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Abstract: Sanitation and awareness programs play a fundamental role and are much effective public
health interventions to control the spread of infectious diseases. In this paper, a nonlinear mathematical
model for the control of infectious diseases, such as typhoid fever is proposed and analyzed by con-
sidering budget required for sanitation and awareness programs as a dynamic variable. It is assumed
that the budget allocation regarding the protection against the disease to warn people and for sanitation
increases logistically and its per-capita growth rate increases with the increase in number of infected
individuals. In the model formulation, it is assumed that the susceptible individuals contract infection
through the direct contact with infected individuals as well as indirectly through bacteria shed in the
environment. It is further assumed that a fraction of budget is used to warn people via propagating
awareness whereas the remaining part is used for sanitation to reduce the density of bacteria. The
condition when budget should spend on sanitation/awareness to reduce the number of infected individ-
uals is obtained. Model analysis reveals that the sanitation and awareness programs have capability to
reduce the epidemic threshold and thus control the spread of infection. However, delay in providing
funds destabilizes the system and may cause stability switches through Hopf-bifurcation. Numerical
simulations are also carried out to support analytical findings.
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1. Introduction

The poor sanitation is alone responsible for 10 % of global burden of diseases and most of develop-
ing countries including India are facing the problem of disease burden due to lack of sanitation, hygiene
and adequate drinking water [22]. Across the globe, 2.3 billion people still do not have basic sanitation
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facilities, of these, 892 million still defecate in the open and annually 842 000 people die in low and
middle income countries due to inadequate sanitation, water, and hygiene [40]. In last few decades,
various government and non-government organizations have made efforts to improve sanitation cov-
erage and clean drinking water to slow down the spread of diseases [39]. There are several infectious
diseases which spread in the population due to poor sanitation and lack of awareness among the in-
dividuals regarding the healthy sanitation practices. In particular, typhoid fever is a life-threatening
infection caused by Salmonella Typhi bacteria, which spreads in the population through contaminated
water and food or through close contact with infected individuals. It is estimated that the global disease
burden of typhoid fever at 11 to 20 million cases of severe illness and about 128 000 − 161 000 deaths
annually [41].

Sanitation coverage plays a crucial role for better hygiene, safe drinking water and is responsible for
social and economic development. In 1923, Mahatma Gandhi told that “sanitation is more important
than independence”. He believed that “cleanliness is next to Godliness” and always encouraged the
people to adopt cleanliness as an integral part of life [13]. Awareness programs using different modes
like TV, radio, social media also play a very fundamental role to convey information regarding the tools
and techniques required for protection against the disease, and address the issues of healthy sanitation
practices. To disseminate awareness and improving sanitation require funds, which is provided by the
government through budget allocation. Nowadays, government of India is running “Swachh Bharat
Abhiyan” (clean India campaign) throughout the India and for this purpose funds are allotted by the
government. The main objective of this mission is to achieve the goal of cleanness, and propagate
awareness among the individuals to change their behavior regarding healthy sanitation practices [33].

In last few decades, some mathematical models have been proposed to assess the impacts of aware-
ness on the control of infectious diseases by considering transmission rate as decreasing function of
infected individuals due to media alerts [2, 3, 18, 19, 20, 30, 34, 37] or awareness programs (via TV,
radio, social media etc.) are implemented proportional to the number of infected individuals by con-
sidering media as a dynamic variable [4, 6, 12, 16, 23, 26, 28, 29, 32, 35, 38]. In particular, Misra
et al. [23] have considered that aware susceptible individuals are fully protected from infection as
they use precautionary measures during the infection period whereas Samanta et al. [35] have con-
sidered that aware susceptibles are also vulnerable to infection with lower rate than unaware suscep-
tible individuals. Their findings reveal that dissemination of awareness programs is beneficial to slow
down the disease prevalence, but it does not affect the epidemic threshold of disease due to media
alerts. Pawelek et al. [31] have studied how the information through Twitter impacts the dynamics
of influenza epidemic by considering that awareness among the individuals through Twitter messages,
change the individual’s behavior and reduce the transmission rate of disease. Their findings suggest
that social media programs, like Twitter may serve as a better mode of transmission of information and
is helpful in reducing the spread of influenza epidemic. Lu et al. [21] have proposed and analyzed
an SEI-type infection model to assess the impact of awareness programs on the control of infectious
diseases by considering that the media coverage directly influences the individual’s behavior and thus
reduces their contact rate. It is shown that media coverage reduces the epidemic peak. However, on
increasing epidemic threshold above a critical value destabilizes the system through Hopf-bifurcation,
which poses challenges to predict and control the spread of infection. Yang et al. [42] have devel-
oped two mathematical models to investigate the impact of awareness programs on the prevention and
control of cholera epidemic by considering awareness programs as a dynamic variable. In the first

Mathematical Biosciences and Engineering Volume 16, Issue 2, 667–700.



669

model, authors have considered that the transmission rate of disease as well as bacterial shedding rate
decreases with implementation of awareness programs whereas in second model, authors have consid-
ered that susceptible individuals are divided into unaware and aware classes due to media alerts. The
study reveals that awareness programs have positive effect in reducing the spread of disease and the
risk of infection. For some diseases, mathematical models are also proposed to assess the effect of time
delay in implementation of awareness programs [1, 11, 24, 27, 36]. It is observed that incorporation
of time delay in the modeling process destabilizes the system. Recently, Misra et al. [27] have studied
how delay in providing funds for implementation of awareness programs changes the dynamics of the
system. Authors have considered that the growth rate of budget allocation to warn people increases
logistically and its per-capita growth rate increases with the increase in number of infected individuals.
The study reveals that the dissemination of awareness among the individuals reduces the spread of
infection. However, delay in providing funds destabilizes the system and may cause stability switches
through Hopf-bifurcation.

Although awareness plays a very important role to reduce the contact rate between susceptible and
infected individuals, at the same time awareness regarding healthy sanitation practices is also important
to reduce the number of infected individuals. In this context, budget allocation by the government for
sanitation coverage is a rational step for the control of bacteria shed in the environment. For this
purpose, Mara et al. [22] have studied the impacts of sanitation for the control of infectious diseases.
Their findings suggest that improved sanitation is responsible for good human health and also for
social and economic development, particularly in developing countries. For sanitation coverage and
implementation of information campaigns, funds are needed, which are provided by the government
through budget allocation. Nationwide policies are required for sanitation coverage and budget should
be allotted to the responsible organizations for effective implementation [15].

Thus, there is a need of mathematical model which explicitly incorporate the combined effects of
sanitation and awareness programs through budget allocation for the control of infectious diseases,
such as typhoid fever which spreads in the population through the direct contact of susceptible with
infected individuals as well as indirectly through bacteria present in the environment. In this paper, it is
assumed that the growth rate of budget required for sanitation and awareness programs follows logistic
model and increment in per-capita growth rate of budget allocation is proportional to the number of
infected individuals. It is also assumed that a fraction of budget is used to warn people regarding the
protection against the disease and the remaining part of funds is used for sanitation coverage to reduce
the density of bacteria shed in the environment.

2. Mathematical model and description

In the region under consideration, it is assumed that the population is homogeneously mixed and
disease spreads via the direct contact between susceptible and infected individuals as well as indirectly
through bacteria shed in the environment. Some epidemiologists are in opinion that the bacterial infec-
tious diseases, such as typhoid fever do not confer proper immunity after the disease and have higher
infective dose (number of bacteria needed to produce an infection). Here, we assume that mean value
of infective dose in the susceptible population does not change significantly. Thus, we consider an SIS
model with immigration where infected individuals recover from infection after certain period of time
and join the susceptible class [9, 25]. The information regarding the protection against the disease is
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propagated through TV, radio, social media etc. As a result, aware people use precautionary measures
for their protection during the infection period and thus reduce their contacts with infected individuals.
Nowadays, government of India is propagating Swachh Bharat campaigns throughout the India with
the slogan “Ek Kadam Swachhata Ki Ore” (A step towards sanitation) [33]. The sanitation coverage
and public health information campaigns can help to prevent and control the spread of communicable
diseases. For this purpose, funds are allotted by the government through budget allocation, a fraction
of budget is used to warn people regarding the tools and techniques required for protection and remain-
ing part of funds is spent for sanitation coverage. The sanitation coverage plays a fundamental role to
reduce bacteria in the environment. Let N(t) be the total population at any time t in the region under
consideration, which is divided into two sub-populations (i) susceptible population S (t) (ii) infected
population I(t). It is assumed that all the susceptible individuals living in habitat are affected by bac-
teria population. Let B(t) be the density of bacteria shed in the environment at time t. The variable
M(t) addresses the budget allocation by the government to warn people and for sanitation coverage. It
is assumed that the growth rate of budget allocation follows logistic model with intrinsic growth rate
‘r’ and carrying capacity ‘K’. Further, it is assumed that the increment in per-capita growth rate of
budget allocation is proportional to the number of infected individuals in the region. It is also assumed
that the density of bacteria increases with the increase in number of infected individuals apart from its
self-growth rate and natural death rate. For the feasibility of model system, it is assumed that natural
death rate of bacteria is higher than its self-growth rate, i.e., (φ0 − φ) > 0. The interaction between
susceptible and infected individuals is assumed to follow the simple law of mass action and the inter-
action of susceptible with bacteria shed in the environment as saturated function of bacterial density
because bacteria shed in the environment can infect the susceptible individuals to a limited extent and
this interaction is represented by the term η B

L+BS .
In view of the above considerations, the dynamics of the model is governed by the following system

of nonlinear differential equations:

dS (t)
dt

= Λ −

(
β − β1

k1M(t)
p + k1M(t)

)
S (t)I(t) − η

B(t)
L + B(t)

S (t) + νI(t) − dS (t),

dI(t)
dt

=

(
β − β1

k1M(t)
p + k1M(t)

)
S (t)I(t) + η

B(t)
L + B(t)

S (t) − (ν + α + d)I(t),

dB(t)
dt

= φ1I(t) + φB(t) − φ0B(t) − Φ
(1 − k1)M(t)

q + (1 − k1)M(t)
B(t),

dM(t)
dt

= r
(
1 −

M(t)
K

)
M(t) + θI(t)M(t). (2.1)

In the above model system, it is assumed that a fraction of the total allotted budget M, (i.e., k1M,
0 < k1 < 1) is used for implementation of awareness programs regarding the tools and techniques
required for protection due to which they keep themselves away from infected individuals and thus
the direct contact between susceptible and infected individuals decreases at a factor f1(M) = β1

k1 M
p+k1 M .

The reason behind considering this saturated type of functional response is that the amount of budget
used to warn people via propagating awareness has limited impact to reduce the contact rate between
susceptible and infected individuals [19] and in this case the effective contact rate between susceptible
and infected individuals becomes β(M) =

(
β − β1

k1 M
p+k1 M

)
. For the feasibility of model system, β1 < β.

Further, it is assumed that the remaining part of budget, i.e., (1 − k1)M is used for sanitation coverage
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and due to this, the density of bacteria shed in the environment decreases at a factor f2(M) = Φ
(1−k1)M

q+(1−k1)M .
Here, we have considered a saturated type of function because the amount of funds which is used
for sanitation coverage can reduce the bacteria shed in the environment to a limited extent. All the
parameters of model system (2.1) are assumed to be positive and description of model parameters is
given in Table 1.

Table 1. Parameter description for the model system.
Parameters Description Units
Λ Immigration in the class of susceptible population person day−1

β Contact rate of susceptible with infected person−1day−1

individuals in absence of funds
β1 Efficacy of budget allocation to reduce person−1day−1

the contact rate via propagating awareness
k1 Fractional constant determining the budget allocation to

warn susceptibles via propagating awareness
p Half saturation point for f1(M) as it attains half of its maximum

possible value β1 when budget allocation arrives at p
k1

η Transmission rate of susceptible to infected class due to day−1

interaction of susceptible with bacteria present in the environment
L Half saturation constant cells/mm3

ν Recovery rate of human population day−1

α Disease induced death rate of human population day−1

d Natural death rate of human population day−1

φ1 Growth rate of bacteria cells/(mm3

due to increase in infected individuals person day)
φ Self-growth rate of bacteria day−1

φ0 Natural death rate of bacteria day−1

Φ Efficacy of sanitation coverage to reduce bacteria day−1

in the environment due to budget allocation
q Half saturation point for f2(M) as it attains half of its maximum

possible value Φ when budget allocation arrives at q
1−k1

r Intrinsic growth rate of budget allocation day−1

K Carrying capacity of budget allocation
θ Per-capita growth rate of budget allocation (person day)−1

due to increase in infected individuals

In model system (2.1) at time t, it is assumed that the per-capita growth rate of budget allocation to
warn people and for sanitation increases proportional to the number of infected individuals. However,
it may be noted that the number of reported cases of infected individuals known to the government
may be some days old and increment in per-capita growth rate of budget allocation depends upon this
data, which leads to the incorporation of time delay in per-capita growth rate of budget allocation due
to increase in infected individuals. In order to this, we have considered that at time t, the per-capita
growth rate of budget allotted to warn people and for sanitation is in accordance with the number of
infected individuals reported at time t − τ (for some τ > 0).

In view of this, the dynamics of the model is governed by the following system of nonlinear delay
differential equations:

dS (t)
dt

= Λ −

(
β − β1

k1M(t)
p + k1M(t)

)
S (t)I(t) − η

B(t)
L + B(t)

S (t) + νI(t) − dS (t),

dI(t)
dt

=

(
β − β1

k1M(t)
p + k1M(t)

)
S (t)I(t) + η

B(t)
L + B(t)

S (t) − (ν + α + d)I(t),

dB(t)
dt

= φ1I(t) + φB(t) − φ0B(t) − Φ
(1 − k1)M(t)

q + (1 − k1)M(t)
B(t),
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dM(t)
dt

= r
(
1 −

M(t)
K

)
M(t) + θI(t − τ)M(t). (2.2)

where, S (0) = S 0 > 0, I(ϑ) = I0 ≥ 0 for ϑ ∈ [−τ, 0), B(0) = B0 ≥ 0 and M(0) = M0 ≥ 0.
Using the fact that S (t) + I(t) = N(t), the above model system (2.2) reduces to following system of
nonlinear delay differential equations:

dI(t)
dt

=

(
β − β1

k1M(t)
p + k1M(t)

)
(N(t) − I(t))I(t) + η

B(t)
L + B(t)

(N(t) − I(t))

−(ν + α + d)I(t),
dN(t)

dt
= Λ − dN(t) − αI(t),

dB(t)
dt

= φ1I(t) − (φ0 − φ)B(t) − Φ
(1 − k1)M(t)

q + (1 − k1)M(t)
B(t),

dM(t)
dt

= r
(
1 −

M(t)
K

)
M(t) + θI(t − τ)M(t). (2.3)

3. Positivity of solutions and boundedness

To show that the model system (2.1) is epidemiologically feasible, we show that all the variables
of model system (2.1) are non-negative for all time t. In order to this, we have the following Lemma,
which is stated as follows:

Lemma 3.1. The solution S (t), I(t), B(t) and M(t) of model system (2.1) with initial conditions S (0) >
0, I(0) ≥ 0, B(0) ≥ 0 and M(0) ≥ 0 are positive for all t > 0.

Now, it is sufficient to study model system (2.3) in detail rather than system (2.2). For the solution
of model system (2.3), the region of attraction [7] is given by the set:

Ω = {(I,N, B,M) ∈ R4
+ : 0 ≤ I ≤ N ≤

Λ

d
, 0 ≤ B ≤ Bm, 0 ≤ M ≤ Mm},

where, Bm =
φ1Λ

d(φ0−φ) , Mm = K
r

(
r + θΛ

d

)
and it attracts all solutions initiating in the interior of positive

orthant.
For the proof of positivity of solutions and boundedness, see Appendix A.

4. Equilibrium analysis

The model system (2.3) is nonlinear and so it is difficult to find exact solution. Thus, we discuss its
qualitative behavior around the equilibrium using stability theory of differential equation to get insight
regarding the long-term disease dynamics and its control strategies. In this section, we show the
feasibility of all equilibria by setting rate of change with respect to time t of all dynamical variables to
zero. For the model system (2.3), we obtain four feasible equilibria, which are listed as follows:
(i) The disease and budget-free equilibrium (DBFE) E1

(
0, Λ

d , 0, 0
)
.
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(ii) The budget-free endemic equilibrium (BFEE) E2(I2,N2, B2, 0). This equilibrium is feasible if
R0 > 1.
(iii) The disease-free equilibrium (DFE) E3(0, Λ

d , 0,K).
(iv) The interior equilibrium (IE) E∗(I∗,N∗, B∗,M∗). This equilibrium is feasible if R1 > 1,
where, R0 =

βΛ

d(ν+α+d) +
ηφ1Λ

dL(ν+α+d)(φ0−φ) = R0d + R0i and

R1 =
(
β − β1

k1K
p+k1K

)
Λ

d(ν+α+d) +
ηφ1Λ

dL(ν+α+d)
(
φ0−φ+Φ

(1−k1)K
q+(1−k1)K

) = R1d + R1i.

The quantity R0 is known as basic reproduction number in absence of budget, which is defined as
the number of secondary infected individuals produced by an infected individual due to direct contact
as well as indirectly through bacteria during his / her whole infectious period in entirely susceptible
population [5]. The basic reproduction number (R0) is an important non-dimensional threshold quan-
tity in epidemiology to predict disease outbreak. If R0 > 1 (or R0 < 1), then on average an infected
individual will produce more than (or less than) one secondary infected individuals during his or her
whole infectious period in entirely susceptible population and hence disease will persist (or be erad-
icated) in the population, respectively. The quantity R0d captures the dynamics of simple SIS model
with immigration when disease is propagated in the system through direct contact and the quantity
R0i captures the dynamics of simple SIS model with immigration when disease spreads in the system
indirectly through bacteria present in the environment. In presence of budget to warn people and for
sanitation, the basic reproduction number R0 = R0d +R0i is modified to R1 = R1d +R1i. It is easy to note
that R1 < R0, indicating that the presence of awareness and sanitation coverage lowers the epidemic
threshold and reduces the infection risk through budget allocation. The basic reproduction number (R1)
is obtained by applying next generation matrix technique [5], for more detail, see Appendix B.
The feasibility of equilibrium E1 and E3 is trivial. In the following, we show the feasibility of equilib-
rium E2 and E∗.
Feasibility of equilibrium E2:
In equilibrium E2(I2,N2, B2, 0), the values of I2, N2 and B2 are obtained by solving the following set of
algebraic equations:

β(N − I)I + η
B

L + B
(N − I) − (ν + α + d)I = 0, (4.1)

Λ − dN − αI = 0, (4.2)

φ1I − (φ0 − φ)B = 0. (4.3)

Using equations (4.2) and (4.3) in equation (4.1), we obtain following equation in I (I , 0):

F(I) =

(
β +

ηφ1

L(φ0 − φ) + φ1I

) (
Λ − (α + d)I

d

)
− (ν + α + d) = 0. (4.4)

From equation (4.4), we may easily note that:
(i) F(0) =

((
β +

ηφ1
L(φ0−φ)

)
Λ
d − (ν + α + d)

)
> 0, if R0 > 1,

(ii) F
(

Λ
α+d

)
= −(ν + α + d) < 0,

(iii) F′(I) = −

[
α+d

d

(
β +

ηφ1
L(φ0−φ)+φ1I

)
+

ηφ2
1

(L(φ0−φ)+φ1I)2

(
Λ−(α+d)I

d

)]
< 0 for I ∈

(
0, Λ

α+d

)
.

Thus, F(I) = 0 has a unique positive root I = I2 (say) in
(
0, Λ

α+d

)
, provided R0 > 1 and for this positive
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value of I = I2, from equations (4.2) and (4.3), we get positive values of N2 = Λ−αI2
d and B2 =

φ1I2
φ0−φ

,

respectively. It may be noted that if R0 < 1, the equation (4.4) has no positive solution in
(
0, Λ

α+d

)
.

Thus, the equilibrium E2(I2,N2, B2, 0) is feasible provided R0 > 1.

Feasibility of equilibrium E∗:
In equilibrium E∗(I∗,N∗, B∗,M∗), the values of I∗, N∗, B∗ and M∗ are obtained by solving the following
set of algebraic equations:(

β − β1
k1M

p + k1M

)
(N − I)I + η

B
L + B

(N − I) − (ν + α + d)I = 0, (4.5)

Λ − dN − αI = 0, (4.6)

φ1I − (φ0 − φ)B − Φ
(1 − k1)M

q + (1 − k1)M
B = 0, (4.7)

r
(
1 −

M
K

)
+ θI = 0. (4.8)

Using equation (4.8) in equation (4.7), we obtain

B =
φ1I(qr + (1 − k1)K(r + θI))

(φ0 − φ)(qr + (1 − k1)K(r + θI)) + Φ(1 − k1)K(r + θI)
. (4.9)

Further, using equations (4.5), (4.6) and (4.9), we have following equation in I (I , 0):

G(I) =

(
β − β1

k1K(r + θI)
pr + k1K(r + θI)

) (
Λ − (α + d)I

d

)
+

ηφ1(qr + (1 − k1)K(r + θI))
(L(φ0 − φ) + φ1I)(qr + (1 − k1)K(r + θI)) + LΦ(1 − k1)K(r + θI)

×

(
Λ − (α + d)I

d

)
− (ν + α + d) = 0. (4.10)

From equation (4.10), we may easily note that:

(i) G(0) =


(β − β1

k1K
p+k1K

)
+

ηφ1

L
(
φ0−φ+Φ

(1−k1)K
q+(1−k1)K

)
 Λ

d − (ν + α + d)

 > 0,

if R1 > 1.
(ii) G

(
Λ
α+d

)
= −(ν + α + d) < 0, and (iii) G′(I) < 0 in

(
0, Λ

α+d

)
.

Thus, G(I) = 0 has a unique positive root I = I∗ (say) in
(
0, Λ

α+d

)
, provided R1 > 1. Now, substituting

the positive value of I = I∗ in equations (4.6), (4.8) and (4.9), we obtain positive values of N∗, B∗

and M∗, respectively. Thus, the interior equilibrium E∗(I∗,N∗, B∗,M∗) is feasible provided R1 > 1 and
I∗ ∈

(
0, Λ

α+d

)
.

Remark 1. From equation (4.10), it is easy to note that dI∗
dθ < 0, dI∗

dK < 0, dI∗
dp > 0 and dI∗

dq > 0. This
implies that the equilibrium number of infected individuals decreases with the increase in per-capita
growth rate of budget allocation due to increase in infected individuals (θ) and it also decreases as
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the carrying capacity of budget allocation to warn people and for sanitation (K) increases whereas the
equilibrium number of infected individuals increases as the values of half saturation point (i.e., p and
q) increases. This is because the contact rate of susceptible with infected individuals increases and
reduction rate of bacteria from the environment through sanitation coverage decreases as the values of
p and q increases.

Remark 2. From equation (4.10), it is easy to see that dI∗
dβ1

< 0 and dI∗
dΦ

< 0 . This implies that the
equilibrium number of infected individuals decreases as efficacy of budget allocation to reduce the
contact rate via propagating awareness (β1) and efficacy of sanitation coverage to reduce bacteria in
the environment due to budget allocation (Φ) increases. Further, it is also easy to note that dM∗

dβ1
< 0

and dM∗
dΦ

< 0, i.e., equilibrium amount of budget required for awareness and sanitation decreases as the
values of β1 and Φ increases. This is because the increase in efficacy of budget allocation to reduce the
contact rate via propagating awareness (β1) and efficacy of sanitation coverage to reduce the bacteria
in the environment (Φ) gives less number of infected individuals and hence less amount of budget will
be required to control the infection.

Remark 3. Form equation (4.10), it is easy to note that dI∗
dk1

< 0 if the condition A − S ={
β1 p

(pr+k1K(r+θI∗))2 −
ηφ1LΦq

[(L(φ0−φ)+φ1I∗)(qr+(1−k1)K(r+θI∗))+LΦ(1−k1)K(r+θI∗)]2

}
> 0 is satisfied. This implies that the equi-

librium number of infected individuals decreases as the values of fractional constant of budget allo-
cation to warn people via propagating awareness (k1) increases. Further, it is easy to see that dI∗

dk1
> 0(

i.e., dI∗
d(1−k1) < 0

)
if condition A − S < 0 holds. This implies that when A < S, the equilibrium number

of infected individuals decreases with the increase in fraction of budget allocation used for sanitation
coverage (i.e., 1 − k1). The condition tells that when budget should spend on awareness/sanitation to
reduce the number of infected individuals.

5. Stability analysis in absence of delay (i.e., τ = 0)

5.1. Local stability analysis

In this section, we present the results of local stability analysis of equilibrium E1, E2, E3 and E∗ in
absence of delay (i.e., τ = 0) by finding the sign of real part of eigenvalues of Jacobian matrix obtained
for model system (2.3) evaluated at equilibrium E1, E2, E3 and E∗. The local stability conditions of
equilibrium Ei (i = 1, 2, 3) and E∗ are stated in the following theorem:

Theorem 5.1. (i) The disease and budget-free equilibrium E1 is always feasible and unstable.
(ii) The budget-free endemic equilibrium E2 is feasible if R0 > 1 and is unstable.
(iii) The disease-free equilibrium E3 is always feasible and is locally asymptotically stable whenever
R1 < 1, whereas it is unstable with locally unstable manifold either in I-direction or B-direction and
locally stable manifold in N − M plane, whenever R1 > 1.
(iv) The interior equilibrium E∗ is feasible if R1 > 1 and is locally asymptotically stable provided

C3(C1C2 −C3) −C2
1C4 > 0, (5.1)

where, Ci’s (i = 1, 2, 3, 4) are coefficients of the characteristic equation of the Jacobian matrix eval-
uated at equilibrium E∗, defined in the proof given in Appendix C.
The above theorem tells that if E∗ is feasible, then E3 is saddle point with locally unstable manifold
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either in I-direction or B-direction and locally stable manifold in N − M plane. Thus, E3 is unstable
whenever E∗ is feasible.
The local stability analysis of the interior equilibrium tells that if the initial values of any trajectory
are near to equilibrium E∗(I∗,N∗, B∗,M∗), then the trajectory approaches to the equilibrium E∗ under
the condition (5.1). Thus, the initial values of the state variables I, N, B and M are near to the cor-
responding equilibrium levels, the equilibrium number of infected individuals get stabilized provided
condition (5.1) is satisfied.

5.2. Global stability analysis

In this section, first we present the results of global stability analysis of equilibrium E3 (τ = 0).
Further, we present the results of global stability analysis of equilibrium E∗ in absence of delay (τ = 0)
using Lyapunov’s direct method by defining a suitable scalar-valued function, called the Lyapunov
function and thus we have the following results regarding the global stability of equilibrium E3 and E∗.

Theorem 5.2. The disease-free equilibrium E3 of model system (2.3) is globally asymptotically stable
in the region R2

+ of I − B plane if R1 < 1.

Proof. From model system (2.3), we have

dI
dt

=

(
β − β1

k1M
p + k1M

)
(N − I)I + η

B
L + B

(N − I) − (ν + α + d)I := f1,

dB
dt

= φ1I − (φ0 − φ)B − Φ
(1 − k1)M

q + (1 − k1)M
B := f2.

Consider, h(I, B) = 1
IB and 4E3(I, B) = ∂

∂I (h f1) + ∂
∂B(h f2).

Since h(I, B) = 1
IB > 0 for all I, B > 0 and so we obtain

4E3(I, B) = ∂
∂I (h f1) + ∂

∂B(h f2) = −
[

1
B

(
β − β1

k1 M
p+k1 M

)
+

η

L+B +
φ1
B2

]
< 0.

Clearly, 4E3(I, B) does not change its sign and also it is not identically zero in positive quadrant of
I − B plane. By Bendixson-Dulac criteria, the system has no limit cycle in positive quadrant of I − B
plane. As disease-free equilibrium E3 is locally asymptotically stable whenever R1 < 1 and so it will
be globally asymptotically stable in the region R2

+ of I − B plane, if R1 < 1. �

Theorem 5.3. The interior equilibrium E∗, if feasible, is globally asymptotically stable in Ω provided
the following inequalities are satisfied:(

η

I∗

)2
<

4
5

(
d
α

) (
β − β1

k1M∗

p + k1M∗

)2

, (5.2)(
β1k1Λ

d(p + k1M∗)

)
<

4
15

( r
Kθ

) (
β − β1

k1M∗

p + k1M∗

)
, (5.3)

G11 < G12 min{G13,G14}, (5.4)

where,

G11 = 15
4

(
η(N∗−I∗)
I∗(L+B∗)

)2

(
β−β1

k1 M∗

p+k1 M∗

)(
φ0−φ+Φ

(1−k1)M∗

q+(1−k1)M∗

) , G12 = 4
3

(
φ0 − φ + Φ

(1−k1)M∗

q+(1−k1)M∗

)
,

G13 = 1
5φ2

1

(
β − β1

k1 M∗

p+k1 M∗

)
and G14 =

(
m3r
3K

) (
d(φ0−φ)(q+(1−k1)M∗)

φ1ΛΦ(1−k1)

)2
.
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The inequality (5.3) is the condition for determining the positive value of m3. For the proof of this
theorem, see Appendix D.

6. Stability analysis in presence of delay (i.e., τ > 0)

In previous sections, we have summarized the results of qualitative analysis of model system (2.3),
regarding the feasibility of equilibrium and their stability properties in absence of delay (i.e., τ = 0).
In this section, we present the stability of interior equilibrium E∗ of model system (2.3) in presence of
delay and also explore the possibility of Hopf-bifurcation at the interior equilibrium E∗ by taking time
delay τ as a bifurcation parameter. First, we linearize the model system (2.3) about the equilibrium
E∗(I∗,N∗, B∗,M∗) by using the following transformations: I(t) = I∗ + i(t), N(t) = N∗ + n(t), B(t) =

B∗ + b(t) and M(t) = M∗ + m(t). The linear system of model system (2.3) about the equilibrium E∗ is
given as follows:

dυ
dt

= P1υ(t) + P2υ(t − τ), (6.1)

where, υ(t) = [i(t), n(t), b(t),m(t)]T ,

P1 =


−J∗11 J∗12 J∗13 −J∗14
−α −d 0 0
φ1 0 −J∗33 −J∗34
0 0 0 − r

K M∗

 and P2 =


0 0 0 0
0 0 0 0
0 0 0 0
θM∗ 0 0 0

 .
In the above system i(t), n(t), b(t) and m(t) are small perturbations around the equilibrium E∗. The
characteristic equation for the linearized system (6.1) is obtained as:

χ4 + ρ1χ
3 + ρ2χ

2 + ρ3χ + ρ4 + (σ1χ
2 + σ2χ + σ3)e−χτ = 0, (6.2)

where, ρ1 = d + r
K M∗ + J∗11 + J∗33,

ρ2 = αJ∗12 + dr
K M∗ +

(
d + r

K M∗
)

(J∗11 + J∗33) + β(M∗)I∗J∗33 +
ηφ1(N∗B∗+LI∗)

(L+B∗)2 ,

ρ3 = αJ∗12

(
rM∗

K + J∗33

)
+

(
d + rM∗

K

) (
β(M∗)I∗J∗33 +

ηφ1(N∗B∗+LI∗)
(L+B∗)2

)
+ drM∗

K (J∗11 + J∗33),
ρ4 = αr

K M∗J∗12J∗33 + dr
K M∗

(
β(M∗)I∗J∗33 +

ηφ1(N∗B∗+LI∗)
(L+B∗)2

)
,

σ1 = θM∗J∗14, σ2 = θM∗(J∗13J∗34 + J∗14J∗33 + dJ∗14), σ3 = dθM∗(J∗13J∗34 + J∗14J∗33), β(M∗) =
(
β − β1

k1 M∗

p+k1 M∗

)
,

J∗11 = β(M∗)I∗ + η B∗
L+B∗

(
N∗
I∗

)
, J∗12 = β(M∗)I∗ + η B∗

L+B∗ , J∗13 =
ηL

(L+B∗)2 (N∗ − I∗), J∗14 =
β1k1 p

(p+k1 M∗)2 (N∗ − I∗)I∗,

J∗33 =
(
φ0 − φ + Φ

(1−k1)M∗

q+(1−k1)M∗

)
, and J∗34 =

Φ(1−k1)qB∗

(q+(1−k1)M∗)2 .
In writing the above values of ρ′i s(i = 1, 2, 3, 4), we have used the fact J∗11J∗33 − J∗13φ1 = β(M∗)I∗J∗33 +
ηφ1(N∗B∗+LI∗)

(L+B∗)2 .

Now, in order to show the existence of Hopf-bifurcation, we must have a pair of purely imaginary roots
of the characteristic equation (6.2). For this purpose, we substitute, χ = i ω (ω > 0) in equation (6.2)
and separate real and imaginary parts, we have the following transcendental equations:

ω4 − ρ2ω
2 + ρ4 = −σ2ω sin(ωτ) − (σ3 − σ1ω

2) cos(ωτ), (6.3)

ρ1ω
3 − ρ3ω = σ2ω cos(ωτ) − (σ3 − σ1ω

2) sin(ωτ). (6.4)
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On squaring and adding equations (6.3) and (6.4) and substituting ω2 = ϕ, we obtain the fourth degree
polynomial equation in ϕ as follows:

H(ϕ) = ϕ4 + D1ϕ
3 + D2ϕ

2 + D3ϕ + D4 = 0, (6.5)

where, D1 = ρ2
1 − 2ρ2, D2 = ρ2

2 − 2ρ1ρ3 + 2ρ4 − σ
2
1, D3 = ρ2

3 − 2ρ2ρ4 − σ
2
2 + 2σ1σ3, D4 = ρ2

4 − σ
2
3.

Now, we discuss the nature of roots of fourth degree polynomial equation (6.5) in the following cases:
(H1): If all the coefficients Di’s (i = 1, 2, 3, 4) in H(ϕ) are positive then by Descartes’ rule of signs, the
equation (6.5) has no positive real root and thus the characteristic equation (6.2) has no pair of purely
imaginary roots for any τ > 0. Thus, all the roots of equation (6.2) are either negative or with negative
real part in presence of delay (i.e., τ > 0). In this case, we have following theorem:

Theorem 6.1. If condition (H1) is satisfied, then the interior equilibrium E∗, if feasible, is locally
asymptotically stable for all τ > 0, provided it is stable in absence of delay.

(H2): If not all the coefficients Di’s (i = 1, 2, 3, 4) in equation (6.5) are positive. Using Descartes’
rule of signs, we have following conditions in which the equation (6.5) has exactly one positive real
root:
(B1) D1 > 0, D2 > 0, D3 > 0, D4 < 0. (B2) D1 > 0, D2 > 0, D3 < 0, D4 < 0.
(B3) D1 > 0, D2 < 0, D3 < 0, D4 < 0. (B4) D1 < 0, D2 < 0, D3 < 0, D4 < 0.
If any of the conditions (Bi) (i = 1, 2, 3, 4) are satisfied then equation (6.2) has a pair of purely imagi-
nary root ±i ω0.
Further, from transcendental equations (6.3) and (6.4) corresponding to positive value of ω0, we have

tan(ω0τ) =
Θ1

Θ2
, (6.6)

where, Θ1 = σ2ω0(ω4
0 − ρ2ω

2
0 + ρ4) + (σ3 − σ1ω

2
0)(ρ1ω

3
0 − ρ3ω0) and Θ2 = (σ3 − σ1ω

2
0)(ω4

0 − ρ2ω
2
0 +

ρ4) − σ2ω0(ρ1ω
3
0 − ρ3ω0). Thus, the value of τk corresponding to positive value of ω0 may be obtained

as follows:

τk =
kπ
ω0

+
1
ω0

tan−1
(
Θ1

Θ2

)
, (6.7)

for k = 0, 1, 2, 3, ...
Using Butler’s Lemma [8], we can say that the interior equilibrium E∗ of the model system (2.3)
remains stable for τ < τ0. Now, we explore, whether the Hopf-bifurcation occurs or not as τ increases
through τ0. For this we need to prove the following Lemma:

Lemma 6.2. If condition (H2) is satisfied, then the following transversality condition is satisfied:

sgn
[
d(<(χ))

dτ

]
τ=τ0

> 0. (6.8)

Proof. Differentiating equation (6.2), with respect to τ, we have

dχ
dτ

=
(σ1χ

2 + σ2χ + σ3)χe−χτ

(4χ3 + 3ρ1χ2 + 2ρ2χ + ρ3) + (2σ1χ + σ2)e−χτ − (σ1χ2 + σ2χ + σ3)τe−χτ
.
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This gives (
dχ
dτ

)−1

=
(4χ3 + 3ρ1χ

2 + 2ρ2χ + ρ3) + (2σ1χ + σ2)e−χτ

χ(σ1χ2 + σ2χ + σ3)e−χτ
−
τ

χ
. (6.9)

This implies that

sgn
[
d(<(χ))

dτ

]
τ=τ0

= sgn
[
d(<(χ))

dτ

]−1

τ=τ0

(6.10)

= sgn
[
<

d(χ)
dτ

]−1

χ=iω0

(6.11)

= sgn
[
4ω6

0 + 3D1ω
4
0 + 2D2ω

2
0 + D3

σ2
2ω

2
0 + (σ3 − σ1ω

2
0)2

]
(6.12)

= sgn
[

H′(ω2
0)

σ2
2ω

2
0 + (σ3 − σ1ω

2
0)2

]
. (6.13)

Thus, it may be noted that H′(ω2
0) > 0 if one of the conditions (Bi)(i = 1, 2, 3, 4) is satisfied. This

proves the Lemma 6.2.
Thus, we have the following result, which is stated in the form of a theorem as follows:

Theorem 6.3. If condition (5.1) holds and any one of the conditions (Bi)(i = 1, 2, 3, 4) is satisfied then
the interior equilibrium E∗ is locally asymptotically stable for all τ ∈ [0, τ0) and becomes unstable for
τ > τ0. The model system (2.3) undergoes a supercritical Hopf-bifurcation when τ = τ0, yielding a
family of periodic solutions bifurcating from equilibrium E∗ as τ passes through the critical value τ0

[10].

Remark 4. Further, if none of the conditions (Bi)(i = 1, 2, 3, 4) is satisfied, then the equation (6.5)
may have more than one positive roots. As a result equation (6.2) may have more than one pair of
purely imaginary roots and the system may possess the finite number of stability switches as the delay
parameter τ increases.

(H3): Analytically, it is not easy to find the exact condition in which equation (6.5) possess two
positive real roots, i.e., equation (6.2) has two pair of purely imaginary roots. So we discuss the result
numerically in which equation (6.5) has two positive real roots. Numerically, it is obtained that the
equation (6.5) has two positive real roots ϕ+ (corresponding to ω2

+) and ϕ− (corresponding to ω2
−)

where (ϕ+ > ϕ−), i.e., the characteristic equation (6.2) has two pairs of purely imaginary roots ±iω±.
For these positive values of ω±, from equations (6.3) and (6.4) we can obtain the positive value of τ±k
as follows:

τ±k =
1
ω±

tan−1
[
σ2ω±(ω4

± − ρ2ω
2
± + ρ4) + (σ3 − σ1ω

2
±)(ρ1ω

3
± − ρ3ω±)

(σ3 − σ1ω
2
±)(ω4

± − ρ2ω
2
± + ρ4) − ρ2ω±(ρ1ω

3
± − ρ3ω±)

]
+

(2k + 1)π
ω±

, (6.14)

for k = 0, 1, 2, 3, 4, ...
Using Butler’s lemma [8], we can say that the equilibrium E∗ of the model system (2.3) remains stable
for τ < τ+

k and unstable for τ < τ−k .
Now, we explore whether Hopf-bifurcation occurs or not as τ passes through τ±k . For this we need to
prove the following lemma:
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Lemma 6.4. If equation (6.5) has two positive real roots, then the following transversality conditions
are satisfied:

sgn
[
<

d(χ)
dτ

]
τ=τ+

k

> 0 and sgn
[
<

d(χ)
dτ

]
τ=τ−k

< 0. (6.15)

Proof. Differentiating (6.2) with respect to τ, we obtain

sgn
[
d(<(χ))

dτ

]
τ=τ±k

= sgn
[
d(<(χ))

dτ

]−1

τ=τ±k

(6.16)

= sgn
[
<

d(χ)
dτ

]−1

χ=i ω±

(6.17)

= sgn
[
4ω6
± + 3D1ω

4
± + 2D2ω

2
± + D3

σ2
2ω

2
± + (σ3 − σ1ω

2
±)2

]
(6.18)

= sgn
[

H′(ω2
±)

σ2
2ω

2
± + (σ3 − σ1ω

2
±)2

]
. (6.19)

Hence, if equation (6.5) has two positive real roots then H′(ω2
+) > 0 and H′(ω2

−) < 0 and therefore the
transversality conditions hold. This proves the Lemma 6.4. �

Thus, we have the following result regarding the Hopf-bifurcation theorem of functional differential
equation [10, 14], which is stated as follows:

Theorem 6.5. If equation (6.5) has two positive real roots and condition (5.1) is satisfied, then there
exists a positive integer m such that there are m switches from stability to instability and eventually the
system becomes unstable. More precisely, when τ ∈ [0, τ+

0 ), (τ−0 , τ
+
1 ), ..., (τ−m−1, τ

+
m), the equilibrium E∗

is stable while it is unstable when τ ∈ (τ+
0 , τ

−
0 ), (τ+

1 , τ
−
1 ), ..., (τ+

m−1, τ
−
m−1).

�

7. Numerical simulation

In previous sections, we have discussed the qualitative behavior of nonlinear system around the
equilibrium to get insight regarding the disease dynamics and obtained results for the feasibility of
equilibria, its stability properties in absence as well as in presence of delay and Hopf-bifurcation of
interior equilibrium in presence of delay. In this section, to validate our analytical findings, we go
for numerical simulations using MATLAB. We have chosen the following set of parameter values to
validate our analytical results, which are given in Table 2.

Most of parameter values are taken from Misra et al. [27] and rest are assumed. For this set of
parameter values, it may be checked that the condition for the feasibility of equilibrium E∗ (i.e., R1 > 1)
is satisfied. The components of interior equilibrium E∗(I∗,N∗, B∗,M∗) for this data are obtained as:

I∗ = 412 persons, N∗ = 39176 persons, B∗ = 2472 cells/mm3, M∗ = 512.

The value of basic reproduction number (R0) in absence of budget is found to be 4.42 and value of
modified basic reproduction number (R1) in presence of budget is found to be 1.81. To demonstrate the
impacts of budget allocation on epidemic threshold (i.e., R1), we have drawn contour plots of R1 for
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Table 2. Parameter values for simulation.
Parameters Values (Units) Parameters Values (Units)
Λ 400 person day−1 K 100
β 0.000028 person−1day−1 k1 0.2
β1 0.000020 person−1day−1 p 60
η 0.0005 day−1 L 1000 cells/mm3

ν 0.6 day−1 α 0.02 day−1

d 0.01 day−1 φ0 0.08 day−1

φ1 5 cells (mm3 person day)−1 φ 0.02 day−1

Φ 1 day−1 q 120
r 0.005 day−1 θ 0.00005 (person day)−1

Carrying capacity of budget allocation (K)
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Figure 1. Effect of changing the values of K and β1 on R1 in absence of delay (τ = 0), for
the parameter values given in Table 2.

different values of carrying capacity of budget allocation (K), efficacy of budget allocation to reduce
contact rate via propagating awareness (β1) and efficacy of sanitation coverage to reduce bacteria in the
environment due to budget allocation (Φ) in Figs. 1 and 2, respectively.

From these figures, it is observed that the value of R1 is higher, for small values of K, β1 and Φ.
However, on increasing the values of these parameters, R1 becomes less than unity and ceases the
feasibility of interior equilibrium E∗, showing the importance of budget allocation to warn people
and for sanitation to control the spread of infection. In Fig. 3, we have shown the effect of changing
the values of k1 and 1 − k1 on epidemic threshold (R1). From this figure, it is clear that the epidemic
threshold decreases on increasing the values of fractional constant of budget allocation used to warn
people via propagating awareness (k1) up to a threshold value (i.e., k1 < 0.53) and above which
the fraction of budget allocation used for sanitation coverage is responsible to reduce the epidemic
threshold.

To see the effect of sanitation and awareness programs, we have made comparison plot of infected
population I(t) in absence and presence of budget allocation, which is shown in Fig 4. This figure
shows that sanitation and awareness are beneficial to reduce the disease burden and thus disease can be
controlled. In Figs. 5 (a),(b) (c) and (d), we have drawn the variation of infected population I(t), with

Mathematical Biosciences and Engineering Volume 16, Issue 2, 667–700.



682

Carrying capacity of budget allocation (K)

E
ff
ic

a
cy

 o
f 
sa

n
ita

tio
n
 c

o
ve

ra
g
e
 t
o
 r

e
d
u
ce

 b
a
ct

e
ri
a
 (

 Φ
)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.75

0.8

0.85

0.9

1

1.1

1.2

1.4
1.6

Figure 2. Effect of changing the values of K and Φ on R1 in absence of delay (τ = 0), for the
parameter values given in Table 2.
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Figure 3. Effect of changing the values of k1 and 1− k1 on R1 in absence of delay (τ = 0), for
the parameter values given in Table 2, which shows that epidemic threshold decreases with
the increase in values of k1 up to a threshold value (k1 < 0.53) and above which the frac-
tion of budget allocation used for sanitation coverage is responsible to reduce the epidemic
threshold.
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Figure 4. Comparison of infected individuals I(t) with respect to time t in absence and
presence of budget allocation, for the parameter values given in Table 2 (for τ = 0).

respect to time t, for different values of per-capita growth rate of budget allocation due to increase in
infected individuals (θ) and carrying capacity of budget allocation (K) and half saturation point p and
q, respectively. From these figures, it is apparent that as the values of θ or K increases, the equilibrium
number of infected individuals decreases and also reduces its epidemic peak whereas the equilibrium
number of infected individuals increases with the increase in values of p and q, which supports remark
1.

In remark 2, it is shown that the equilibrium number of infected individuals and equilibrium amount
of budget required for awareness and sanitation decreases as the values of efficacy of budget allocation
to reduce the contact rate via propagating awareness (β1) and efficacy of sanitation coverage to reduce
bacteria in the environment due to budget allocation (Φ) increases. For this, we have plotted the
variation of infected individuals I(t) and budget allocation M(t), with respect to time t, for different
values of β1 and Φ, shown in Figs. 6 (a), (b), (c) and (d), respectively, which supports remark 2.
This is because the increase in efficacy of budget allocation to reduce the contact rate (β1) and efficacy
of sanitation coverage to reduce the bacteria from the environment (Φ) gives less number of infected
individual and hence less amount of budget will be requisite to control the spread of infection.
In Figs. 7 (a) and (b), we have plotted the variation of I(t) with respect to time t for different values
of k1 for β1 = 0.000014 person−1 day−1, p = 600, q = 1200, η = 0.5 day−1, L = 5000 cells/mm3 and
φ1 = 1 cells (mm3 person day)−1, keeping the rest of the parameter values same as given in Table 2,
when conditions A > S (k1 < k1c = 0.4367) and A < S (k1 > k1c) are satisfied, respectively. From these
figures, it is observed that the equilibrium number of infected individuals decreases on increasing the
values of fractional constant of budget allocation used to warn people via propagating awareness (k1)
up to a threshold value (i.e., k1 < k1c). However, further increase in values of k1 above a threshold value
(k1 > k1c), the fraction of budget allocation used for sanitation coverage (i.e., 1 − k1) is responsible to
reduce the equilibrium number of infected individuals, which supports remark 3. For the given data,
it is observed that up to 43.67% of budget is used for awareness and the remaining 56.33% is used for
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Figure 5. Variation of I(t) with respect to time t for different values of θ, K, p and q in
absence of delay (τ = 0), shown in Figs. (a), (b), (c) and (d), respectively, for the parameter
values given in Table 2.

0 100 200 300 400
0

2000

4000

6000

8000

10000

12000

Time(t)
(a)

In
fe

ct
e

d
 p

o
p

u
la

tio
n

 I
(t

)

 

 

β
1
=0.000005

β
1
=0.000010

β
1
=0.000020

0 100 200 300 400

350

400

450

500

Time(t)
(b)

In
fe

ct
e

d
 p

o
p

u
la

tio
n

 I
(t

)

 

 

Φ=1

Φ=5

Φ=10

0 100 200 300 400
0

2000

4000

6000

8000

10000

Time(t)
(c)

B
u

d
g

e
t 

a
llo

ca
tio

n
 M

(t
)

 

 

β
1
=0.000005

β
1
=0.000010

β
1
=0.000014

0 100 200 300 400

460

480

500

520

540

560

Time(t)
(d)

B
u

d
g

e
t 

a
llo

ca
tio

n
 M

(t
)

 

 

Φ=1

Φ=4

Φ=6
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absence of delay (τ = 0), shown in Figs. (a), (b), (c) and (d), respectively, for the parameter
values given in Table 2.
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Figure 7. Variation of I(t) with respect to time t for different values of k1 in absence of delay
(τ = 0) (when conditions A > S (k1 < k1c = 0.4367) and A < S (k1 > k1c) are satisfied),
which is shown in Figs. (a) and (b), respectively for β1 = 0.000014 person−1 day−1, p = 600,
q = 1200, η = 0.5 day−1, L = 5000 cells/mm3, φ1 = 1 cells (mm3 person day)−1, keeping
rest of the parameter values same as given in Table 2, showing that up to 43.67% of budget
is used for awareness and the remaining 56.33% is used for sanitation to control the spread
of infection.

sanitation is beneficial to control the spread of infection.
The eigenvalues of the Jacobian matrix corresponding to equilibrium E∗ for the model system (2.3)

in absence of delay are obtained as −0.0105, −0.84344, −0.02765+0.06194 i and −0.02765−0.06194 i.
It may be noted here that two eigenvalues of the Jacobian matrix corresponding to the equilibrium E∗

are negative and other two eigenvalues are with negative real part, which shows that the equilibrium
E∗ is locally asymptotically stable in absence of delay. For the set of parameter values given in Table
2, local stability condition (5.1) stated in Theorem 5.1 in absence of delay is also satisfied. For the
parameter values β1 = 0.0000012 person−1 day−1, Φ = 0.8 day−1, p = 600, q = 1200, η = 0.00005
day−1, φ1 = 10 cells (mm3 person day)−1, φ0 = 0.008 day−1 and φ = 0.002 day−1, keeping rest of the
parameter values same as given in Table 2. It is observed that the global stability conditions for the
model system (2.3) in absence of delay, stated in Theorem 5.3 are satisfied for this data. In Fig. 8, we
have also made a plot in I − B − M space to demonstrate the nonlinear stability behavior of the model
system (2.3), which shows that the equilibrium E∗ is globally asymptotically stable inside the region
of attraction Ω, showing that the solution trajectories starting inside the region of attraction approach
towards its equilibrium E∗.

This shows that the disease remains endemic in the region for smaller values of efficacy of budget
allocation to reduce contact rate via propagating awareness (β1), efficacy of sanitation coverage to
reduce bacteria in the environment due to budget allocation (Φ) and for higher values of growth-rate of
bacteria due to increase in infected individuals (φ1).
The introduction of time delay in per-capita growth rate of budget allocation due to increase in infected
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Figure 8. Nonlinear stability behavior in I − B − M space in absence of delay (τ = 0) for
β1 = 0.0000012 person−1 day−1, Φ = 0.8 day−1, p = 600, q = 1200, η = 0.00005 day−1,
φ1 = 10 cells (mm3 person day)−1, φ0 = 0.008 day−1 and φ = 0.002 day−1, keeping rest
of the parameter values same as given in Table 2, which shows that all solution trajectories
attain their equilibrium E∗ inside the region of attraction Ω.

individuals changes the dynamics of the system. To assess the effect of time delay in per-capita growth
rate of budget allocation, we consider two scenarios.
Scenario (a): For the set of parameter values given in Table 2, it is observed that the equation (6.5) has
exactly one positive real root, i.e., the characteristic equation (6.2) has a pair of purely imaginary roots
and we have computed the critical value of time delay τ0, which is found to be 17.37 days. In Fig. 9,
we have plotted the variation of infected population I(t), total population N(t), density of bacteria B(t)
and budget allocation by the government to warn people and for sanitation M(t) with respect to time t
for τ = 15 days (< τ0). From these diagrams, it is clear that for τ = 15 days (< τ0) , all the variables
attain their equilibrium values and we have damped oscillations. In Fig. 10, we draw a phase portrait
in I − B − M space for τ = 15 days (< τ0). This figure shows that the solution trajectory starting from
outside, approaches towards its equilibrium E∗ for τ = 15 days (< τ0), i.e., the interior equilibrium E∗

is stable for τ ∈ [0, τ0).
Further, we plot the variation of I(t), N(t), B(t) and M(t) with respect time t for τ = 19 days (> τ0),

which is shown in Fig. 11. These diagrams reveal that as the values of τ exceed its critical value τ0

(i.e., τ > τ0), all the variables show oscillatory behavior for τ = 19 days (> τ0) and we have undamped
sustained oscillations. Now we plot a phase portrait in I − B − M space for τ = 19 days (> τ0), which
is shown in Fig. 12.

This diagram exhibits that the bifurcating periodic solution is orbitally stable, i.e., two solution
trajectories one initiating from inside and other initiating from outside the limit cycle approach
towards the limit cycle. To get the better understanding of the effect of time delay in per-capita growth
rate of budget allocation due to increase in infected individuals, we have made bifurcation diagram by
taking time delay τ as a bifurcation parameter, shown in Fig. 13. This figure demonstrates that all the
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Figure 9. Variation of I(t), N(t), B(t) and M(t) with respect to t for τ = 15 days < τ0 = 17.37
days, for the parameter values given in Table 2, we have damped oscillation.
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Figure 10. Phase portrait in I − B − M space for τ = 15 days < τ0 = 17.37 days , for the
parameter values given in Table 2, which shows that the equilibrium E∗ is stable.
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Figure 11. Variation of I(t), N(t), B(t) and M(t) with respect to t for τ = 19 days > τ0 = 17.37
days, for the parameter values given in Table 2, we have undamped sustained oscillation.
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Figure 12. Appearance of limit cycle in I − B − M space for τ = 19 days > τ0 =

17.37 days along with the solution trajectory starting from outside with initial conditions
(1000, 7300, 700) and the solution trajectory initiating from inside with initial conditions
(350, 2400, 400) approach towards the limit cycle, for the parameter values given in Table 2,
which shows that the equilibrium E∗ is unstable.
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Figure 13. Bifurcation diagram of I(t), N(t), B(t) and M(t) for different values of time delay
τ, for the parameter values given in Table 2, which shows that interior equilibrium E∗ is
stable for τ ∈ [0, τ0) and unstable for τ > τ0 = 17.37 days.

variables settle down to their equilibrium values for τ ∈ [0, τ0). However, on increasing the values of
τ above a threshold value (i.e., τ > τ0), periodic oscillations with increasing amplitude are observed
and the amplitude of these oscillation increases with the increase in values of time delay τ > τ0. Thus,
the interior equilibrium E∗ of model system (2.3) is stable for τ ∈ [0, τ0) and unstable for τ > τ0.
The epidemiological meaning of above discussion is that if the number of reported cases of infected
individuals known to government is older than 17.37 days, i.e., delay in providing funds exceeds a
threshold value (τ > τ0). In this case, sometimes the number of infected individuals and density of
bacteria will be high and sometimes low. Thus, it may be difficult to make the prediction about the
actual size and severity of epidemic outbreak. If one wants to predict actual size of epidemic then the
number of reported cases of infected individuals should not be older than 17.37 days for this data.

Scenario (b): Further, we decrease the values of efficacy of budget allocation to reduce the contact
via propagating awareness (β1), efficacy of sanitation coverage to reduce bacteria in the environment
due to budget allocation (Φ) and increase the values of half saturation point p and q, i.e., for β1 =

0.000012 person−1 day−1, p = 300, Φ = 0.8 day−1 and q = 500, keeping rest of the parameter values
same as given in Table 2. It is observed that the equation (6.5) has exactly two positive real roots
ϕ+ = 0.00303 and ϕ− = 0.000696 (where ϕ+ > ϕ−), i.e., the characteristic equation (6.2) has two pairs
of purely imaginary roots ±iω±. For these positive values of ω±, from equation (6.14), we have found
the positive values of τ±k (k = 0, 1, 2, ...) as follows:

τ+
0 = 42 days τ+

1 = 156 days τ+
2 = 270 days τ+

3 = 384 days,...
τ−0 = 119 days τ−1 = 357 days τ−2 = 595 days τ−3 = 833 days,...

Using Theorem 6.5, we can say that for given set of parameter values, the interior equilibrium E∗

is stable for τ ∈ [0, 42) ∪ (119, 156) and is unstable for τ ∈ (42, 119) ∪ (156, 357). To get better
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Figure 14. Bifurcation diagram of I(t), N(t), B(t) and M(t) with respect to time t for different
values of time delay τ for β1 = 0.000012 person−1 day−1, p = 300, Φ = 0.8 day−1 and
q = 500, keeping rest of the parameter values same as given in Table 2, which shows that
the interior equilibrium is stable for τ ∈ [0, 42) ∪ (119, 156) and unstable for τ ∈ (42, 119) ∪
(156, 357).

understanding of effect of time delay on the dynamics of the system. We have made bifurcation di-
agrams of all dynamical variables with respect to time delay τ, which are shown in Fig. 14. From
these bifurcation diagrams, it is observed that for τ ∈ [0, 42) ∪ (119, 156), all the dynamical variables
attain their equilibrium values, i.e., the interior equilibrium E∗ shows stable character. However, for
τ ∈ (42, 119) ∪ (156, 357), all the dynamical variables show the oscillatory behavior whose maximum
and minimum values are plotted in Fig. 14, i.e., the interior equilibrium E∗ demonstrates the unstable
character and Hopf-bifurcation occurs at τ = 42, 119, 156. This reveals that the interior equilibrium of
model system (2.3) switches from stability to instability and eventually the system becomes unstable.

8. Conclusion

Healthy sanitation practices and awareness among the individuals regarding the control mechanisms
can substantially reduce the density of bacteria shed in the environment as well as the individuals
change their behavior towards the disease and reduce their contacts with infected individuals as they use
precautionary measures during the infection period such as improved sanitation, safe drinking water,
vaccination, adequate medical care, voluntary quarantine etc., which are crucial for public health.
Keeping this in view, in this paper, we have proposed and analyzed a nonlinear mathematical model to
assess the impacts of sanitation and information campaigns on controlling the transmission dynamics of
communicable diseases, such as typhoid fever in the community. In the modeling process, it is assumed
that the susceptible individuals contract infection via the direct contact with infected individuals as
well as indirectly through bacteria present in the environment. It is also assumed that the growth rate
of budget required for sanitation and awareness increases logistically and its per-capita growth rate
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increases due to increase in infected individuals. Further, it is assumed that a fraction of budget is used
to warn people via propagating awareness whereas the remaining part is used for sanitation to reduce
the density of bacteria shed in the environment.

First, the deterministic mathematical model is analyzed qualitatively. The three boundary equilibria
E1, E2 and E3 and an interior equilibrium E∗ are feasible. The positivity of solutions, boundedness and
expressions for basic reproduction number in absence as well as in presence of budget are obtained.
It is found that the efficacy of budget allocation to reduce the contact rate via propagating awareness
(β1), efficacy of sanitation coverage to reduce bacteria in the environment due to budget allocation (Φ)
and carrying capacity of budget allocation for sanitation and awareness programs (K) have potential to
reduce the epidemic threshold (i.e., R1), and thus control the spread of infection. It is also observed that
on increasing the per-capita growth rate of budget allocation due to increase in infected individuals (θ),
carrying capacity of budget allocation (K), efficacy of budget allocation to reduce the contact rate via
propagating awareness (β1) and efficacy of sanitation coverage to reduce bacteria in the environment
due to budget allocation (Φ), the equilibrium number of infected individuals decreases and also reduces
its epidemic peak. The condition when budget should spend on sanitation/awareness to reduce the
number of infected individuals has been obtained. For the given data, it is observed that up to 43.67%
of budget is used for awareness and the remaining 56.33% is used for sanitation is beneficial to control
the spread of infection.

The linear and nonlinear stability analysis of equilibrium in absence of delay are discussed, stated
in theorems 5.1- 5.3, respectively. The study reveals that disease remains endemic in the region if
efficacy of budget allocation to reduce contact rate via propagating awareness (β1) and efficacy of
sanitation coverage to reduce bacteria in the environment due to budget allocation (Φ) are not strong
enough.

Further, to predict more realistic situation over the dynamics of the system, we have introduced time
delay in per-capita growth of budget allocation due to increase in infected individuals, in the presence of
delay, the stability analysis of interior equilibrium E∗ and existence of Hopf-bifurcation are discussed.
It is observed that the introduction of time delay changes the dynamics of the system as delay parameter
crosses a critical threshold. For one set of parameter values, it is shown that the interior equilibrium
E∗ of the model system (2.3) is stable for suitably small values of τ (i.e., τ ∈ [0, τ0)). However, on
increasing the values of time delay above a threshold value (i.e., τ > τ0), the periodic oscillations with
increasing amplitude are observed, i.e., the interior equilibrium E∗ becomes unstable. For another set of
parameter values, it is found that the interior equilibrium of model system (2.3) switches from stability
to instability, instability to stability and eventually the system becomes unstable. The study reveals
that the combined effect of sanitation and awareness through budget allocation are much beneficial to
control the spread of disease. However, delay in providing funds destabilizes the system and may cause
stability switches through Hopf-bifurcation, which brings challenges to predict and control the spread
of infection and have possibility of multiple epidemic outbreaks. Thus, it is observed that timely and
continuous allocation of funds regarding the sanitation and awareness are essential for the control of
infectious diseases.
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Appendix

A.

A.1. Positivity of solutions

Here, we show that all the variables of model system (2.1) are non-negative for all time t. Since
the positivity of S (t) relies on positivity of I(t), first we prove the positivity of I(t). From the second
equation of model system (2.1), we have

dI
dt

=

((
β − β1

k1M
p + k1M

)
S + η

BS
(L + B)I

− (ν + α + d)
)

I.

The above equation can be written as,
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dI(t)
dt

exp
(
−

∫ t

0
f1(s)ds

)
− f1(t)I(t) exp

(
−

∫ t

0
f1(s)ds

)
= 0,

where, f1(s) =
((
β − β1

k1 M(s)
p+k1 M(s)

)
S (s) + η B(s)S (s)

(L+B(s))I(s) − (ν + α + d)
)
.

This can be rewritten as,

d
dt

(
I(t) exp

(
−

∫ t

0
f1(s)ds

))
= 0.

And thus we have

I(t) = I(0)
(
exp

(∫ t

0
f1(s)ds

))
.

This shows that I(t) ≥ 0 for all t ≥ 0.
Further, from the first equation of model system (2.1), we have

dS (t)
dt

= Λ + νI −
((
β − β1

k1M(t)
p + k1M(t)

)
I(t) + η

B(t)
L + B(t)

+ d
)

S (t).

The above equation can be written as

dS (t)
dt

exp
(∫ t

0
f2(s)ds

)
+ f2(t)S (t) exp

(∫ t

0
f2(s)ds

)
= (Λ + νI(t)) exp

(∫ t

0
f2(s)ds

)
,

where, f2(s) =
((
β − β1

k1 M(s)
p+k1 M(s)

)
I(s) + η B(s)

L+B(s) + d
)
.

This implies that

d
dt

(
S (t) exp

(∫ t

0
f2(s)ds

))
= (Λ + νI(t)) exp

(∫ t

0
f2(s)ds

)
.

And hence we obtain

S (t) = S (0) exp
(
−

∫ t

0
f2(s)ds

)
+ exp

(
−

∫ t

0
f2(s)ds

) ∫ t

0
(Λ + νI(s)) exp

(∫ s

0
f2(u)du

)
ds.

This shows that S (t) > 0 for all t > 0. Similarly, it is easy to show that B(t) > 0 and M(t) > 0 for
all t > 0. Thus, the solution S (t), I(t), B(t) and M(t) of model system (2.1) with initial conditions
S (0) > 0, I(0) ≥ 0, B(0) ≥ 0 and M(0) ≥ 0 are positive for all t > 0. Hence the proof.
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A.2.

Boundedness From the second equation of model system (2.3), we have

dN(t)
dt
≤ Λ − dN(t).

The above equation can be written as

d
dt

(
N(t)edt

)
≤ Λedt.

Now, integrating above equation from 0 to t, we obtain

N(t) ≤ N0e−dt +
Λ

d
.

Therefore, by using the theory of differential inequality [17], we have limt→∞ sup N(t) ≤ Λ
d , and

thus 0 ≤ N(t) ≤ Λ
d for large t > 0. Now S (t) = N(t) − I(t) ≥ 0, yields that 0 ≤ I(t) ≤ N(t) ≤ Λ

d for large
t > 0.
From the third equation of model system (2.3), and using the fact that I(t) ≤ Λ

d for large t > 0, we have

dB(t)
dt

+ (φ0 − φ)B(t) ≤ φ1
Λ

d
.

From the theory of differential inequality, we obtain

lim
t→∞

sup B(t) ≤
φ1Λ

d(φ0 − φ)
= Bm(say).

This implies that 0 ≤ B(t) ≤ Bm for large t > 0.
Further, from the fourth equation of model system (2.3), and using the fact that I(t) ≤ Λ

d for large t > 0,
we obtain

dM(t)
dt

≤

(
r + θ

Λ

d

)
M(t) −

r
K

M(t)2.

From the theory of differential inequality, we have

lim
t→∞

sup M(t) ≤
K
r

(
r + θ

Λ

d

)
= Mm(say).

This implies that 0 ≤ M(t) ≤ Mm for large t > 0.

B.

Basic reproduction number (R1) Here, we obtain the basic reproduction number (R1) of model
system (2.3) using next generation matrix approach. We have the matrix of new infection H(x) and
the matrix of transition G(x). Consider x = (I,N, B,M)T , the model system (2.3) (for τ = 0) can be
rewritten as:

dx
dt

= H(x) − G(x),
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where,

H(x) =


(
β − β1

k1 M
p+k1 M

)
(N − I)I + η B

L+B(N − I)
0
0
0


and

G(x) =


(ν + α + d)I
−Λ + dN + αI

−φ1I + (φ0 − φ)B + Φ
(1−k1)M

q+(1−k1)M B
−r

(
1 − M

K

)
M − θIM

 .
The Jacobian matrix ofH(x) and G(x) evaluated at disease-free equilibrium
E3

(
0, Λ

d , 0,K
)

are

JH(E3) =


(
β − β1

k1K
p+k1K

)
Λ
d 0 ηΛ

dL 0
0 0 0 0
0 0 0 0
0 0 0 0


and

JG(E3) =


(ν + α + d) 0 0 0

α d 0 0
−φ1 0

(
φ0 − φ + Φ

(1−k1)K
q+(1−k1)K

)
0

−θK 0 0 r

 .
The next generation matrix K = JH(E3)(JG(E3))−1 is given by

K =


K11 0 ηΛ

dL
(
φ0−φ+Φ

(1−k1)K
q+(1−k1)K

) 0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

where, K11 =
(
β − β1

k1K
p+k1K

)
Λ

d(ν+α+d) +
ηφ1Λ

dL(ν+α+d)
(
φ0−φ+Φ

(1−k1)K
q+(1−k1)K

) .
Therefore, the basic reproduction number R1 = ρ(K) = max{|ψ| : ψ ∈ ρ(K)} is spectral radius of the
matrix K and is obtained as.

R1 =

(
β − β1

k1K
p + k1K

)
Λ

d(ν + α + d)
+

ηφ1Λ

dL(ν + α + d)
(
φ0 − φ + Φ

(1−k1)K
q+(1−k1)K

) .
C.

Proof of Theorem 5.1 Here, we establish the local stability results of the equilibrium E1, E2, E3

and E∗ in absence of delay (i.e., τ = 0) by finding the sign of real part of eigenvalues of the Jacobian
matrix J(Ei) (i = 1, 2, 3) and J(E∗) evaluated at equilibrium Ei (i = 1, 2, 3) and E∗. The general
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Jacobian matrix of model system (2.3) at any equilibrium (I,N, B,M) is as follows:

J =


J11 J12

ηL(N−I)
(L+B)2 −

β1k1 p(N−I)I
(p+k1 M)2

−α −d 0 0
φ1 0 −

(
φ0 − φ + Φ

(1−k1)M
q+(1−k1)M

)
−

Φ(1−k1)qB
(q+(1−k1)M)2

θM 0 0 r
(
1 − 2M

K

)
+ θI


where, J11 =

(
β − β1

k1 M
p+k1 M

)
(N − 2I) − η B

L+B − (ν + α + d),

and J12 =
(
β − β1

k1 M
p+k1 M

)
I + η B

L+B .

(i) From the Jacobian matrix J(E1), it is easy to see that the one of the eigenvalue of J(E1) is r,
which is positive and rest of the eigenvalues lie in left-half of the complex plane if R0 < 1. Thus, the
equilibrium E1 is unstable with unstable manifold locally in M-direction, whereas it has locally stable
manifold in I − N − B space if R0 < 1. Further, the equilibrium E1 is locally unstable manifold either
in I − M plane or B − M plane and has locally stable manifold in N-direction whenever E2 is feasible
(i.e., R0 > 1).
(ii) Further, from the Jacobian matrix J(E2), it is easy to see that one of the eigenvalue of J(E2) is
(r + θI2), which is positive and other three eigenvalues lie in left-half of complex plane. Thus, the
equilibrium E2 is unstable with unstable manifold locally in M-direction and locally stable manifold
in I − N − B space.
(iii) From the Jacobian matrix J(E3), it is easy to note that two eigenvalues of J(E3) are −r and −d and
other two eigenvalues are either negative or with negative real part if R1 < 1. Thus, the disease-free
equilibrium E3 is locally asymptotically stable if R1 < 1. It is observed that whenever E∗ is feasible
(i.e., R1 > 1), E3 is saddle point with locally unstable manifold either in I-direction or B-direction and
locally stable manifold in N − M plane. Thus, E3 is unstable whenever E∗ is feasible.
(iv) To investigate the local stability analysis of interior equilibrium E∗, we use the Routh-Hurwitz
criterion. The characteristic equation for the Jacobian matrix J(E∗) is obtained as:

ψ4 + C1ψ
3 + C2ψ

2 + C3ψ + C4 = 0. (C.1)

where, C1 = d + r
K M∗ + J∗11 + J∗33,

C2 = αJ∗12 +
(
d + r

K M∗
)

(J∗11 + J∗33) + dr
K M∗ + β(M∗)I∗J∗33 +

ηφ1(N∗B∗+LI∗)
(L+B∗)2 + θM∗J∗14,

C3 = αJ∗12

(
r
K M∗ + J∗33

)
+ dr

K M∗(J∗11 + J∗33)

+
(
d + r

K M∗
) (
β(M∗)I∗J∗33 +

ηφ1(N∗B∗+LI∗)
(L+B∗)2

)
+ θM∗(J∗13J∗34 + J∗14J∗33 + dJ∗14),

C4 = αr
K M∗J∗12J∗33 + dr

K M∗
(
β(M∗)I∗J∗33 +

ηφ1(N∗B∗+LI∗)
(L+B∗)2

)
+ dθM∗(J∗13J∗34 + J∗14J∗33),

β(M∗) =
(
β − β1

k1 M∗

p+k1 M∗

)
, J∗11 = β(M∗)I∗ + η B∗

L+B∗

(
N∗
I∗

)
, J∗12 = β(M∗)I∗ + η B∗

L+B∗ , J∗13 =
ηL(N∗−I∗)
(L+B∗)2 , J∗14 =

β1k1 p(N∗−I∗)I∗

(p+k1 M∗)2 , J∗33 =
(
φ0 − φ + Φ

(1−k1)M∗

q+(1−k1)M∗

)
and J∗34 = Φ

(1−k1)qB∗

(q+(1−k1)M∗)2 .
In writing the above values of C′i s(i = 1, 2, 3, 4), we have used the fact J∗11J∗33 − J∗13φ1 = β(M∗)I∗J∗33 +
ηφ1(N∗B∗+LI∗)

(L+B∗)2 . Here, it can be easily noted that C1, C2, C3 and C4 all are positive. Using Routh-Hurwitz
criterion, we may say that all the eigenvalues of the Jacobin matrix J(E∗) will be lie in left-half of
complex plan provided the following condition holds:

C3(C1C2 −C3) −C2
1C4 > 0.
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Thus, the interior equilibrium E∗ is locally asymptotically stable provided the above condition is satis-
fied.

D.

Proof of Theorem 5.3 Here, we establish the nonlinear stability analysis of equilibrium
E∗(I∗,N∗, B∗,M∗) in absence of delay (i.e., τ = 0). Consider a suitable scalar-valued positive defi-
nite function corresponding to reduced model system (2.3) about the interior equilibrium E∗.

G = I − I∗ − I∗ ln
( I
I∗

)
+

1
2

m1(N − N∗)2 +
1
2

m2(B − B∗)2

+m3

(
M − M∗ − M∗ ln

( M
M∗

))
, (D.1)

(where, m1, m2 and m3 are positive constant to be chosen appropriately.)
It can be easily checked that the Lyapunov’s function is zero at the equilibrium E∗(I∗,N∗, B∗,M∗) and
is positive for all other positive values of I, N, B and M. Differentiating equation (D.1) with respect to
time ‘t’ along the solution of model system (2.3) and choosing m1 = 1

α

(
β − β1

k1 M∗

p+k1 M∗

)
, after rearranging

the terms, we obtain

dG
dt

= −

((
β − β1

k1M∗

p + k1M∗

)
+

ηBN
(L + B)II∗

)
(I − I∗)2

−
d
α

(
β − β1

k1M∗

p + k1M∗

)
(N − N∗)2

−m2

(
φ0 − φ + Φ

(1 − k1)M∗

q + (1 − k1)M∗

)
(B − B∗)2 − m3

( r
K

)
(M − M∗)2

+

(
ηB

(L + B)I∗

)
(I − I∗)(N − N∗) +

ηL(N∗ − I∗)
(L + B)(L + B∗)I∗

(I − I∗)(B − B∗)

+m2φ1(I − I∗)(B − B∗) + m3θ(I − I∗)(M − M∗)

−
β1k1 p(N − I)

(p + k1M)(p + k1M∗)
(I − I∗)(M − M∗)

−m2
Φ(1 − k1)qB

(q + (1 − k1)M)(q + (1 − k1)M∗)
(B − B∗)(M − M∗).

Now, dG
dt will be negative definite inside the region of attraction Ω provided the following inequali-

ties are satisfied: (
η

I∗

)2
<

4
5

(
d
α

) (
β − β1

k1M∗

p + k1M∗

)2

, (D.2)

m3θ
2 <

4
15

( r
K

) (
β − β1

k1M∗

p + k1M∗

)
, (D.3)(

β1k1Λ

d(p + k1M∗)

)2

<
4

15

(m3r
K

) (
β − β1

k1M∗

p + k1M∗

)
, (D.4)

m2φ
2
1 <

4
15

J∗33

(
β − β1

k1M∗

p + k1M∗

)
, (D.5)

m2

(
φ1ΛΦ(1 − k1)

d(φ0 − φ)(q + (1 − k1)M∗)

)2

<
4
9

(m3r
K

)
J∗33, (D.6)
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η(N∗ − I∗)
I∗(L + B∗)

)2

<
4m2

15
J∗33

(
β − β1

k1M∗

p + k1M∗

)
, (D.7)

where, J∗33 =
(
φ0 − φ + Φ

(1−k1)M∗

q+(1−k1)M∗

)
.

From inequalities (D.3) and (D.4), we may easily choose the positive value of m3 provided the inequal-
ity (5.3) is satisfied. Further, after choosing the positive value of m3, from inequalities (D.5)-(D.7), we
may easily choose the positive value of m2 provided the inequality (5.4) is satisfied.
Thus, dG

dt will be negative definite inside the region of attraction Ω, provided the inequalities (5.2)-(5.4)
are satisfied.
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