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Abstract: Cholera is an acute intestinal illness caused by infection with the bacterium Vibrio
cholerae. The dynamics of the disease transmission are governed by human-human, environment-
human, and within-human sub-dynamics. A multi-scale model is presented to incorporate all three
of these dynamical components. The model is divided into three subsystems where the dynamics
are analyzed according to their respective time scales. For each subsystem, we conduct a careful
equilibrium analysis, with a focus on the disease threshold characterized by the basic reproduction
number. Finally, the three subsystems are combined to discuss the dynamical properties of the full
system.
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1. Introduction

Infectious diseases continue devastating populations in developing countries, with a large number
of morbidity and mortality reported each year. Mathematical modeling has long been providing useful
insight into the transmission and spread of diseases and the design of effective control strategies [10].
Traditional mathematical epidemic models are focused on population-level dynamics, using well
established differential equation and dynamical system theory to study the persistence and extinction
of an infection. In recent years, more studies have been devoted to the understanding of pathogen
evolution and interaction within a human body, which constitutes an important step in the
development of a disease outbreak. Meanwhile, there has been increasing interest in multi-scale
epidemic modeling and in linking the between-host transmission and within-host immunological
dynamics [3, 12].

The present paper is concerned with multi-scale modeling of cholera, a severe waterborne infection
caused by the bacterium Vibrio cholerae. The infection dynamics of cholera involve environmental
ecology, population epidemiology, microbiology, and immunopathology that span several distinct time
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scales (with the range from a few hours to several years). The primary source of cholera infection is
contaminated water and food. Meanwhile, the disease can be transmitted from the direct, human-to-
human route; e.g., through shaking hands with infected people, or eating food prepared by infected
individuals with dirty hands. In general, the disease can spread rapidly in areas lacking sufficient
sanitation and hygiene. Populations with limited medical resources especially suffer from cholera.
A significant example is the recent cholera outbreak in Yemen, a country that has been plagued by
two years of heavy conflicts and wars that led to a severe shortage of medical supplies and health
professionals. As of April 8, 2018, more than 1,088,000 cases in Yemen were reported by WHO [31],
making it the worst cholera outbreak in modern history.

There have been many mathematical models proposed for cholera
dynamics [1, 4, 9, 13, 17, 18, 22, 23, 26–28]. Most of these studies are concerned with the population
level between-host transmission, as is the case for mathematical modeling of many other types of
infectious diseases. On the other hand, cholera infection involves complicated within-host dynamics
that are distinct from other infectious diseases such as vector-borne or directly transmitted diseases.
In a Science article [25], the authors found that a virus, named cholera toxin phage (CTXφ), played a
critical role in the pathogenesis of the vibrios. The virus, through injecting its DNA to the vibrio cells,
causes a horizontal gene transfer of the bacteria that results in an infectivity hundreds of times higher
than the vibrios ingested from the environment. Human cholera, with the major symptom of severe
diarrhea, is a direct consequence of these highly infective vibrios. At the same time, the host immune
system is inevitably involved in the interaction with the bacteria and viruses that shape the within-host
development of cholera. Through shedding, the highly infective vibrios get out of the human body
and remain active for a period of several hours, during which time these vibrios may significantly
impact the human-to-human transmission of the disease. For example, a person who is infected with
cholera and who does not pay attention to basic hygiene and sanitation, may use dirty hands to
prepare food for, or shake hands with, other people, so that the infection risk of those people who are
in direct contact with this person would be significantly increased. Hence, the within-host dynamics
of cholera is not only essential in the development of the infectivity/toxicity for the pathogen, but also
impacts the between-host transmission.

A mathematical model that links the between-host and within-host dynamics of cholera was
recently proposed in [29], where the model consists of two time scales: the fast scale for the pathogen
dynamics inside the human body, and the slow scale for the disease transmission among hosts and the
environmental evolution of the vibrios. The within-host dynamics in this work, however, take a very
simple form, represented by a single differential equations describing the increased toxicity (or,
infectivity) of the pathogen inside the human body. In another recent study [30], the within-host
dynamics of cholera is investigated in more detail, where the vibrios ingested from the environment
(with lower infectivity) and those transformed inside the human body (with higher infectivity) are
distinguished, and their interaction with the virus (CTXφ) is taken into account. The model, however,
does not involve host immune responses, and the between-host transmission is not considered.

Based on the prior studies in [29, 30], we aim to perform a deeper investigation of the multi-scale
cholera dynamics in this work. To that end, we will emphasize the nontrivial within-host dynamics
by describing the interaction among different stages of the pathogen, the virus, and the host immune
response. We will also emphasize the three different scales involved in the development of cholera
infection: the environmental bacterial evolution could last for years, designated as the slow scale in
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this process; in contrast, the within-host interaction typically ranges from several hours to a few days,
and that is referred to as the fast scale. Meanwhile, the disease transmission and spread among human
hosts usually take place from weeks to months, regarded as the intermediate scale in this study. We
will particularly distinguish the environmental dynamics and the between-host disease transmission at
two different time scales in order to better reflect the reality.

We organize the remainder of this paper as follows. In Section 2, we describe our cholera model
based on differential equations that spans three time scales. In Section 3, we conduct an analysis using
separation of scales so that the sub-model at each of the three time scales is decoupled from each other.
We also consider the case where the environmental bacterial dynamics and the between-host disease
transmission are aggregated into one time scale, and conduct an analysis on this combined sub-model
which is still decoupled from the fast-scale dynamics. In Section 4, we combine all the sub-models
together by linking the three time scales, and present both analytical and numerical results. Finally, we
conclude the paper with some discussion in Section 5.

2. Model Description

We first describe the between-host transmission dynamics of cholera using the following system of
differential equations:

dS
dt

=µN − βHS I − βLS B − µS ,

dI
dt

=βHS I + βLS B − (γ + µ)I,

dR
dt

=γI − µR,

(2.1)

where S , I, and R represent the number of susceptible, infected, and recovered individuals, respectively,
and B represents the concentration of the bacteria Vibrio cholerae in the contaminated water supply.
We assume that the natural birth and death rates for the human hosts are the same, denoted by µ .
The size of the host population S + I + R is a constant and denoted by N. An individual contracts
cholera either through direct (i.e., human-to-human) transmission at the rate βH , or through indirect
(i.e., environment-to-human) transmission at the rate βL . In addition, an infected individual recovers
at the rate γ .

The vibrios from the environment, when ingested by a human host, go through complex biological
and genomic interactions with the virus CTXφ in the small intestine. As a result, the environmental
vibrios are transformed into highly toxic and infectious vibrios (with infectivity increased up to 700-
fold [7,15]), which we refer to as the human vibrios. Meanwhile, the host immune system responds to
the invasion by trying to eliminate the pathogenic vibrios and viruses so as to protect the human body.
Hence, our within-host model for an average infected individual takes the form

dZ
dt

=c1BV − d1MZ − ζZ,

dV
dt

=c2BV − d2MV − τV,

dM
dt

=e1MZ + e2MV − pM,

(2.2)
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where Z, V , and M represent the concentrations of human vibrios, viruses (i.e., CTXφ), and host
immune cells, respectively. Since the generation of new human vibrios and the replication and
multiplication of new viruses depend on the numbers of both the (ingested) environmental vibrios and
the viruses, we have employed a simple bilinear form, BV , to represent the bacterial-viral
interaction [2, 19]. The parameters c1 and c2 denote the generation rates, and d1 and d2 denote the
immune killing rates, for human vibrios and viruses respectively; ζ is the removal rate of human
vibrios (due to natural death or shedding), τ is the removal rate of viruses, and p is the removal rate of
the immune cells; e1 and e2 represent the immune stimulation rates from the human vibrios and
viruses, respectively.

Individuals infected with cholera typically develop severe diarrhea, through which the human
vibrios are shed into the environment. Once leaving the host body, the human vibrios lose their hyper
infectivity in a few hours [9, 15] and become part of the environmental vibrios, thus contributing to
the growth of the vibrios in the environment. Hence, The between-host and within-host dynamics are
connected through the environmental evolution of the vibrios:

dB
dt

= ξ(Z)I − δB, (2.3)

where ξ(Z) is the host shedding rate that depends on the human vibrios, and δ is the natural death rate
of the vibrios in the environment.

In summary, our cholera modeling system is subdivided into three smaller systems, represented by
Equations (2.1), (2.2) and (2.3), respectively, at three different time scales. The within-host dynamics
in system (2.2) typically range from several hours to a few days, referred to as the fast scale in our
framework. In contrast, the environmental evolution in system (2.3) normally take place in years and
decades, referred to as the slow scale in our framework. Meanwhile, the transmission and spread of
cholera among humans (i.e., between-host dynamics) in system (2.1) typically last several months,
referred to as the intermediate scale. Consequently, the variable B is referred to as the slow variable,
S , I and R are the intermediate variables, and Z, V and M are the fast variables.

3. Separation of Scales

We will start the analysis of our model by separation of time scales, which leads to decoupled
systems. In this simplified analysis, the slow variable B will be treated as constant in the intermediate-
scale and fast-scale systems. Meanwhile, the fast and intermediate variables will be considered at their
steady states in the slow-scale system.

3.1. Slow-Scale System Dynamics

The environmental evolution of the vibrios is governed by Equation (2.3). Due to the slow time
scale, we consider Z and I at their steady states, or effectively as constant. By solving (dB)/(dt) = 0
for B, it is clear that the unique equilibrium solution is given by

B =
ξ(Z)I
δ

, (3.1)

where the term ξ(Z)
δ

can be interpreted as the environmental bacterial concentration per infected host.
We can also easily check the stability of this equilibrium by solving for B(t). By direct calculation, we
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can see that

B(t) =
ξ(Z)I − ξ(Z)Ie−δt

δ
+ B(0)e−δt. (3.2)

Clearly, B(t) → ξ(Z)I
δ

as t → ∞ regardless of the value of B(0), which shows that the equilibrium is
globally asymptotically stable. Biologically, this result implies that the bacterial concentration in the
aquatic environment approaches a constant in the long run. In particular, if I = 0 (i.e., the infection dies
out), then B→ 0; similarly, if ξ(Z) = 0 (i.e., no shedding from infected hosts enters the environment),
then B → 0. These two special cases can be directly observed from Equation (2.3), where the growth
of the environmental vibrios relies on the contribution from the infected human hosts.

3.2. Intermediate-Scale System Dynamics

The between-host dynamics are governed by system (2.1), where we consider B ≥ 0 as a constant
due to the difference in time scale.

3.2.1. Disease-Free Equilibrium

It is straightforward to observe that if B is a positive constant, then the disease-free equilibrium
(DFE) does not exist for system (2.1). On the other hand, when B = 0, system (2.1) is reduced to a
standard SIR model representing an extreme scenario where the cholera infection only takes place
through human-to-human transmission pathway and there is no disease transmission from the
environment.

With the assumption B = 0, a unique DFE exists at (S , I,R) = (N, 0, 0) = X0. The basic reproduction
number for this system can be consequently determined as

RI
0 =

βHN
γ + µ

. (3.3)

It is well known that when RI
0 < 1, the DFE is globally asymptotically stable, indicating the extinction

of the disease; when RI
0 > 1, the DFE is unstable, indicating the persistence of the disease. Here we

skip the details of the analysis, since the SIR model has been extensively studied in the literature (see,
e.g., [14, 21]).

3.2.2. Endemic Equilibrium

We proceed to conduct an analysis on the endemic equilibrium (EE) of system (2.1) with B ≥ 0
fixed as a constant. We have the following result.

Theorem 1. A unique positive EE for system (2.1) exists of the form

X∗ = (S ∗, I∗,R∗), (3.4)

where each component of X∗ depends on B:

S ∗(B) =
µN

βHI∗ + βLB + µ
,

I∗(B) =
µβHN − (γ + µ)(βLB + µ) +

√
[(γ + µ)(βLB + µ) − µβHN]2 + 4(γ + µ)βHµβLBN

2(γ + µ)βH
,

R∗(B) =
γ

µ
I∗(B) .
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Proof. Due to the linear relationship between R and I, it is only necessary to consider the
two-dimensional system with dS

dt and dI
dt . Setting both equal to zero and combining the two equations

yields a quadratic equation for I:

(γ + µ)βHI2 + [(γ + µ)(βLB + µ) − µβHN]I − µβLBN = 0 ,

or
aI2 + bI + c = 0 ,

where
a =(γ + µ)βH ,

b =(γ + µ)(βLB + µ) − µβHN ,

c = − µβLBN .

The two roots of the polynomial are given by the quadratic formula,

I1 =
−b +

√
b2 − 4ac

2a
,

I2 =
−b −

√
b2 − 4ac

2a
.

Note that I1 is guaranteed to be positive and real since the term −4ac > 0 and 2a > 0. I2 is real and
negative for the same reason. Thus, I1 represents the value of I at the EE. We can easily substitute the
value I∗ = I1 into the equation where dS

dt = 0 to obtain the value of S at the EE. The resulting solution
is given by (S , I) = (S ∗, I∗) where S ∗ and I∗ are defined in Equation (3.4). Obviously this solution is
unique. �

In particular, from the expression of I∗ in Equation (3.4) we see that when B = 0,

I∗(0) =
µ
[
βHN − (γ + µ)

]
(γ + µ)βH

and the endemic equilibrium is reduced to the one associated with the standard SIR model. This EE
exists only if RI

0 > 1 where RI
0 is defined in Equation (3.3). When B > 0, we can easily obtain

I∗(B) > I∗(0) by direct algebraic manipulation. This comparison indicates that the presence of the
pathogen in the environment increases the disease prevalence at the endemic state. In other words,
system (2.1) with dual (both human-to-human and environment-to-human) transmission routes yields
a higher level of infection in the long term than that associated with a standard SIR model (with only
human-to-human transmission mode), a result natural to expect.

3.2.3. Stability of Endemic Equilibrium

Since S + I + R = N is a constant, we only need to consider the following two-dimensional system

dS
dt

=µN − βHS I − βLS B − µS ,

dI
dt

=βHS I + βLS B − (γ + µ)I .
(3.5)
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In order to achieve local asymptotic stability, it is necessary and sufficient that all eigenvalues of the
Jacobian matrix have negative real parts when evaluated at the EE. The Jacobian matrix[

−βHI − βLB − µ −βHS
βHI + βLB βHS − (γ + µ)

]
when evaluated at (S , I) = (S ∗, I∗) leads to the characteristic polynomial aλ2 + bλ + c, where

a =1,
b =βHI∗ + βLB + 2µ + γ − βHS ∗,

c =(γ + µ)(βHI∗ + βLB + µ) − βHS ∗µ .

The Routh-Hurwitz stability criterion [8] guarantees that all roots of the above polynomial have
negative real part provided that a > 0, b > 0, and c > 0. Clearly, we have that a > 0. Also, consider

dI
dt

= βHS ∗I∗ + βLS ∗B − (γ + µ)I∗ = 0

at the EE. Note that γ + µ > βHS ∗, which immediately gives b > 0 and c > 0. Therefore, the EE is
locally asymptotically stable.

Indeed, we can establish a stronger result in this case.

Theorem 2. The EE of system (2.1) is globally asymptotically stable.

Proof. Consider again system (3.5) along with the function g(S , I) = 1
I . Let the P1 and P2 denote the

right-hand sides of the two equations, respectively. We can now observe the modified system

P1g =
dS
dt

g =
µN
I
− βHS − βL

S B
I
−
µS
I
,

P2g =
dI
dt

g = βHS + βL
S B
I
− (γ + µ) .

(3.6)

Then ∂
∂S (P1g)+ ∂

∂I (P2g) < 0. We have now satisfied Dulac’s Criterion for the system, which guarantees
global asymptotic stability of the EE [20]. �

3.3. Slow-Scale and Intermediate-Scale Coupled System

Having analyzed the slow-scale and intermediate-scale systems separately, we now consider the
coupled system consisting of (2.1) and (2.3) together, where the fast variable Z is still fixed at its
steady state.

3.3.1. Disease-Free Equilibrium

It can be observed that the DFE of this coupled system exists at (S , I,R, B) = (N, 0, 0, 0) = X0 . We
will now proceed with the next generation matrix analysis to compute the basic reproduction number.
Consider the components of the system that are directly related to the infection[ dI

dt
dB
dt

]
=

[
S (βHI + βLB)

0

]
−

[
(γ + µ)I
δB − ξ(Z)I

]
= F −V, (3.7)
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where compartment F represents new infections and V represents transitions from other population
sets. The next generation matrix is FV−1 where

F = DF (X0) =

[
βHN βLN

0 0

]
, V = DV(X0) =

[
γ + µ 0
−ξ(Z) δ

]
, (3.8)

where X0 is the DFE of the system. Hence,

FV−1 =
1

γ + µ

[
N(βLξ(Z)

δ
+ βH) N (γ+µ)βL

δ

0 0

]
.

The basic reproduction number, denoted RSI
0 here, is then defined as the spectral radius of the next

generation matrix:

RSI
0 = ρ(FV−1) =

NβH

γ + µ
+
βLN
γ + µ

ξ(Z)
δ

, (3.9)

which quantifies the disease risk for the coupled system (2.1) and (2.3). The first part, NβH
γ+µ

,
reproduces RI

0 (see equation 3.3) and represents the contribution from the intermediate-scale
dynamics to the disease risk. The second part represents the contribution from the slow-scale
environmental dynamics; particularly, note that ξ(Z)

δ
(where Z is constant) depicts the per capita

bacterial concentration in the environment (see equation 3.1). Obviously, we have RI
0 < RSI

0 , implying
that using the intermediate-scale system alone might underestimate the risk of cholera transmission.

By van den Driessche and Watmough [24], we obtain local asymptotic stability of the DFE when
RSI

0 < 1 and instability when RSI
0 > 1. We now proceed to determine the global stability of the DFE.

Using Theorem 9 in Appendix A, we may establish the following theorem.

Theorem 3. When RSI
0 = N

γ+µ

[
βH +

βLξ(Z)
δ

]
< 1, the DFE X0 = (N, 0, 0, 0) is globally asymptotically

stable.

Proof. Assume RSI
0 < 1. Let X1 = (S ,R)T , X2 = (I, B)T , and X∗1 = (N, 0)T . Then the uninfected

subsystem is given by
d
dt

[
S
R

]
= F =

[
µ(N − S ) − S (βHI + βLB)

γI − µR

]
(3.10)

and the infected subsystem by

d
dt

[
I
B

]
= G =

[
S (βHI + βLB) − I(γ + µ)

ξ(Z)I − δB

]
. (3.11)

Note that when X2 = 0, the uninfected subsystem reduces to

d
dt

[
S
R

]
=

[
µ(N − S )
−µR

]
(3.12)

and the solution is given by

R(t) = R(0)e−µt, S (t) = N − (N − S (0))e−µt.
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We can see that as t → ∞, R(t) → 0 and S (t) → N independently of R(0) and S (0). Thus, X∗1 is
globally asymptotically stable for

dX1

dt
= F(X1, 0) .

This satisfies condition (H1) of Theorem 9. Next, we have

G =
∂G
∂X2

(N, 0, 0, 0) − Ĝ

=

[
βHN − (γ + µ) βLN

ξ(Z) −δ

] [
I
B

]
−

[
(N − S )(βHI + βLB)

0

]
.

(3.13)

Note that the matrix A = ∂G
∂X2

(N, 0, 0, 0) has non-negative off-diagonal entries. Also, Ĝ ≥ 0 since N ≥ S .
This satisfies condition (H2) of Theorem 9. Thus, the DFE is globally asymptotically stable. �

3.3.2. Endemic Equilibrium

By setting each of the four equations in (2.1) and (2.3) to zero, we are able to explicitly solve for
the unique endemic equilibrium solution:

S ∗ =(γ + µ)
(
βH +

βLξ(Z)
δ

)−1

,

I∗ =
µ(N − S ∗)
γ + µ

,

R∗ =
γ(N − S ∗)
γ + µ

,

B∗ =
µξ(Z)(N − S ∗)

δ(γ + µ)
.

(3.14)

Note that we need RSI
0 > 1 in order for I∗ > 0.

First, we will analyze the local stability of the system. The Jacobian matrix evaluated at the EE is
given by 

−βHI∗ − βLB∗ − µ −S ∗βH 0 −S ∗βL

βHI∗ + βLB∗ βHS ∗ − γ − µ 0 βLS ∗

0 γ −µ 0
0 ξ(Z) 0 −δ

 .
Then the characteristic polynomial is given by

det(λI − J∗) = (λ + µ)
[
(λ + µ)(λ − S ∗βH + γ + µ)(λ + δ) + (βHI∗ + βLB∗)(λ + γ + µ)(λ + δ)

−(λ + µ)S ∗βLξ(Z)
]
.

(3.15)
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The EE is locally asymptotically stable iff all roots have a negative real part. This is clear for λ = −µ.
As for the remaining three roots, we can observe the expression in brackets above to be a0λ

3 + a1λ
2 +

a2λ + a3, where

a0 =1,
a1 =βHI∗ + βLB∗ + δ + 2µ + γ − βS ∗,

a2 =µ2 + (βHI∗ + βLB∗)δ + (βHI∗ + βLB∗)(µ + γ) + 2δµ + δγ + µγ − δβHS ∗ − βLS ∗ξ(Z) − βHS ∗µ,

a3 =δµ2 + δµ(βHI∗ + βLB∗) + δγ(βHI∗ + βLB∗) + δγµ − δβHS ∗µ − βLS ∗ξ(Z)µ .
(3.16)

In order for the roots of the above polynomial to have negative real parts, the Routh-Hurwitz stability
criterion [8] requires that a0 > 0, a1 > 0, a2 > 0, a3 > 0, and a1a2 > a0a3 . We will need to make use
of the following lemma.

Lemma 1. When RSI
0 > 1, S* satisfies the following:

µ + γ − S ∗βH > 0 and δ(γ + µ) = βLξ(Z)S ∗ + δβHS ∗.

Proof. Let RSI
0 > 1. Then

βH

βH+
βLξ(Z)
δ

< 1 =⇒ (µ + γ) βH

βH+
βLξ(Z)
δ

< µ + γ

=⇒ S ∗βH < µ + γ

=⇒ µ + γ − S ∗βH > 0 .

Next, we note that

S ∗
γ+µ

(βLξ(Z)
δ

+ βH) = 1 =⇒ S ∗(βLξ(Z) + βHδ) = δ(γ + µ)
=⇒ δ(γ + µ) = βLξ(Z)S ∗ + δβHS ∗ .

�

Theorem 4. The polynomial a0λ
3 +a1λ

2 +a2λ+a3, with a0, a1, a2, and a3 as defined in (3.16), satisfies
the inequalities a0 > 0, a1 > 0, a2 > 0, a3 > 0, and a1a2 > a0a3.
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Proof. Using Lemma 1, we can easily show the following inequalities:

a1 = βHI∗ + βLB∗ + δ + 2µ + γ − βHS ∗

= βHI∗ + βLB∗ + δ + µ + (µ + γ − βHS ∗)
> 0.

a2 = µ2 + (βHI∗ + βLB∗)δ + (βHI∗ + βLB∗)(µ + γ) + 2δµ + δγ + µγ

− δβHS ∗ − βLS ∗ξ(Z) − βHS ∗µ

= (βHI∗ + βLB∗)(µ + γ + δ) + δµ + µ(µ + γ − βHS ∗) + δ(γ + µ) − βLS ∗ξ(Z) − δβHS ∗

> 0.

a3 = δµ2 + δµ(βHI∗ + βLB∗) + δγ(βHI∗ + βLB∗) + δγµ − δβHS ∗µ − βLS ∗ξ(Z)µ
= µ[δ(γ + µ) − βLS ∗ξ(Z) − δβHS ∗] + δ(γ + µ)(βHI∗ + βLB∗)
= δ(γ + µ)(βHI∗ + βLB∗)
> 0.

a1a1 − a0a3 > δa2 − a0a3

= δµ2 + δ(βHI∗ + βLB∗)(µ + γ + δ) + µγδ + δµ(µ + γ − βHS ∗ + δ2µ

− δ(γ + µ)(βHI∗ + βLB∗)
> δ(µ + γ + δ)(βHI∗ + βLB∗) − δ(γ + µ)(βHI∗ + βLB∗)
> 0.

�

We now move on to determine the criteria for global stability of the EE. In order to do this, we will
employ the geometric approach of Li and Muldowney [11], the main result of which is summarized in
Theorem 10 in Appendix A.

Theorem 5. If RSI
0 > 1 and 2βHN −γ ≤ 0, then the unique EE (3.14) is globally asymptotically stable.

Proof. First, we let P = diag[1, I
B ,

I
B]. Then

P−1 = diag
[
1,

B
I
,

B
I

]
,

PF = diag
[
0,

( I
B

)′
,
( I

B

)′]
,

PF P−1 = diag
[
0,

I′

I
−

B′

B
,

I′

I
−

B′

B

]
.

(3.17)

The Jacobian matrix of the system is given by

J =


−βHI − βLB − µ −βHS βLS
βHI + βLB βHS − γ − µ βLS

0 ξ(Z) −δ

 .
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The second additive compound matrix is then given by

J[2] =


βH(S − I) − βLB − (γ + 2µ) βLS βLS

ξ(Z) −(βHI + βLB + µ + δ) −βHS
0 βHI + βLB βHS − (γ + µ + δ)

 ,
and then

PJ[2]P−1 =


βH(S − I) − βLB − (γ + 2µ) βL

S B
I βL

S B
I

ξ(Z) I
B −(βHI + βLB + µ + δ) −βHS

0 βHI + βLB βHS − (γ + µ + δ)

 .
Thus, we can find the matrix Q = PF P−1 + PJ[2]P−1. We can write Q in block form as follows:

Q =

[
Q11 Q12

Q21 Q22

]
,

where
Q11 = βH(S − I) − βLB − (γ + 2µ) ,

Q12 =
[
βL

S B
I βL

S B
I

]
,

Q21 =

[
ξ(Z) I

B
0

]
,

Q22 =

[
−(βHI + βLB + µ + δ) + I′

I −
B′
B −βHS

βHI + βLB βHS − (γ + µ + δ) + I′
I −

B′
B

]
.

Let m denote the Lozinskii measure with respect to the norm |(x1, x2, x3)| = max{|x1|, |x2|, |x3|}. Then
m(Q) = sup{g1, g2} with

g1 =m1(Q11) + |Q12| ,

g2 =|Q21| + m1(Q22) .

By direct calculation, we see that

g1 =βH(S − I) − (βLB + γ + 2µ) +
βLS B

I
,

g2 =
ξ(Z)I

B
− (µ + δ) +

I′

I
−

B′

B
+ sup{0, 2βHS − γ} .

(3.18)

Equivalently,

g1 =
I′

I
− βHI − βLB − µ ,

g2 =
I′

I
+ sup{0, 2βHS − γ} − µ .

(3.19)

From this, we see that if 2βHN −γ ≤ 0, then 2βHS −γ ≤ 0, and then m(t) = sup{g1, g2} ≤
I′
I −µ. Now,

for sufficiently large t, since 0 ≤ I(t) ≤ N, we have

ln(I(t)) − ln(I(0))
t

≤
µ

2
.
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Therefore,
1
t

∫ t

0
m(s)ds ≤

1
t

∫ t

0

(
I′(s)
I(s)

− µ

)
ds =

ln(I(t)) − ln(I(0))
t

− µ ≤ −
µ

2

for sufficiently large t. This now implies q̄2 ≤ −
µ

2 < 0. According to Theorem 10, the EE (3.14) is
globally asymptotically stable. �

We comment that in Theorem 5, 2βHN − γ ≤ 0 is an additional (sufficient) condition, on top of the
requirement RSI

0 > 1, to ensure the global asymptotic stability of the EE, indicating a strong persistence
of the disease when the host population size is lower than a certain threshold. From the proof, however,
it is clear that we only need 2βHS − γ ≤ 0, a somehow weaker condition, to establish the result.

3.4. Fast-Scale System Dynamics

We now investigate the within-host dynamics in our cholera model represented by (2.2), referred to
as our fast-scale subsystem. This system describes the interaction among vibrios, viruses, and immune
cells within the human body for an average infected individual. Per the separation of time scales, we
treat the slow variable B as constant in the analysis below.

3.4.1. Trivial Equilibrium

The trivial equilibrium of this system is given by (Z,V,M) = (0, 0, 0). Consider the Jacobian matrix

J(Z,V,M) =


−d1M − ζ c1B −d1Z

0 c2B − d2M − τ −d2V
e1M e2M e1Z + e2V − p


which, when evaluated at (Z,V,M) = (0, 0, 0) becomes

J(0, 0, 0) = J0 =


−ζ c1B 0
0 c2B − τ 0
0 0 −p

 .
Obviously the three eigenvalues are −ζ, −p and c2B − τ . We define the basic reproduction number for
the fast-scale system by

RF
0 =

c2B
τ
, (3.20)

which is the ratio between the generation rate and the natural removal rate of the viruses that infect the
vibrios. It is clear that the trivial equilibrium is locally asymptotically stable if RF

0 < 1, and unstable if
RF

0 > 1. Biologically, this implies that when the concentration of the environmental vibrios B (treated
as a constant in this fast-scale system) is sufficiently low, the within-host dynamics may be trivial and it
may not be necessary to include the within-host model in our study. In contrast, when the concentration
of the environmental vibrios B is higher than a certain threshold, then the within-host dynamics become
non-trivial and may also impact the between-host disease infection at the population level.

The solution behavior at the marginal case, RF
0 = 1, is not straightforward and requires the use of

the center manifold theory [16]. The details are provided in Appendix B.
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3.4.2. Nontrivial Equilibrium

Next, we assume RF
0 > 1 and seek the existence of a nontrivial equilibrium (NTE) solution. The

three equations in system (2.2) yields the following values for the nontrivial equilibrium:

Z∗ =
c1Bp

c1e1B + e2(d1α + ζ)
,

V∗ =
p(d1α + ζ)

c1e1B + e2(d1α + ζ)
,

M∗ =α ,

(3.21)

where α = c2B−τ
d2

. Note that this equilibrium is positive and unique when α > 0, which is true iff RF
0 > 1.

We have the following result regarding its local stability.

Theorem 6. When RF
0 > 1, there exists a unique positive equilibrium (3.21). Furthermore, it is locally

asymptotically stable iff d1 > d2 .

Proof. By evaluating the Jacobian matrix at the NTE, we obtain the determinant

∣∣∣J(Z∗, V∗, M∗) − λI
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−d1α − ζ − λ c1B −d1c1Bp
c1e1B+e2(d1α+ζ)

0 −λ −d2 p(d1α+ζ)
c1e1B+e2(d1α+ζ)

e1α e2α −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Evaluating this determinant yields the characteristic polynomial aλ3 + bλ2 + cλ + d where

a = − 1,
b = − (d1α + ζ),

c = −
pα[c1d1e1B + d2e2(d1α + ζ)]

c1e1B + e2(d1α + ζ)
,

d = − d2 pα(d1α + ζ).

(3.22)

Clearly, we have that α > 0 =⇒ a, b, c, d < 0. The Routh-Hurwitz stability criterion [8] guarantees
local asymptotic stability when bc > ad. This condition is met as long as d1 > d2 . Specifically,

bc =pα(d1α + ζ)
[c1d1e1B + d2e2(d1α + ζ)]

c1e1B + e2(d1α + ζ)

>pα(d1α + ζ)
[c1d2e1B + d2e2(d1α + ζ)]

c1e1B + e2(d1α + ζ)
=d2 pα(d1α + ζ)
=ad

iff d1 > d2 . �

To summarize the result, when RF
0 < 1, there is a unique and stable trivial equilibrium for the fast-

scale system; when RF
0 > 1, the trivial equilibrium is unstable, and there is a unique and stable positive

equilibrium.
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4. Full System Analysis

Now that we have analyzed each of the three separate components of our multi-scale model, we
will move on to the full system, with all three subsystems coupled together.

dS
dt

=µN − βHS I − βLS B − µS ,

dI
dt

=βHS I + βLS B − (γ + µ)I,

dR
dt

=γI − µR,

dB
dt

=ξ(Z)I − δB,

dZ
dt

=c1BV − d1MZ − ζZ,

dV
dt

=c2BV − d2MV − τV,

dM
dt

=e1MZ + e2MV − pM.

(4.1)

We assume that ξ(Z) > 0 and ξ′(Z) ≥ 0 for all Z ≥ 0. Particularly, when ξ(Z) is a positive constant, as
is the case considered in many prior studies (see, e.g., [13,22,23,26]), these assumptions are satisfied.

4.1. Basic Reproduction Number

It is clear to see that there exists one unique DFE at (S , I,R, B,Z,V,M)T = (N, 0, 0, 0, 0, 0, 0)T = X0.
Consequently, the next-generation matrix of the system is given by FV−1 where

F =


βHN βLN 0 0

0 0 0 0
0 0 0 0
0 0 0 0

 , V =


γ + µ 0 0 0
−ξ(0) δ 0 0

0 0 ζ 0
0 0 0 τ

 . (4.2)

The basic reproduction number R0 is the spectral radius of the next generation matrix. Thus, we obtain

R0 =
βHN
γ + µ

+
βLNξ(0)
δ(γ + µ)

. (4.3)

Although the expression of R0 is similar to that of RSI
0 in Equation (3.9), the distinction is that the fast

variable Z is treated as a constant in Equation (3.9) at the combined slow-intermediate scale, whereas
Z does not appear in Equation (4.3) since the slow, intermediate and fast variables are all coupled
together in the full system (4.1). Instead, the term ξ(0) in equation (4.3) represents the role played by
the fast-scale dynamics in shaping the overall disease risk. With our assumption of the function ξ(Z),
it is clear that

RI
0 < R0 ≤ RSI

0 , (4.4)

which indicates that we might underestimate the disease risk if we only consider the between-host
transmission at the intermediate time scale, yet we might overestimate the disease risk if our model

Mathematical Biosciences and Engineering Volume 16, Issue 2, 782–812.



797

includes both the intermediate-scale disease transmission and slow-scale environmental evolution but
does not incorporate the fast-scale within-host dynamics. In general, the full system (4.1) represents
a reciprocal (or, two-way) coupling between the different time scales. A special case occurs when
ξ(Z) = ξ > 0 is a constant, leading to R0 = RSI

0 . This scenario represents a unidirectional (or, one-
way) connection across the scales. On one hand, the slow-scale and intermediate-scale subsystems
are independent of the fast-scale subsystem, so that the within-host dynamics does not play a role in
shaping the population-level disease transmission characterized by the basic reproduction number. On
the other hand, the fast-scale within-host dynamics are still directly impacted by the intermediate-scale
between-host transmission and the slow-scale environmental bacterial evolution.

Another interpretation of the basic reproduction number is based on the multiple transmission routes
of cholera. In Equation (4.3), the first part on the right-hand side represents the contribution from the
human-to-human transmission, and the second part represents the contribution from the environment-
to-human transmission and the within-host dynamics. These factors, including human-human and
environment-human interactions, and bacterial dynamics in the environment and within the human
body, together shape the overall disease risk for cholera.

Again by van den Driessche and Watmough [24], the DFE is stable whenever R0 < 1 and unstable
when R0 > 1.

4.2. Endemic Equilibria

We now seek all possible equilibrium solutions (S ∗, I∗,R∗, B∗,Z∗,V∗,M∗) in which the infected
population persists. As such, we assume I∗ , 0. It follows immediately that R∗ , 0 and S ∗ , 0. We
now have multiple cases to consider.

Case 1: Suppose R0 > 1, dX
dt = 0, B∗ , 0 and V∗ = 0. Then dZ

dt = 0 implies Z∗ = 0 and dM
dt = 0

implies M∗ = 0. The remaining four variables are uniquely determined by the remaining equations.
Therefore, Case 1 yields the solution

S ∗ =
N
R0
,

I∗ =
δµ(R0 − 1)
δβH + βLξ(0)

,

R∗ =
δγ(R0 − 1)
δβH + βLξ(0)

,

B∗ =
µξ(0)(R0 − 1)
δβH + βLξ(0)

,

Z∗ =0,
V∗ =0,
M∗ =0.

(4.5)

Note that S ∗, I∗, R∗, and B∗ are all positive since R0 > 1. This solution can also be reached by changing
the initial assumption V∗ = 0 to Z∗ = 0. This first case reduces to a system that reflects inactivity
within the hosts, while environmental bacteria and the infected population persist.

Case 2: Suppose R0 > 1, dX
dt = 0, B∗ , 0, Z∗ , 0 and M∗ = 0. It follows that each remaining

variable must be nonzero. dV
dt = 0 tells us that B∗ = τ

c2
. Knowing this value for B∗, we may use the

Mathematical Biosciences and Engineering Volume 16, Issue 2, 782–812.



798

first two equations to solve for S ∗ and I∗. In doing so, the solution for I∗ presents itself in the form of
a quadratic equation:

I∗0 =
−b ±

√
b2 − 4ac

2a
,

where
a =c2βH(γ + µ),
b =(γ + µ)(βLτ + c2µ) − c2µβHN,

c = − µτβLN.

Note that the solution with the positive root is guaranteed to be positive, since a > 0 and c < 0. Now
that we have obtained this value for I∗, the rest of the solution variables may be determined to be as
follows:

S ∗ =
c2µN

c2(βHI∗0 + µ) + βLτ
,

I∗ =I∗0,

R∗ =
γ

µ
I∗0,

B∗ =
τ

c2
,

Z∗ =ξ−1
(
δτ

I∗0c2

)
,

V∗ =
c2ζ

c1τ
ξ−1

(
δτ

I∗0c2

)
,

M∗ =0.

(4.6)

This equilibrium represents a state in which the host immune cells are depleted, but the viruses and
vibrios persist within the human body.

Finally, we will establish the existence of an entirely positive EE solution. Under the assumption
that each variable is nonzero, we may solve the system (4.1) to obtain the system

S ∗ =
δ(γ + µ)

δβH + βLξ(Z∗)
,

I∗ =
µN
γ + µ

−
µδ

δβH + βLξ(Z∗)
,

R∗ =
γN
γ + µ

−
γδ

δβH + βLξ(Z∗)
,

B∗ =
µNξ(Z∗)
δ(γ + µ)

−
µξ(Z∗)

δβH + βLξ(Z∗)
,

Z∗ =
c1 pB∗

c1e1B∗ + c1e2M∗ + e2ζ
,

V∗ =
p − e1Z∗

e2
,

M∗ =
c2B∗ − τ

d2
.

(4.7)
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For the special scenario ξ(Z) = ξ = Const, it is easy to verify that the above expressions for S ∗, I∗, R∗

and B∗ coincide with those in Equation (3.14), since the slow-scale and intermediate-scale dynamics
are decoupled from, and independent of, the fast-scale dynamics. In what follows we will focus on the
more general case where ξ(Z) is not a constant. Note that the existence of such a solution depends on
Z∗, as all other variables are represented as functions of Z∗. To start the analysis, we expand Z∗ in the
following way:

Z∗ =
c1 pB∗

c1e1B∗ + c1e2

[
c2B∗−τ

d2

]
+ e2ζ

=
c1 pB∗

B∗
[
c1e1 + c1c2e2

d2

]
−

c1e2τ
d2

+ e2ζ

=⇒ c1B∗
[
e1 +

c2e2

d2

]
Z∗ = c1 pB∗ + e2

[
c1τ

d2
− ζ

]
Z∗

=⇒

[
N

δ(γ + µ)
−

1
δβH + βLξ(Z∗)

]
[(d2e1 + c2e2)Z∗ − pd2] =

e2d2

µ

[
τ

d2
−
ζ

c1

]
Z∗

ξ(Z∗)
.

Let

f1(Z∗) =

[
N

δ(γ + µ)
−

1
δβH + βLξ(Z∗)

]
[(d2e1 + c2e2)Z∗ − pd2], Z∗ ≥ 0;

f2(Z∗) =
e2d2

µ

[
τ

d2
−
ζ

c1

]
Z∗

ξ(Z∗)
, Z∗ ≥ 0.

If the two above equations have exactly one intersection point Z∗0, then this point will determine a
unique solution for the system.

Theorem 7. Suppose c1τ < d2ζ, ξ′′(Z) < 0 and R0 > 1. Then there exists a unique point Z∗0 ∈(
0, pd2

d2e1+c2e2

)
such that f1(Z∗0) = f2(Z∗0). Furthermore, if

Z∗0 > ξ
−1

−b +
√

b2 − 4ac
2a

 , (4.8)

where
a =

c2µβLN
δ(γ + µ)

,

b =
c2µβHN
γ + µ

− τβL − c2µ,

c = − τδβH,

then Z∗0 generates a unique positive EE solution (4.7) to system (4.1).

Proof. First, note that R0 > 1 implies[
N

δ(γ + µ)
−

1
δβH + βLξ(Z∗)

]
> 0

for any Z∗ ≥ 0. Then we have f1(0) < 0 and f2(0) = 0. If we let

α =
e2d2

µ

[
τ

d2
−
ζ

c1

]
,
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the assumption c1τ < d2ζ gives α < 0. Then the condition ξ′′ < 0 yields

f ′2(Z∗) = α
ξ(Z∗) − Z∗ξ′(Z∗)

[ξ(Z∗)]2 < 0.

Since f1(Z∗) is continuous on the interval
(
0, pd2

d2e1+c2e2

)
with a negative left endpoint and a right endpoint

equal to zero, the two functions f1(Z∗) and f2(Z∗) are guaranteed to have at least one intersection point
Z∗0 on the interval. We now proceed to show the uniqueness of this intersection. To do this, we will
demonstrate that f1(Z∗) is concave up for all points on the interval

(
0, pd2

d2e1+c2e2

)
. The first and second

derivative of f1(Z∗) are given by

f ′1(Z∗) =h2(Z∗)[(d2e1 + c2e2)Z∗ − pd2] +

[
N

δ(γ + µ)
−

1
δβH + βLξ(Z∗)

]
(d2e1 + c2e2),

f ′′1 (Z∗) =h1(Z∗)[(d2e1 + c2e2)Z∗ − pd2] + 2h2(Z∗)(d2e1 + c2e2),

where

h1(Z∗) =
βLξ

′′(Z∗)(δβh + βLξ(Z∗)) − 2(βLξ
′(Z∗))2

(δβH + βLξ(Z∗))3 ,

h2(Z∗) =
βLξ

′(Z∗)
(δβH + βLξ(Z∗))2 .

With our assumption ξ′′(Z∗) < 0, it is clear that h1(Z∗) < 0. Thus, since h2(Z∗) > 0, we have f ′′1 (Z∗) > 0
for all Z∗ ∈

(
0, pd2

d2e1+c2e2

)
. Since f2(Z∗) is a linear decreasing function passing through the origin, and

f1(Z∗) is negative and concave up for all Z∗ ∈
(
0, pd2

d2e1+c2e2

)
, there exists a unique point Z∗0 ∈

(
0, pd2

d2e1+c2e2

)
such that f1(Z∗0) = f2(Z∗0).

Given the existence of such a point Z∗0, we must also verify X∗ > 0. It is clear that S ∗ > 0 from (4.7)
since ξ(Z∗) > 0. From (4.7), it is clear that B∗ > 0 if and only if

N −
δ(γ + µ)

δβH + βLξ(Z∗)
> 0.

Since R0 =
N(δβH+βLξ(0))

δ(γ+µ) > 1, we have

N − δ(γ+µ)
δβH+βLξ(Z∗)

> N − N(δβH+βLξ(0))
δ(γ+µ)

δ(γ+µ)
δβH+βLξ(Z∗)

> N − N(δβH+βLξ(Z∗))
δ(γ+µ)

δ(γ+µ)
δβH+βLξ(Z∗)

= N − N
= 0.

(4.9)

Thus, B∗ > 0. By the same argument, we have that I∗ > 0 and R∗ > 0. Moving on, we want to
determine if it is possible for M∗ > 0. First, it will be helpful to solve M∗ = 0 for ξ(Z∗) where M∗

is defined in (4.7). After substituting for B∗ from (4.7), we obtain a quadratic equation in ξ(Z∗) of the
form

M∗ = aξ2(Z∗) + bξ(Z∗) + c, (4.10)

where
a =

c2µβLN
δ(γ + µ)

,

b =
c2µβHN
γ + µ

− τβL − c2µ,

c = − τδβH.

(4.11)
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So, in order for M∗ > 0, we need the Equation (4.10) to be greater than zero. First, we will attempt to
find a positive zero for the equation, as ξ(Z∗) must be positive. This positive zero of (4.10) is given by

−b +
√

b2 − 4ac
2a

(4.12)

since a > 0 and c < 0. Next, note that M∗ as a function of ξ(Z∗) is concave up. So M∗ is increasing at
the zero (4.12), and hence M∗ > 0 whenever

ξ(Z∗) >
−b +

√
b2 − 4ac

2a
,

or

Z∗ > ξ−1

−b +
√

b2 − 4ac
2a

 .
In addition, since Z∗0 < pd2

d2e1+c2e2
< p

e1
, we have V∗ > 0. Hence, our solution point Z∗0 determines a

unique positive EE (4.7) to the system (4.1) only if condition (4.8) holds. �

4.3. Local Bifurcation Analysis

Due to the high dimension of the full system (4.1), the stability analysis of the endemic equilibrium
is challenging. Nevertheless, we may gain some insight of the dynamical behavior near the bifurcation
point R0 = 1, based on Theorem 12 (see Appendix A). With the use of this result, we will show that a
local forward bifurcation occurs at the bifurcation point.

Theorem 8. When R0 − 1 changes from negative to positive, the DFE X0 changes its stability from
stable to unstable. Furthermore, the EE becomes locally asymptotically stable.

Proof. First, we will verify condition (A1) of Theorem 12. Setting R0 = 1 and solving for the parameter
βH in Equation (4.3) gives

β∗H =
γ + µ

N
−
βLξ(0)
δ

.

The Jacobian matrix A = J(X0, β
∗
H) is given by

A =



−µ −β∗HN 0 −βLN 0 0 0
0 β∗HN − γ − µ 0 βLN 0 0 0
0 γ −µ 0 0 0 0
0 ξ(0) 0 −δ 0 0 0
0 0 0 0 −ζ 0 0
0 0 0 0 0 −τ 0
0 0 0 0 0 0 −p


.

It can be clearly seen that four eigenvalues of A are −µ, −ζ, −τ and −p. The remaining three eigenvalues
can be determined from the smaller matrix

B =


β∗HN − γ − µ 0 βLN

γ −µ 0
ξ(0) 0 −δ

 .
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After some simplification, we have

det(B − λI) = λ(−µ − λ)(δ +
NβLξ(0)

δ
+ λ).

Thus, the remaining three eigenvalues are given by −µ, −(δ +
NβLξ(0)

δ
), and 0. The conditions of (A1)

are then satisfied.
Consider again the Jacobian matrix A. Denote w = (w1,w2,w3,w4,w5,w6,w7)T , a right eigenvector

of the zero eigenvalue such that

Aw =



−µw1 − β
∗
HNw2 − βLNw4

(β∗HN − γ − µ)w2 + βLNw4

γw2 − µw3

ξ(0)w2 − δw4

−ζw5

−τw6

−pw7


= 0.

Setting w4 = 1 and solving the above system gives

w =

(
−δ(γ + µ)
µξ(0)

,
δ

ξ(0)
,

γδ

µξ(0)
, 1, 0, 0, 0

)T

.

Similarly, denote v = (v1, v2, v3, v4, v5, v6, v7), a left eigenvector of the zero eigenvalue such that

vA =



−µv1

−β∗HNv1 + (β∗H − γ − µ)v2 + γv3 + ξ(0)v4

−µv3

−βLNv1 + βLNv2 − δv4

−ζv5

−τv6

−pv7


= 0.

Solving this system along with the additional condition

v4

(
δ2 + βLNξ(0)
βLNξ(0)

)
= 1

gives

v =

(
0,

δξ(0)
δ2 + βLNξ(0)

, 0,
βLNξ(0)

δ2 + βLNξ(0)
, 0, 0, 0

)
.

Now we have v · w = 1, A · w = 0 and v · A = 0. From (A2) in Theorem 12, it follows that

a =
−2δ3(γ + µ)2

µNξ(0)[δ2 + βLNξ(0)]
< 0,

b =
δ2N

δ2 + βLNξ(0)
> 0.

Thus, based on Theorem 12, we have verified the conditions under which the result of the theorem
holds. �
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Figure 1. A typical scenario when R0 < 1 and solutions of system (4.1) converge to the DFE.

4.4. Numerical Results

We now use numerical simulations to verify some of the analytical results concerned with the full
system (4.1). Our main goal with these simulations is to demonstrate the stability of the equilibrium
solutions relative to R0.

First, our numerical results indicate that when R0 < 1, the DFE is globally asymptotically stable.
A typical scenario is shown in Figure 1, where the S component of the solution approaches the total
population size N and all other components of the solution approach 0 over time. When R0 > 1, the
DFE becomes unstable and there exist nontrivial multiple equilibria. Particularly, we have proven the
existence and uniqueness of the positive EE (4.7) under specific conditions. When these conditions are
not present, the positive EE may not exist. Figure 2 illustrates a scenario where R0 > 1 and solutions
of system (4.1) converge to the boundary equilibrium (4.5). Finally, we are able to verify the existence
and local asymptotic stability of the positive EE numerically, and one such result is displayed in Figure
3.

5. Discussion

We have presented a new cholera modeling framework that involves three distinct time scales:
the slow scale for the environmental bacterial dynamics, the intermediate scale for the between-host
disease transmission, and the fast scale for the within-host pathogen interaction. Using separation of
scales, we are able to conduct a careful analysis of each sub-model (at a single scale) on its equilibria
and stabilities. We have also investigated the case when the slow-scale and intermediate-scale dynamics
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Figure 2. A typical scenario when R0 > 1 and solutions of system (4.1) approach the
boundary equilibrium (4.5).

are aggregated into one sub-model. In addition, we have conducted an analysis on the fully coupled
model where the dynamics at three different scales are linked together.

For the simpler, decoupled sub-models, we are able to employ dynamical system theory to establish
the local and global stabilities of their equilibria. Due to the high dimension of the fully coupled model,
however, fewer results have been obtained. We are able to establish the existence and uniqueness of
the positive endemic equilibrium under certain conditions, and clarify the bifurcation behavior at the
threshold point R0 = 1. The stability of the positive endemic equilibrium away from the bifurcation
point, however, remains unresolved.

Our work could provide more insight into the methodology of utilizing mathematical models for
cholera dynamics, particularly regarding model complexity and feasibility. The most straightforward
way to model cholera and investigate its public health impact is just to consider the between-host
transmission at the intermediate time scale, treating any environmental factor (such as the bacterial
concentration) as a constant input. Our study shows that even such a simple model could be useful in
generating quantitative information on disease extinction and persistence. A more accurate modeling
approach is to include both the between-host transmission and the environmental pathogen evolution
using the coupled slow-intermediate-scale model, which could effectively cover both the direct
(human-to-human) and indirect (environment-to-human) routes of cholera transmission and provide
better prediction and assessment of the disease dynamics. The cost of such a model is the increased
dimension of the system that adds analytical difficulty and the requirement for additional information
related to the environmental evolution. Finally, a full system that connects the environmental bacterial
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Figure 3. A typical scenario when R0 > 1 and solutions of system (4.1) converge locally to
the positive EE (4.7).

dynamics, the between-host disease transmission and the within-host bacterial-viral-immune
interaction at all the three time scales, is the most complex way of modeling cholera, but can
potentially generate the most complete picture of cholera dynamics and yield the most accurate
prediction of the disease risk. The drawback, however, is that mathematical analysis of such a fully
coupled model is often highly challenging, if not impossible. Meanwhile, the implementation of such
a complex model demands more data (especially for the within-host dynamics) and the use of
nontrivial numerical simulation. The specific models at different scales employed in the present paper,
though relatively simple, could illustrate these points and suggest that selection of a modeling
approach for cholera (and, perhaps many other environmentally transmitted diseases) should be based
on the purpose of modeling, the availability of relevant data, the analytical tools and the
computational resources.

In our modeling framework, from both the decoupled and coupled analysis, we observe that
forward bifurcations occurs at each time scale; that is, regular threshold dynamics take place for each
sub-model as well as the entire multi-scale model. This result indicates that the standard practice of
reducing the basic reproduction number below unity would be effective for cholera control. For
example, if we use vaccination or water sanitation to weaken disease transmission and so to reduce
the basic reproduction number, or use medicine to boost the immune response of individual hosts, we
can effectively control the infection and spread of cholera. These results, however, are obtained based
on our model formulation. Our current model employs standard bilinear incidence for the infection
dynamics, and does not consider facts such as the saturation of the bacteria. Also, we assume that an
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infected individual recovers with permanent immunity and so the effect of waning immunity is not
considered. Meanwhile, the environmental pathogen evolution in our model does not include the
intrinsic growth of the bacteria. Additionally, in our within-host dynamics sub-model we have only
considered the innate immune response, and it may be more realistic to include also the adaptive
immune response into the pathogen-host interaction. When these factors are added to the model, it is
possible that more complicated dynamics, such as backward bifurcation, could appear.
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Appendix A: Stability Theorems

Here we list several theorems from the literature that are used in our proof of the stability for various
equilibria. The following result by Castillo-Chavez et al [5] is concerned with the global asymptotic
stability of a DFE.

Theorem 9. Consider a system of the form

dX1
dt = F(X1, X2),

dX2
dt = G(X1, X2), G(X1, 0) = 0

where X1 ∈ R
m denotes (its components) the number of uninfected individuals and X2 ∈ R

n denotes (its
components) the number of infected individuals including latent, infectious, etc; X0 = (X∗1, 0) denotes
the DFE of the system. Also assume the conditions (H1) and (H2) below:

(H1) For dX1/dt = F(X1, 0), X∗ is globally asymptotically stable;

(H2) G(X1, X2) = AX2 − Ĝ(X1, X2), Ĝ(X1, X2) ≥ 0 for (X1, X2) ∈ Ω,

where the off-diagonal elements of the Jacobian matrix A = ( ∂G
∂X2

)(X∗1, 0) are all non-negative, and
Ω is the region where the model makes biological sense. Then the DFE X0 = (X∗1, 0) is globally
asymptotically stable when R0 < 1.

The theorem below summarizes the main result of the geometric approach for global asymptotic
stability, originally proposed by Li and Muldowney [11].

Theorem 10. Let the map x 7→ D from an open subset D ⊂ Rn to Rn be such that each solution x(t) to
the differential equation

x′ = f (x) (S1)

is uniquely determined by its initial value x(0) = x0, and denote this solution by x(t, x0). Assume that

(D1) D is simply connected;

(D2) there is a compact absorbing set K ⊂ D;

(D3) x̄ is the only equilibrium of S1.

Define

q̄2 = lim sup
t→∞

sup
x0∈K

1
t

∫ t

0
µ(Q(x(s, x0)))ds,

where

Q = A f A−1 + A
∂ f [2]

∂x
A−1

and x 7→ A is a
(

n
2

)
×

(
n
2

)
matrix-valued function. Then the unique equilibrium x̄ is globally

asymptotically stable in D if q̄2 < 0.

The result below is referred to as the Local Center Manifold Theorem [16].
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Theorem 11. Consider the system X′ = f (X) where X ∈ IRn. Let f ∈ Cr(E), where E is an open subset
of IRn containing the origin and r ≥ 1. Suppose that f (0) = 0 and that D f (0) has c eigenvalues with
zero real part, and s = n − c eigenvalues with negative real part. The system then can be written in
diagonal form

x′ = Cx + F(x, y),
y′ = Py + G(x, y),

where (x, y) ∈ IRc×IRs, C is a square matrix with c eigenvalues with zero real part, P is a square matrix
with s eigenvalues with negative real part, and F(0) = G(0) = 0, DF(0) = DG(0) = 0. Furthermore,
there exists a δ > 0 and a function h ∈ Cr(Nδ(0)), h(0) = 0, Dh(0) = 0 that defines the local center
manifold Wc(0) �

{
(x, y) ∈ IRc × IRs

∣∣∣ y = h(x) for |x| < δ
}

and satisfies

Dh(x)
[
Cx + F(x, h(x))

]
= Ph(x) + G(x, h(x))

for |x| < δ , and the flow on the center manifold Wc(0) is defined by the system of differential equations

x′ = Cx + F(x, h(x))

for all x ∈ IRc with |x| < δ .

The following theorem, presented in [6], describes the local bifurcation behavior around an
equilibrium.

Theorem 12. Consider a general system of ODEs with a real parameter β:

x′ = f (x, β); f : IRn × IR→ IRn, and f ∈ C2(IRn × IR). (S2)

Assume x = X0 is an equilibrium of system (S2) for all β. Also assume

(A1) A = Dx f (X0, β
∗) =

(
∂ fi
∂x j

(X0, β
∗)
)

is the linearization matrix of system (S2) at the equilibrium
x = X0 with β evaluated at β∗. Zero is a simple eigenvalue of A and all other eigenvalues of A
have negative real parts.

(A2) Matrix A has a right eigenvector w and a left eigenvector v corresponding to the zero
eigenvalue.

Let fk be the kth component of f and,

a =

n∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j
(X0, β

∗) ,

b =

n∑
k,i=1

vkwi
∂2 fk

∂xi∂β
(X0, β

∗).

The local dynamics of the system (S2) around x = X0 are totally determined by a and b.
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1. a > 0, b > 0. When β − β∗ < 0 with |β − β∗| � 1, x = X0 is locally asymptotically stable, and
there exists a positive unstable equilibrium; when 0 < β − β∗ � 1, x = X0 is unstable and there
exists a negative and locally asymptotically stable equilibrium;

2. a < 0, b < 0. When β − β∗ < 0 with |β − β∗| � 1, x = X0 is unstable; when 0 < β − β∗ � 1,
x = X0 is locally asymptotically stable, and there exists a positive unstable equilibrium;

3. a > 0, b < 0. When β − β∗ < 0 with |β − β∗| � 1, x = X0 is unstable, and there exists a locally
asymptotically stable negative equilibrium; when 0 < β − β∗ � 1, x = X0 is stable, and a
positive unstable equilibrium appears;

4. a < 0, b > 0. When β − β∗ changes from negative to positive, x = X0 changes its stability from
stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and
locally asymptotically stable.

Appendix B: Trivial Equilibrium of Fast-Scale System

We consider the solution of the fast-scale system (2.2) specifically when RF
0 = c2B/τ = 1. Setting

B = τ
c2

, the original system reduces to the following:

dZ
dt

=
c1τ

c2
V − d1MZ − ζZ ,

dV
dt

= − d2MV ,

dM
dt

=e1MZ + e2MV − pM.

(S3)

Below we apply the Local Center Manifold Theorem (see Theorem 11 in Appendix A) to investigate
the stability of the trivial equilibrium (0, 0, 0). The system can be decomposed into its linear and
nonlinear components in the following way:

dZ
dt
dV
dt

dM
dt

 = A


Z
V
M

 + F ,

where

A =


−ζ c1τ

c2
0

0 0 0
0 0 −p

 and F =


−d1MZ
−d2MV

e1MZ + e2MV

 .
We proceed to decouple the variables by using the three eigenvalues λ1 = −ζ, λ2 = 0 and λ3 = −p, and
the corresponding eigenvector matrix

P−1 =


1 c1τ

c2ζ
0

0 1 0
0 0 1

 .
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Let Y = P(Z,V,M)T denote the transformed solution vector. We have

Y =


Z − c1τ

c2ζ
V

V
M

 =


y1

x
y2

 .
The decoupled system is then given by dY

dt = JY + PF, or

dY
dt

=


−ζy1

0
−py2

 +


−d1y1y2

−d2y2x
y2(e1y1 + [ c1e1τ

c2ζ
+ e2]x)

 .
Simplifying the above expression gives

dY
dt

=


−y1(ζ + d1y2)
−d2y2x

y2(e1y1 + [ c1e1τ
c2ζ

+ e2]x − p)

 .
We can separate the above system into two parts

dx
dt

= Cx + F(x, y)
dy
dt

= Py + G(x, y)

where y = [y1, y2]T and

C =0, F(x, y) = − d2y2x,

P =

[
−ζ 0
0 −p

]
, G(x, y) =

[
−d1y1y2

y2(e1y1 + [ c1e1τ
c2ζ

+ e2]x)

]
.

We now use a series expansion to represent y as a function of x:

y = h(x) =

[
h1(x)
h2(x)

]
=

[
a1x2 + b1x3 + ...

a2x2 + b2x3 + ...

]
. (S4)

Then y = h(x) defines a local center manifold for the original system. By differentiation with the chain
rule we know that Dh(x)[Cx + F(x, h(x))] = Ph(x) + G(x, h(x)), where

Dh(x)[Cx + F(x, h(x))] =

[
2a1x + ...

2a2x + ...

]
[−d2x(a2x2 + ...)],

Ph(x) + G(x, h(x)) =

[
−(a1x2 + ...)(ζ + d1(a2x2 + ...))

(a2x2 + ...)[e1(a1x2 + ...) + [ c1e1τ
c2ζ

+ e2]x − p]

]
.

(S5)

When equating the second rows of the two equations, we obtain

−d2x(2a2x + 3b2x2 + ...)(a2x2 + b2x3 + ...) = (a2x2 + b2x3 + ...)
[
e1(a1x2 + ...) +

[
c1e1τ

c2ζ
+ e2

]
x − p

]
.
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The above equation is only satisfied when a2 = b2 = · · · = 0; i.e., h2(x) = 0. This can be seen by noting
the constant −p on the right, as there is no possibility of a constant term on the left. When h2(x) = 0,
we must also have h1(x) = 0 by Equation (S5). Thus, we have h(x) = 0, and

dx
dt

= F(x, (h(x)) = 0. (S6)

According to the Center Manifold Theorem 11, the flow on the center manifold is locally described
by Equation (S6). Thus, the trivial equilibrium solution is (Lyapunov) stable, but not asymptotically
stable, when RF

0 = 1.
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