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Abstract: Based on years of experience in schistosomiasis prevention and treatment, one of the typical
features of schistosomiasis is multiple infection of a human host by parasites, which may dramatically
affect the host’s infectivity. In this paper we establish a schistosomiasis model that takes into consid-
eration multiple infection by separating humans with single and multiple infectious. The disease free
equilibrium is shown to be globally asymptotically stable under certain condition. The model analysis
suggests that a backward bifurcation may occur if the transmission rate from multiple infected humans
to snails is high. This conclusion has not been seen in previous models of schistosomiasis. Such back-
ward bifurcation is not possible without considering multiple infections. This conclusion may provide
a new threshold theory for the prevention and treatment of schistosomiasis. Furthermore, numerical
simulations suggest that effective treatment of humans with multiple infection is important to control
schistosomiasis. Especially, prevention of multiple infection may be critical.
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1. Introduction

Schistosomiasis is one of neglected tropical diseases. On February 25th, 2016, WHO reported that
at least 258 million people required preventive treatment for schistosomiasis in 2014 [16]. More than
61.6 million people were reported to have been treated for schistosomiasis in 2014. People can be
infected by being exposed to infested water during routine agricultural, domestic, occupational and
recreational activities. Especially in the flood period, many people may be infected multiply by in-
fested water [9, 18]. Hence, schistosoma infections remain a serious public health problem worldwide.
Identification of critical factors in the spread of schistosomiasis can be helpful for the control and
prevention of the disease.
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Although drug therapies for treating schistosomiasis are available, multiple infection is still a serious
problem, as it increases the difficulty for schistosomiasis control. Xu et al. reported that more than 90
percent of the schistosomiasis patients were repeatedly exposed to infected water [17]. The study
of Zhao et al. [19] involves a total of 679 people, of which 175 people are uninfected, 226 people
were infected once, 106 people were infected 4 times and 172 people were infected 6 times. Different
number of exposures may lead to various degrees of infection. It is reported in [1] that the infectivity
of an infected human host is dependent on the infection history. Hence, multiple infection may cause
the patient’s condition is more serious.

Studies about treatment-reinfection were done in a region of Philippines where S. japonicum is
endemic. In these studies, the impact of reinfection with S. japonicum after treatment with praziquantel
on the mean hemoglobin level is evaluated. Results show that rapidly reinfected individuals did not
have the positive treatment effect on hemoglobin seen in non-reinfected individuals [11].

From the perspective of epidemiology, multiple infection may greatly influence the transmission
and control of schistosomiasis. Hence, it is important to increase our understanding of multiple in-
fection in schistosomiasis transmission dynamics, which may help identify more effective measures in
containing or eliminating its transmission. Currently, many mathematical models have been developed
for investigating schistosomiasis dynamics[5, 7, 8, 13, 14, 20]. These models have provided useful
information for understanding the mechanics of schistosomiasis transmission.

However, these models use the same threshold quantity to determine whether or not schistosomiasis
is endemic. The threshold quantity is the basic or effective reproduction number. If the reproduction
number is greater than 1, schistosomiasis is persistent and dies out if it is below 1. In this paper,
multiple infection of patients was incorporated in the mathematical model. It is found that a backward
bifurcation may occur if the infectivity of people with multiple infection is sufficiently high. This
suggests the importance of studying the effects of multiple infection on the spread and control of
schistosomiasis. Moreover, such results can help to obtain thresholds for the control of schistosomiasis
in the case when the threshold value of the reproduction number is no longer 1.

The paper is organized as follows. In Section 2 we establish a schistosomiasis model with multiple
infection of human. The dynamics for the model are studied in Section 3. This section includes the
threshold condition, the existence of equilibria, backward bifurcation analysis and the global stability
of the disease free equilibrium. Some numerical simulations are presented in Section 4.

2. Modeling

Based on years of experience in schistosomiasis prevention and treatment, one of the typical features
of schistosomiasis is multiple infection of a human host by parasites, which may dramatically affect
the host’s infectivity. The problem is whether multiple infection may cause greater damage than single
infection or not [11, 17]. Therefore, it is necessary to study the effects of multiple infection on the
spread of schistosomiasis in theory. In this model,one classified human three classes, that is susceptible
S H, single infected IH and multiple infected MH according to the epidemiology of schistosomiasis
[17], respectively. Similarly based on the epidemiology of snail, snails are only separated two classes:
susceptible snail S S and infectious snail IS .

The annual 4-10 month is schistosomiasis epidemic period, and in this period, people contact in-
fected water with high frequency. For example, flooding occurred around July [9, 18]. Due to the good
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effect of drug control, few people died of schistosomiasis [12]. In additional, this epidemic period is
short. Hence, mortality due to illness for human and snail is ignored in this model. The death rate
of three kinds of people is the same µH. For human, both single infected and multiple infected can
recovery with different rate due to drug treatment [12]. Reference [11] showed that the treatment effect
of multiple infection is not good with single infection. According to the work experience of the schis-
tosomiasis agency for many years, with the same treatment rate, people with multiple infections MH

will enter the lightly infections group IH after treatment, while those with single infection IH will enter
the susceptible group S H. Here, γH represents the recovery rate. The transmission rate from single
infected snail to human is βS H. However, once a person is infected, people will be uncomfortable [17].
People may choose to take a break, which will reduce the chance of exposure to infected water. Hence,
we denote ω to describe the relative transmission from snail to multiple infected human with 0 < ω ≤ 1
[12]. In additional, the number of eggs per gram (EPG) in the body of multiple infected people is more
than in single infected people. Thus multiple infected people has stronger ability to infect snail than
single infected people. Here using ε to describe the relative transmission from multiple infected human
to snail with ε ≥ 1 [12].

Then the model is as the following

dS H

dt
= ΛH − βS HIS S H + γHIH − µHS H,

dIH

dt
= βS HIS S H − βS HIS IHω − γHIH + γH MH − µHIH,

dMH

dt
= βS HIS IHω − γH MH − µH MH,

dS S

dt
= ΛS − βHS S S IH − βHS S S MHε − µS S S ,

dIS

dt
= βHS S S IH + βHS S S MHε − µS IS .

(2.1)

All the parameters are listed in Table 1. Our aim was to study the effect of multiple infection on the
dynamic behavior of schistosomiasis. In detail, it is to study the effect of the two parameters ω, ε on
the dynamics of the schistosomiasis transmission model.

3. Dynamics of the model

It is easy to see that for (2.1) all trajectories in the positive cone enter or stay inside the region

Ω = {(S H, IH,MH, S S , IS ) | S H, IH,MH, S S , IS ≥ 0, S H + IH + MH ≤
ΛH

µH
, S S + IS ≤

ΛS

µS
}.

That means that Ω is a positively invariant set of (2.1).
The disease free equilibrium (DFE) E0 = (ΛH

µH
, 0, 0, ΛS

µS
, 0) always exists. According to the concept

of next generation matrix [3] and the technique developed in [4] for calculating the basic reproduction
number, if we follow the notations in [4] and let

F =


0 γH βS H

ΛH
µH

0 0 0
βHS

ΛS
µS

βHS
ΛS
µS
ε 0

 ,V =


γH + µH 0 0

0 γH + µH 0
0 0 µS

 .
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Table 1. Parameters

Parameters Description Values (per year) References
ΛH Recruitment rate of human 8 [6]
ΛS Recruitment rate of snail 25 [6]

βS H
Transmission rate from

infectious snail to human
0.005 [15]

βHS
Transmission rate from

infectious human to snail
0.0032 [15]

γH
Recovery rate of human from
lightly infection to uninfected

0.9 [15]

µH Death rate of human 0.014 [6, 14]

ω
Description of the relative transmission
from snail to severely infected human

0.7 Estimated

ε
Description of the relative transmission
from severely infected human to snail

10 Estimated

µS Death rate of snail 0.51 [6, 14]

Then the basic reproduction number for model (2.1) is

R0 = ρ(FV−1) =

√
ΛHΛSβS HβHS

µ2
SµH(γH + µH)

.

Considering the convenient calculation later, we still denote

R0 =
ΛHΛSβS HβHS

µ2
SµH(γH + µH)

.

Other equilibria are obtained from (2.1) by equating the right-hand side of (2.1) to zero and solving
the resulting algebraic equations. For any equilibrium E∗ = (S ∗H, I

∗
H,M

∗
H, S

∗
S , I

∗
S ), its coordinates satisfy

the following relations

S ∗H =
ΛH + γHI∗H
βS HI∗S + µH

,

I∗H =
ΛH(γH + µH)βS HI∗S

[γH(γH + µH) + (βS HI∗S + µH)(βS HI∗Sω + γH + µH)]µH
,

M∗
H =

βS HI∗Sω
γH + µH

I∗H,

S ∗S =
ΛS

µS
− I∗S ,

and I∗S is the root of the following equation

AI2
S + BIS + C = 0. (3.1)
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Here

A = β2
S Hω(µSµH + ΛHβHS ε) > 0,

B = βS H(γH + µH)(µSµH + ΛHβHS ) + βS HωµSµ
2
H(1 −

εΛHΛSβS HβHS

µ2
Sµ

2
H

),

C = (γH + µH)2µSµH(1 −
ΛHΛSβS HβHS

µ2
SµH(γH + µH)

) = (γH + µH)2µSµH(1 − R0).

If R0 > 1, C < 0 and then the equation (3.1) must have a unique root I∗S . This means that there exists a
unique endemic equilibrium E∗ if R0 > 1. Note that

B > 0⇔ ε <
µS (γH + µH)(µSµH + ΛHβHS ) + µ2

Sµ
2
Hω

ΛHΛSβS HβHSω
, ε∗.

Moreover, from R0 ≤ 1 one can get ε∗ ≥ 1 +
ΛHβHS
µS µH

+ ω
γH+µH

, that is ε∗ must be bigger than 1 when
R0 ≤ 1.

If R0 = 1, C = 0 and then the equation (3.1) have positive root under the condition that B < 0.
Hence, the equation (3.1) has a unique positive root I∗S = −A

B , which corresponds to the unique endemic
equilibrium E∗ if and only if ε > ε∗. Otherwise, the system (2.1) has no endemic equilibrium when
ε ≤ ε∗.

Now we consider the case when R0 < 1. In this case, the system (2.1) may have endemic equilibria
only when ε > ε∗. Let the discriminant of (3.1) be ∆, then we obtain

∆ = B2 − 4AC = [βS HµSµH(γH + µH)(1 − ωεR0) + ΛHβS HβHS (γH + µH)]2

−4β2
S Hω(µSµH + ΛHβHS ε)(γH + µH)2µSµH(1 − R0).

It is easy to see that ∆ is a strictly monotone increasing function of R0 in the right half plane.
Under ε > ε∗, ∆ = 0 is equivalent to B = −2

√
AC, that is

µSµH(γH + µH)ωε(1 − R0) + 2(γH + µH)
√
ω(µSµH + ΛHβHS ε)µSµH

√
1 − R0

+ΛHβHS (γH + µH) + ωµSµ
2
H + µSµH(γH + µH)(1 − ωε) = 0

Let
√

1 − R0 = p (0 < p < 1), we can get an equation g(p) , ap2 + bp + c = 0 about p. Here

a = µSµH(γH + µH)ωε,

b = 2(γH + µH)
√
ω(µSµH + ΛHβHS ε)µSµH,

c = ΛHβHS (γH + µH) + ωµSµ
2
H + µSµH(γH + µH)(1 − ωε).

From R0 < 1 and ε > ε∗, we have c < 0. In additional, g(1) > 0. Hence, there exists a unique solution
p∗ = −b+

√
b2−4ac

2a < 1 for the equation g(p) = 0. That is to say that there exists a unique R∗0 = 1− p∗2 < 1
for the equation ∆ = 0 in terms of R0 under the condition that ε > ε∗. Then we can obtain the following
equivalence relations:

∆ < 0⇔ R0 < R∗0 < 1,
∆ = 0⇔ R0 = R∗0 < 1,
∆ > 0⇔ R∗0 < R0 < 1.

This means that the equation (3.1) may have 0, 1 and 2 roots. In summary, the result about the number
of endemic equilibria is in Theorem 3.1.
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Theorem 3.1. For the system (2.1), with R∗0 and ε∗ defined as above, we have
(1) When R0 > 1, there is a unique endemic equilibrium E∗.
(2) When R0 = 1 and ε > ε∗, there is a unique endemic equilibrium E∗.
(3) When R0 ≤ 1 and ε ≤ ε∗, there is no endemic equilibrium.
(4) When R∗0 < R0 < 1 and ε > ε∗, there are two endemic equilibrium E∗ and E∗.
(5) When R0 = R∗0 and ε > ε∗, E∗ and E∗ coalesce at a unique endemic equilibrium of multiplicity 2.
(6) When R0 < R∗0 and ε > ε∗, there is no endemic equilibrium.

Here, E∗ = (S ∗H, I
∗
H,M

∗
H, S

∗
S , I

∗
S ) and E∗ = (S H∗, LH∗,HH∗, S S ∗, IS ∗) are the corresponding equilibria,

and

IS ∗ =
−B −

√
∆

2A
, I∗S =

−B +
√

∆

2A
.

Remark 3.2. When ε > ε∗, this theorem shows that there exists R∗0 (0 < R∗0 < 1) such that the system
(2.1) has a unique endemic equilibrium for R0 = R∗0, then the system has two endemic equilibrium for
R∗0 < R0 < 1 and a unique endemic equilibrium for R0 = 1. This situation corresponds to a backward
bifurcation which occurs at R0 = 1 (Figure 1). When ε ≤ ε∗, at R0 = 1 a forward bifurcation occurs
at E0. In the prevention and treatment of schistosomiasis, special consideration should be given to the
patient’s multiple infection and the treatment of multiple infectious patients.

Remark 3.3. Here ε∗ need to be greater than 1 +
ΛHβHS
µS µH

+ ω
γH+µH

at least, such that there is the possible
backward bifurcation when R0 < 1. Multiple infection caused the human body to be infected by more
schistosoma than single infection. The number of eggs per gram (EPG) in fecal is proportional to the
number of schistosoma in the human body [2]. This means multiple infected patient’s EPG is more
than single infected patient. From the data in [2], 0 EPG represented uninfected or susceptible, 24-
96 EPG indicated lightly infected, 120-792 EPG represented moderate infection and bigger than 816
indicated severely infected. These data indicate that EPG of patients with multiple infections have at
least 5 times more than single infection patients. Hence, here ε∗ ≥ 1 +

ΛHβHS
µS µH

+ ω
γH+µH

is realistic.

Remark 3.4. Note that the backward bifurcation will not happen if ω = 0. That means if there is
not multiple infection, there will be no backward bifurcation. To control schistosomiasis, the basic
reproduction number R0 is only threshold.

Now we study the stability of equilibria. It is easy to calculate that the characteristic equation about
E0 is given by

(λ + µH)(λ + µS )(λ + γH + µH)[λ2 + (γH + µH + µS )λ + µS (γH + µH) −
ΛHΛSβS HβHS

µSµH
] = 0.

Then the characteristic roots are −µH, −µS and roots of the following equation:

λ2 + (γH + µH + µS )λ + µS (γH + µH) −
ΛHΛSβS HβHS

µSµH
= 0.

It is easy to see that the real parts of all eigenvalues of E0 are negative if and only if R0 < 1. Hence, the
disease free equilibrium E0 of the system (2.1) is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.
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(a) backward bifurcation for ε > ε∗ (b) forward bifurcation for ε ≤ ε∗

Figure 1. The bifurcation figures

In order to study the global stability of the disease free equilibrium, we use Metzler matrix theory
and the technique of [10]. Consider systems of the following form: ẋ1 = f (x1, x2),

ẋ2 = g(x1, x2),
(3.2)

where x1 ∈ Rn1
+ , x2 ∈ Rn2

+ , and f and g are C1. We denote by x = (x1, x2) the state of the system and
(x∗1, 0) is a DFE on the positively invariant set Ω ⊂ Rn1+n2

+ . Now rewritten (3.2) as: ẋ1 = A1(x) · (x1 − x∗1) + A12(x) · x2,

ẋ2 = A2(x)x2.
(3.3)

For system (3.3), we make the following assumptions:

(H1): The system is defined on a positively invariant set Ω of the nonnegative orthant. The system
is dissipative on Ω.
(H2): The sub-system ẋ1 = A1(x) · (x1 − x∗1) is globally asymptotically stable at the equilibrium x∗1
on the canonical projection of Ω on Rn1

+ .
(H3): The matrix A2(x) is Metzler and irreducible for any given x ∈ Ω.
(H4): There exists an maximum matrix Ā2, then for any x̄ ∈ Ω such that Ā2 = A2(x̄), x̄ ∈ Rn1

+ × {0}.
(H5): α(Ā2) ≤ 0, i.e., the greatest real part of eigenvalues of Ā2 is nonnegative.

Now we state two lemmas due to [10].

Lemma 3.5. If the above hypothesis H1-H5 are satisfied, then the DFE is globally asymptotically
stable in Ω.

Lemma 3.6. If the same notations and hypothesis in Lemma 3.5 hold and if furthermore we have
Ā2 = A2(x∗1, 0), the DFE is globally asymptotically stable if and only if α(Ā2) ≤ 0.

Next we discuss the global stability of the disease free equilibrium E0 using the above two Lemmas.
From the system (2.1), we know

Ω = {(S H, IH,MH, S S , IS ) | S H, IH,MH, S S , IS ≥ 0, S H + IH + MH ≤
ΛH

µH
, S S + IS ≤

ΛS

µS
}
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is a compact positively invariant absorbing set contained in the nonnegative orthant. Thus the system
(2.1) is dissipative on Ω because the trajectories of (2.1) are forward bounded. Now we shall study the
system (2.1) on Ω.

We set for system (2.1) x1 = (S H, S S ), x2 = (IH,HH, IS ) and x∗1 = (ΛH
µH
, ΛS
µS

). As in [10], we express
the sub-system as ẋ1 = A1(x1, 0)(x1 − x∗1) and

dS H

dt
= ΛH − µHS H,

dS S

dt
= ΛS − µS S S .

This is a linear system and its unique equilibrium (ΛH
µH
, ΛS
µS

) (corresponding to the DFE of (2.1)) is
globally asymptotically stable, hence the assumption H1 and H2 are satisfied.

The matrix A2(x) is given by

A2(x) =


−(βS HISω + γH + µH) γH βS HS H − βS HIHω

βS HISω −γH − µH βS HIHω

βHS S s βHS S sε −µS

 .
As required by hypothesis H3, for any x ∈ Ω the matrix A2(x) is irreducible.

Now let us check H4. There is a maximum which is uniquely realized in Ω if S H = ΛH
µH
, S S = ΛS

µS

which corresponds to the DFE. This maximum matrix is then J2, the sub-block of the Jacobian matrix
at the DFE, corresponding to the matrix A2(x). The matrix J2 is given by

J2 =


−(γH + µH) γH βS H

ΛH
µH

0 −γH − µH 0
βHS

ΛS
µS

βHS
ΛS
µS
ε −µS

 .
Therefore, we are in the situation of Lemma 3.6 where the maximum is attained at the DFE.

The hypothesis H5 requires that α(J2) ≤ 0. Rewriting J2 into a sub-block matrix as J2 =(
A1×1 B1×2

C2×1 D2×2

)
. Since A is already a Metzler stable matrix, the condition α(J2) ≤ 0 is equivalent

to α(D −CA−1B) ≤ 0 [10] and this last condition is equivalent to the F0 condition

F0 =
ΛHΛSβS HβHS

µ2
SµH(γH + µH)

≤ 1.⇔ R0 ≤ 1.

We have computed F0 and one can see that the hypothesis H1, H2, H3, H4 and H5 are all satisfied.
Then by Lemma 3.6, we have proved the following Theorem 3.7.

Theorem 3.7. The disease free equilibrium E0 of the system (2.1) is globally asymptotically stable
when R0 < 1.

In additional, using the Routh-Hurwitz criterion the stability of E∗ can be obtained through complex
computation.

Theorem 3.8. The unique endemic equilibrium E∗ of the system (2.1) is locally asymptotically stable
when R0 > 1.

Mathematical Biosciences and Engineering Volume 16, Issue 2, 701–712
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4. Numerical simulation

Based on some parameter values in the Table 1, numerical simulations are conducted in this section.
Here R0 = 0.98, R∗0 = 0.95 and ε∗ = 6.82. First we can find two endemic equilibrium when R∗0 < R0 < 1
and ε > ε∗ and backward bifurcation occurs (Figure 2).

(a) Two endemic equilibrium in the system
with different initial values

0.9 0.95 1 1.05 1.1
0

2

4

6

8

10

12

14

16

18

20

R
0

I s

R
0

*

(b) Backward bifurcation

Figure 2. Backward bifurcation occurs under R∗0 < R0 < 1 and ε > ε∗

The following figures show that the unique endemic equilibrium is stable if R0 > 1 (see Figure 3,
4).

(a) Ih (b) Mh

Figure 3. The impact of ω on single and multiple infections under R0 > 1

Not only that, the number of single and multiple infectious patients changes as the change of ω. If

Mathematical Biosciences and Engineering Volume 16, Issue 2, 701–712
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the value of ω is larger, the number of patients with multiple infection is greater. Although the number
of patients with single infection is lower at the beginning, eventually becomes great. Moreover, very
little change in ω can lead to big change in the number of patients. This means multiple infection will
lead to more and more new patients with single and multiple infections.

From Figure 4 we can see the number of single and multiple infected humans also increases when
the value of ε is greatly increased. If the amplitude of the value of ε increase is small, the impact on
the number of patients is not very large. The main factors that to affect ε are feces of the patients who
have repeatedly infected. Therefore, to do a good job of health facilities, especially for patients with
multiple infections, is good to block the spread of schistosomiasis.

(a) Ih (b) Mh

Figure 4. The impact of ε on single and multiple infections under R0 > 1

5. Discussion

Multiple infection is a frequent phenomenon in the real life, especially in the process of the trans-
mission of schistosomiasis which is related to water, because people can not live without water. In
this paper, multiple infection of patients was considered into mathematical model. It is found that a
backward bifurcation occurs if transmission rate from multiple infectious human to snail is big. In
additional, if there is not multiple infection, there will be no backward bifurcation. Hence, special con-
sideration should be given to the patient’s multiple infection and the treatment of multiple infectious
patients in the prevention and treatment of schistosomiasis.

Based on the simulations, we found the unique endemic equilibrium is stable when the basic re-
production number is greater than 1. Furthermore, multiple infection will lead to more and more new
patients with single and multiple infections. Therefore, we should vigorously publicize the risk of mul-
tiple infections, to remind people not to contact with water, especially in the flood period. In additional,
If the transformation from multiple infection to snail is bigger than ε∗, to obtain stability of the disease
free equilibrium the basic reproduction number should be smaller than R∗0. This means the basic repro-
duction number is not the unique threshold to control schistosomiasis. To eliminate schistosomiasis,
we should do more work to reduce the basic reproduction number to be smaller than R∗0. For example,

Mathematical Biosciences and Engineering Volume 16, Issue 2, 701–712
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the snail density should be controlled to be less than R∗0µHµS (γH+µH)
ΛHβS HβHS

.
Eggs infected by multiple infected patients can cause serious infection to snail. Numerical simula-

tions show that this serious infection can lead to more new patients, which may lead to schistosomiasis
outbreaks. In addition, multiple infections also cause great harm to the human body. Hence, prevention
of multiple infection is particularly important.
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