) − R0) .

Thus we obtain (3.8).
From (2.2a) and (2.2b) we have

dB
dS

= − (1 − α)σ
R
S
. (3.11)

Similarly, one obtains (3.9). �

To analyze the epidemic curve, we study the function R(S ,R) with R = r (S ). Let

R̂(S ) := R(S , r (S )).

We then compute the first and second derivatives of R̂:

R̂′ (S ) = b
(
1 + ασr′ (S )

)
, (3.12)

R̂′′ (S ) = bασr′′ (S ) . (3.13)

From the equation (3.4) in Lemma 1, it is easy to obtain the following result.

Lemma 2. One has

r′(S ) = −
1
b

(1 − σbR(0))
S σ−1

S σ
0
, (3.14)

r′′(S ) = (σ − 1)
1
S

r′(S ). (3.15)

Note that, for σ = 1 or 1 − σbR0 = 0, r is a constant function. For σ , 1 and 1 − σbR0 , 0, , ris
either monotone increasing or decreasing function, thus R̂ has at most one extremum.

We now show the standard epidemic case if R0 > 1 holds.
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Proposition 3. Let us assume that R0 > 1 holds. Then

R̂(0) = α < 1 < R̂(S 0) = R0 (3.16)

holds and there exists a unique root of

R̂(S ) = 1, 0 < S < S 0.

Proof. It is easy to see that (3.16) holds. First assume that r′(S ) ≥ 0 for 0 ≤ S ≤ S 0. Then, from
(3.12), one can see that R̂ is an increasing function. Thus we obtain the conclusion. Next assume that
r′(S ) < 0 for 0 ≤ S ≤ S 0. By (3.13) and Lemma 2, one sees that R̂ has at most one minimum for
0 ≤ S ≤ S 0. Therefore, from (3.16), we obtain the conclusion. �

Then, from Proposition 3, Lemma 1 and (3.2), we obtain the following result.

Theorem 1. Let us assume that R0 > 1 holds. Then there is a tp > 0 such that I is monotonically
increasing for t ∈

(
0, tp

)
and monotonically decreasing for t > tp. It holds limt→∞ I(t) = 0.

4. Delayed epidemic for R0 ≤ 1

In the standard SIR model, when R0 ≤ 1 holds, then the epidemic curve monotonically decreases
and infective population tends to 0 eventually as time goes to infinity. The situation changes in the
model with waning and enhancing susceptibility following infection(2.2), due to the susceptibility
of the recovered individuals. In particular, if σ > 1 then there is a possible delayed outbreak as
the recovered population increases which will induce the epidemic later even if R0 ≤ 1. The basic
reproduction number, which characterizes the initial dynamics, is not a sufficient criterion to determine
the outbreak due to the recovered population.

First let us consider a simple case that σ ≤ 1 holds. We have the standard scenario: if R0 ≤ 1 then
the epidemic does not occur. Subsequently we study the disease transmission dynamics when σ > 1.
We show that enhancement of susceptibility after the infection can induce an epidemic later.

4.1. σ ≤ 1

We show that the infective population is monotonically decreasing for t ≥ 0, similar to the SIR
model, when R0 ≤ 1.

Proposition 4. Let us assume that R0 ≤ 1 and σ ≤ 1 holds. Then

R̂(S ) ≤ 1, 0 ≤ S ≤ S 0.

Proof. Note that

R̂(0) = α < 1, R̂(S 0) = R0 ≤ 1 (4.1)

holds. First let us consider the case that σ = 1 or 1−σbR0 = 0. In these cases R(S ) is a linear function
of S , thus we obtain the conclusion from (4.1). Let us assume that σ < 1 and 1 − σbR0 , 0 hold. If
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(a) Graph of R̂(S ) − 1
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(b) Phase portrait of the solution (I((t), S (t))
in the (I, S ) plane

Figure 1. The graph of R̂(S ) − 1 for 0 ≤ S ≤ S 0 is shown in (A). Here R0 ≤ 1 and
σ > 1. The parameters are chosen such that (4.4) and R̂(S̃ ) > 1 hold. The parametric curve
t → (I(t), S (t)) in the (I, S ) plane is plotted in (B). It is shown that I has a local minimum at
S = Ŝ 2 and local maximum at S = Ŝ 1.

1 − σbR0 < 0, then one has r′(S ) ≥ 0 for 0 < S < S 0, thus R̂ is an increasing function. We then obtain
the conclusion from (4.1). Next assume that 1 − σbR0 > 0. One sees that

lim
S ↓0

r′(S ) = −∞ =⇒ lim
S ↓0
R̂′(S ) = −∞.

Then r′(S ) < 0 holds for 0 < S < S 0. By Lemma 2, one sees that R̂ has at most one minimum for
0 ≤ S ≤ S 0. Therefore we obtain the conclusion. �

Then, from Propositions 4, Lemma 1 and (3.2), we obtain the following result.

Theorem 2. Let us assume that R0 ≤ 1 and σ ≤ 1 hold. Then I is monotonically decreasing for t ≥ 0.
It holds limt→∞ I(t) = 0.

4.2. σ > 1

In this subsection we consider the case that

R0 ≤ 1, σ > 1 (4.2)

hold. We show the following results for the graph of R̂.

Proposition 5. Let us assume that R0 ≤ 1 and σ > 1 hold.

1. If
b
(
S 0 + ασ2R0

)
≥ ασ (4.3)

then R̂(S ) ≤ 1 for 0 ≤ S ≤ S (0).
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2. If
b
(
S 0 + ασ2R0

)
< ασ (4.4)

then there is a unique maximum for 0 < S < S 0 at S = S̃ , where

S̃ :=
(

bS 0

σα (1 − σbR0)

) 1
σ−1

S 0 < S 0. (4.5)

Then

(a) If R̂(S̃ ) > 1 then there are two roots for R̂(S ) = 1 for 0 < S < S 0. Denote the roots by Ŝ 1

and Ŝ 2 such that
0 < Ŝ 1 < S̃ < Ŝ 2 < S 0,

then

R̂(S )


< 1, Ŝ 2 < S ≤ S 0,

> 1, Ŝ 1 < S < Ŝ 2,

< 1, 0 < S < Ŝ 1.

(b) If R̂(S̃ ) ≤ 1 then R̂(S ) ≤ 1 for 0 ≤ S ≤ S 0.

Proof. For σ > 1 one sees that

lim
S ↓0

r′(S ) = 0 =⇒ lim
S ↓0
R̂′(S ) = b > 0.

From the monotonicity of R̂′, if limS ↑S 0 R̂
′(S ) > 0 then R̂(S ) ≤ 1 for 0 ≤ S ≤ S 0 follows. Computing

lim
S ↑S 0
R̂′(S ) = b

(
1 + ασr′(S 0)

)
=

1
S (0)

(
b
(
S 0 + ασ2R0

)
− ασ

)
,

one can see that (4.3) is equivalent to that limS ↑S 0 R̂
′(S ) > 0 holds.

Next assume that (4.4) holds. Then

lim
S ↑S 0
R̂′(S ) < 0 < lim

S ↓0
R̂′(S ).

From the monotonicity of R̂′, there is a unique maximum for 0 < S < S 0. Solving R̂′(S ) = 0, we
obtain S̃ given as in (4.5). It is now straightforward to obtain the statements (a) and (b). �

In Figure 1, we plot the graph of the function R̂(S ) − 1 for 0 ≤ S ≤ S 0, where R0 ≤ 1 and σ > 1.
Parameters are fixed so that (4.4) and R̂(S̃ ) > 1 hold.

From Proposition 5, Lemma 1 and 3.2, we first obtain the result for the extinction of the disease.

Theorem 3. Let us assume that R0 ≤ 1 and σ > 1 holds. If either

1. (4.3) holds, or
2. (4.4) and R̂(S̃ ) ≤ 1 hold,
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then I is monotonically decreasing for t ≥ 0. It follows that limt→∞ I(t) = 0.

Now it is assumed that (4.2) holds. If
R̂(S̃ ) > 1

holds, where S̃ is given by (4.5), then I(t) may attain a minimum and a maximum (see Figure 1). This
implies that even if R0 ≤ 1, the epidemic curve may grow for a certain time interval, which we call
delayed epidemic.

To determine if the delayed epidemic indeed occurs, we evaluate the minimum of I(t) using (3.8) in
Proposition 2. If S (t) = Ŝ 2 for some t, I(t) is given by I, where

I := I0 +
(
S 0 − Ŝ 2

)
+ (1 − α)

1
b

ln
(
Ŝ 2

S 0

)
+ α

(
R0 − r(Ŝ 2)

)
. (4.6)

See also Figure 1 (B) for the phase portrait in the (I, S )-plane.

Theorem 4. Let us assume that R0 ≤ 1 and σ > 1 holds. Furthermore, assume that (4.4) and

R̂(S̃ ) > 1

hold.

1. If I ≤ 0, then I is monotonically decreasing for t ≥ 0.
2. If I > 0, then there is an interval [t1, t2] such that I increases for t1 ≤ t ≤ t2 and decreases for

0 ≤ t ≤ t1 and t2 ≤ t.

It follows that limt→∞ I(t) = 0.

Proof. One sees that I has a local maximum and minimum with respect to t and S , where R̂(S ) = 1
holds (see (3.1) and (3.2)). I has a local minimum at S = Ŝ 2 ∈

(
S̃ , S 0

)
and I is increasing for

Ŝ 2 ≤ S ≤ S 0 (see Figure 1 (B)). Noting that I(t) > 0 for t ≥ 0 and that S is a decreasing function with
respect to t, I ≤ 0 implies that I is monotonically decreasing for t ≥ 0. On the other hand, if I > 0 then
I is monotonically increasing for S < Ŝ 1, decreasing for Ŝ 1 < S < Ŝ 2 and then increasing for Ŝ 2 < S .
There exist t1 and t2 such that S (t1) = Ŝ 2 and S (t2) = Ŝ 1. Thus we obtain the conclusion. From Lemma
1, it follows that limt→∞ I(t) = 0. �

Thus the model has three different transmission dynamics: no epidemic, normal epidemic and de-
layed epidemic as illustrated in Figure 2. Figure 3 shows parameter regions for the three different
disease transmission dynamics. The region for the delayed epidemic become larger with respect to
the initial condition of I and the susceptibility σ. Since the initial condition of I is involved in the
condition of Theorem 4, the initial condition qualitatively changes the epidemic curve, see Figure 4:
delayed epidemic is induced by a large initial condition.

Due to the nonlinearity, it may not be possible to explicitly express the condition under which a
delayed epidemic occurs in terms of the the initial conditions. We here consider a special case σ = 2
in order to illustrate that a certain amount of the initial infectives is required for a delayed epidemic.
We assume that R0 = B0 = 0 to keep the presentation simple, although one may follow the approach
for R0 > 0 or B0 > 0. We let

x(t) =
S (t)
S 0

, y(t) =
1 − σbR(t)
1 − σbR0

.
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Then, from (3.5) in the proof of Lemma 1, we get y(t) = x(t)σ. Assume that σ = 2 and R0 = B0 = 0
hold. One easily sees that the condition R0 ≤ 1 is equivalent to

bS 0 ≤ 1. (4.7)

It can be seen that R̂(S ) = 1 has two roots if and only the following equation has two roots

f (x) = 0, x ∈ [0, 1] , (4.8)

where
f (x) := bS 0x − αx2 − (1 − α) = 0.

Note f (0) = −(1 − α) < 0 and f (1) = bS 0 − 1 ≤ 0. If (bS 0)2 > 4α (1 − α) then the equation (4.8) has
two roots. Together with the condition (4.7) we now assume that

2
√
α (1 − α) < bS 0 ≤ 1 (4.9)

holds. If (4.8) holds, we have

bS 0 = αx +
1 − α

x
, (4.10)

where we regard x as a free parameter. Under the condition (4.9), equation (4.10) has two roots in
[0, 1] for 1

2 < α < 1 and the larger root exists in the interval
(√

(1 − α) /α, 1
]
, thus we vary x in(√

(1 − α) /α, 1
]
.

From (3.8) one can express I(t) in terms of x(t):

I(t) =
1
b

(
b(1 − S 0x(t)) + α

x(t)2 − 1
2

+ (1 − α) ln x(t)
)
. (4.11)

Assume I = 0, which is the threshold condition for a delayed epidemic. Using (4.11) and (4.10), b and
S 0 can be expressed in terms of x as

b =

(
1 −

α

2

)
+

1
2
αx2 − (1 − α) ln x,

S 0 =
αx + 1−α

x(
1 − α

2

)
+ 1

2αx2 − (1 − α) ln x

for x ∈
(√

(1 − α) /α, 1
]
. Then we can plot a parametrized curve in (I0, b) plane, using I0 = 1 − S 0,

which shows the threshold condition for a delayed epidemic, see Figure 5. In the Figure 5, we also
plot two curves bS 0 = b (1 − I0) = 1 (corresponding to the condition R0 = 1) and bS 0 = b (1 − I0) =

2
√
α (1 − α). A delayed epidemic occurs in the region enclosed by the three curves, showing that

delayed epidemic requires sufficiently large initial infectives. Figure 5 also shows that if I0 decreases,
then either the condition R0 > 1 holds (i.e., normal epidemic) or I ≤ 0 holds (i.e., no epidemic),
depending on the value of b.

Consider a special case that R0 → 0. The basic reproduction number is given as R0 = bS 0. The
conditions (4.4) becomes

R0 < σα

and S̃ =
(
R0
σα

) 1
σ−1 S 0. If R̂(S̃ ) > 1 holds, then the delayed epidemic may occur.
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Time t

I(
t)

(A) No epidemic (B) Delayed epidemic (C) Normal epidemic

Figure 2. Examples of three types of epidemic curve. (A) shows no epidemic case, (B)
shows delayed epidemic, and (C) shows normal epidemic, respectively. Parameters were set
as R0 = 0.4 for (A), 0.8 for (B), and 1.2 for (C), other parameter values are identical between
(A), (B) and (C): α = 0.9, σ = 5, S 0 = 0.99, I0 = 0.01, and R0 = B0 = 0.

(D) σ=2, I(0)=0.1 (E) σ=3, I(0)=0.1 (F) σ=4, I(0)=0.1

(A) σ=2, I(0)=0.01 (B) σ=3, I(0)=0.01 (C) σ=4, I(0)=0.01

α α α

α α α

R
0

R
0

R
0

R
0

R
0

R
0

Figure 3. The dependency of epidemic type on R0 and α for several σ and I0. White are
denotes “no epidemic”, light gray area denotes “delayed epidemic”, and gray area denotes
“normal epidemic”, respectively.

Time t

I
(t

)

(A) I(0)=0.01 (B) I(0)=0.1

Figure 4. The initial condition for I changes the disease transmission dynamics. Here pa-
rameters are chosen as β = 0.8, γ = 1, α = 0.9, σ = 3. R0 = B0 = 0. (A) shows no epidemic
for I0 = 0.01 while (B) shows delayed epidemic for I0 = 0.1.
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Figure 5. The disease transmission dynamics in a parameter plane (I0, b). Here parameters
are chosen as σ = 2, α = 0.75 and R0 = B0 = 0. In the region (A) R0 = bS 0 > 1 holds, thus
an epidemic occurs. In the regions (B) and (C), R0 < 1 holds. In the region (B) I > 0, thus a
delayed epidemic occurs and in the region (C) I ≤ 0, thus no epidemic occurs.

5. Final epidemic size

Let
(S (∞), I(∞),R(∞), B(∞)) = lim

t→∞
(S (t), I(t),R(t), B(t)) .

It follows that I(∞) = 0. From the relations (3.8), (3.3) and (3.9), one sees that (S (∞),R(∞), B(∞))
satisfy the following equations

0 =I0 + (S 0 − S (∞)) + (1 − α)
1
b

ln
(
S (∞)

S 0

)
+ α (R0 − R(∞)) , (5.1)

R(∞) = r(S (∞)), (5.2)

B(∞) = B0 + (1 − α)
{
−

1
b

ln
(
S (∞)

S 0

)
+ (R0 − R(∞))

}
. (5.3)

The final epidemic size is given by R(∞) + B(∞), the number of individuals who are infected at least
once. From (5.1) and (5.2) we get the following equation

0 = I0 + (S 0 − S (∞)) + (1 − α)
1
b

ln
(
S (∞)

S 0

)
+ α (R0 − rS ((∞))) . (5.4)

In Figure 6, we plot R(∞) + B(∞) = 1 − S (∞), R(∞) and B(∞) with respect to R0.
Numerically we observe that R(∞) is not monotone with respect to R0. Small R0 allows the increase

of R(∞), on the other hand, does not contribute to the increase of B(t), the outbreak ends before the
transition from R(t) to B(t) via I(t) occurs among most R(t). Increase of R0 contributes the transition
from R(t) to B(t), consequently, R(∞) decreases. Despite of non-monotnic relation of R(∞) with respect
to R0, R(∞) + B(∞) is likely to increase monotonically with the increase of R0 as shown in Figure 6.
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R
0

R(∞)+B(∞)

B(∞)

R(∞)

Figure 6. Final epidemic size with respect to R0. Initial conditions are fixed as S (0) =

0.9, I(0) = 0.1, R(0) = B(0) = 0. Parameters are fixed as σ = 2, α = 0.8.

When α = 0 we obtain the standard SIR setting. Letting I(0) → 0 and S (0) → 1, the basic
reproduction number is given as R0 = b. In this case, from (5.1), we obtain the well known final size
relation

0 = (1 − S (∞)) +
1
R0

ln (S (∞)) ,

see e.g. [10, 19].

6. Discussion and conclusion

In this paper, we study a disease transmission dynamics model after incorporating changes in im-
mune protection level following an infection. The proposed modelling approach describing waning
and enhancement of susceptibility following an infection captures the delayed epidemics in addition to
the standard transmission dynamics. A delayed epidemic shows a negative slope in the initial phase of
the epidemic. Therefore, the estimation of R0 using the initial slope of the epidemic makes it difficult
to capture the actual epidemic coming later. The condition for a delayed epidemic is derived using the
analytic transient solution of I(t).

A delayed epidemic, illustrated in Figures 2 and 4, occurs due to the enhancement of susceptibility
of the recovered population (i.e., σ > 1). For example, antibody dependent enhancement can boost the
viral replication within the host body. Consequently, the host susceptibility can be enhanced at the time
of reinfection [33]. Theorem 4 formulates a condition for the delayed epidemic. One of the necessary
condition for a delayed epidemic is (4.4) in Proposition 5. The condition (4.4) is necessary for the
epidemic curve increase; it relates the effective susceptible population increase, which is defined as

L(t) := S (t) + ασR(t).

Since it holds that

L′(0) = S ′(0) + ασR′(0)
= γI0 (−bS 0 + ασ (1 − bσR0)) ,

one can see that

L′(0) > 0⇔ bS 0 < σα (1 − bσR0) .
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α

R
0

R
0

σ

(A) (B)

Figure 7. R0 derived from a given final epidemic size, R(∞) + B(∞) = 0.5 with varied α and
σ. When α = 0 or σ = 0 the boosting and waning immunity do not occur (the standard SIR
model). The initial conditions are fixed as S 0 = 0.99, I0 = 0.01, R0 = B0 = 0. Parameters
are fixed as σ = 3 for (A) and α = 0.5 for (B).

Therefore, the effective susceptible population increase at the initial time is necessary for a delayed
epidemic and may induce the delayed epidemic even if R0 ≤ 1.

We remark that R0 cannot measure the outbreak potential of a delayed epidemic. In principle, R0 is
derived based on the linearized system of the the initial disease transmission dynamics. The linearized
system at the initial phase does not provide enough information to predict a delayed epidemic. Sim-
ilar phenomena can be observed in epidemic models that show backward bifurcation of the endemic
equilibrium [2, 6, 14, 19, 26]. These studies show that there is a stable endemic equilibrium even if the
basic reproduction number is less than unity. Unlike these models, the short-term disease transmission
dynamics model has many equilibria, which are associated with the zero eigenvalue. Our study illus-
trates that the outbreak potential should be carefully examined in the short-term disease transmission
dynamics using the transient solution.
R0 can be estimated from the final epidemic size. It should be noted that R0 can be overestimated

if the model neglects the enhancement of susceptibility following an infection. Figure 7 shows the
estimated R0 using a fixed final epidemic size of 0.5 with varied α and σ. In this case, our model is
equivalent to the standard SIR model when α = 0 or σ = 0. If waning and boosting of immunity are
introduced, i.e., α > 0 or σ > 0, the estimated R0 is always lower than the estimate obtained using the
standard epidemic model with α = 0 or σ = 0. To estimate the precise R0 from the final epidemic size,
an appropriate modelling with respect to waning and boosting of immunity is required.
R0 can also be estimated from the time-series of I(t). Since I(t) in the proposed model can be

expressed as the closed-form function of S (t), if I(t) + S (t) is given, e.g., B(t) + R(t) is estimated from
a serological survey, I(t) can be obtained as a function of time, which can be used to estimate R0.

The proposed mathematical model describing waning and enhancing susceptibility following an
infection has a limitation. In particular, it describes a step-wise level of boosting immunity i.e., R
has susceptibility σ to an infectious disease while B has a complete protection against reinfection.
This setting is suitable for infectious diseases where multiple infections can establish drastic increase
of the immunity level. On the other hand, several classes of R with varied immune protection level
are required to describe gradual change of the immunity level resulted from waning and boosting of
immunity.
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