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Abstract: Host heterogeneities such as space, gender, and age etc are intrinsic characters for investi-
gating diseases mechanisms and transmission routes. First, we incorporate inter-group, intra-group and
age structure to propose a multi-group SIVS epidemic model. Then we obtain the basic reproduction
number of the system which is the spectral radius of the next generation operator by the renewal equa-
tion. Based on some assumptions for parameters, we obtain the existence and uniqueness of endemic
equilibrium. By means of integral semigroup theory and Lyapunov methods, we show that the thresh-
old dynamics of the system is completely determined by the basic reproduction number. Numerical
simulations are carried out to illustrate the theoretical results.
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1. Introduction

As history indicated, infectious diseases have been becoming a main enemy affecting human’s
health and economic development. Mathematical modelling is an useful tool to investigate the mech-
anisms of transmission of diseases and make optimal control measures [1]. There are many ways to
suppress the disease transmission, such as media propagation, vaccination, quarantine and so on [2].
As we know, vaccination is one of effective methods to control and prevent disease prevalence. Indeed,
vaccination has succeeded in slowing down transmission of diseases such as tuberculosis, hepatitis,
and some children diseases [3]. However, it has been reported that vaccination immunity waning has
caused some diseases reemergence such as measles, rubella and pertussis. There is no doubt that
vaccine waning has great effects on understanding the evolution of diseases. Based on the epidemic
compartment knowledge in Kermack and McKendrick [4–6], an SIVS epidemic model can be written
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as follows [7]:
dS (t)

dt
= b − βS I − (µ + p)S + εV,

dI(t)
dt

= βS I − (µ + γ)I,

dR(t)
dt

= γI(t) − µR,

dV(t)
dt

= pS − (µ + ε)V(t),

(1)

where the total population is splited into four classes (Susceptible, Infected, Recovered and Vacci-
nated). b is the birth rate, µ is the natural death rate, β is the transmission rate, γ is the recovery rate,
p is the vaccinated rate, ε is the vaccine waning rate. In [7], Li and Yang investigated two vaccine
strategies consisting of continuous and impulsive styles, and they obtained the global stability of equi-
libria by constructing Lyapunov functionals. Zaleta and Hernández proposed an SIVS model with a
standard incidence rate and a disease-induced death rate [8]. They showed that their model exhibits a
backward bifurcation. Based on model (1), many researchers have evolved many different structures
and successfully captured the key characters of diseases transmission and evaluated the risk of their
prevalence (see, for examples, [9–11]).

We note that all models mentioned above are based on the homogeneous assumptions for host
population. However, host heterogeneity plays an important role in exploring their dynamics. Many
diseases such as tuberculosis, hepatitis C, HIV/AIDS and so on infect their host for a long time and
sometimes for the duration of lifespan. During the long infectious period, the variability of infectivity
with age-since-infection has been studied most extensively in HIV infection [12]. The immunity wan-
ing process of pertussis satisfies Gamma distributions [13], which can be expressed by the vaccinated
age. In this case, the densities of the infected and vaccinated in time t and age a are denoted by i(t, a),
and v(t, a), respectively. The parameters β, γ, and ε in system (1) are associated with age a. Based on
system (1), the model can be described as follows:

dS (t)
dt

= b − S (t)
∫ ∞

0
β(a)i(t, a)da − (µ + p)S (t) +

∫ ∞

0
ε(a)v(t, a)da,

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(µ + γ(a))i(t, a),

∂v(t, a)
∂t

+
∂v(t, a)
∂a

= −(µ + ε(a))v(t, a),

i(t, 0) = S (t)
∫ ∞

0
β(a)i(t, a)da, v(t, 0) = pS (t),

dR(t)
dt

=

∫ ∞

0
γ(a)i(t, a)da − µR(t),

S (0) = S 0 ∈ R+, i(0, a) = i0(a) ∈ L1
+(R+), v(0, a) = v0(a) ∈ L1

+(R+),

(2)

where R+ = (0,+∞), and L1
+(R+) denotes the space of all the integral functions in L1 and maintaining

positivity after integral. Obviously, system (2) is a hybrid system combining an ordinary differential
equation and two partial differential equations. Global dynamics of such a system has been becoming
a challenging issue due to lack of well posed mathematical techniques.
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On the other hand, some diseases such as mumps, measles, gonorrhea, HIV/AIDS etc exhibit het-
erogeneity in host populations. Groups can be geographical such as counties, cities, communities, or
epidemiological as different infectivity and multi-stain agents. Many authors introduced an irreducible
matrix and summing elements of the matrix together as a kernel function to describe the inter-group
and intra-group infections. In [14], Lajmanovich and Yorke proposed the earliest multi-group model
for gonorrhea spread in a community and investigated the global stability. They assumed that the
total size of population doesn’t change and maintain a constant. Under this assumption their model
can be simplified to just consider the infected classes. Since then, many multi-group epidemic mod-
els have been studied (see, for example [15, 19, 20]). In [21], Guo et al proposed a multi-group SIR
epidemic model and used the graph-theoretic approach to investigate the global stability of endemic
equilibrium. This method combining with nonnegative irreducible matrix is an effective tool in solving
the global behavior of endemic equilibrium. In [20], Kuniya considered a multi-group SVIR model
to explore the global behavior of equilibria by constructing Lyapunov functional and using a devel-
oped graph-theoretic method. There are few literatures incorporating age structure into multi-group
epidemic models [15].

Motivated by the discussions above, we separate the total population into n groups and four com-
partments: susceptible, infected, and vaccinated, recovered, denoted by S k(t), ik(t, a) and vk(t, a) and
Rk(t), respectively. ik(t, a) denotes the infected individuals at time t and infection age a in group k.
vk(t, a) denotes the vaccinated individuals at time t and vaccinated age a in group k. Rk(t) represents
the recovered individuals at time t. Susceptible individuals in group k can be infected by infected
individuals in group j at rate βk j(a). Hence, we denote the incidence rate in group k in the form of

λk(t) =

n∑
j=1

∫ ∞

0
βk j(a)i j(t, a)da.

Susceptible individuals in group k can be vaccinated at rate pk and become vaccinated individuals with
immunity. The vaccinated individuals in group k lose its immunity at rate εk(a) and become suscep-
tible individuals. A multi-group SIRVS epidemic model is formulated by the following differential
equations:

dS k(t)
dt

= bk − S k(t)λk(t) − (µk + pk)S k(t) +

∫ ∞

0
εk(a)vk(t, a)da,

∂ik(t, a)
∂t

+
∂ik(t, a)
∂a

= −(µk + γk(a))ik(t, a),

∂vk(t, a)
∂t

+
∂vk(t, a)
∂a

= −(µk + εk(a))vk(t, a),

ik(t, 0) = S k(t)λk(t), vk(t, 0) = pkS k(t),

dRk(t)
dt

=

∫ ∞

0
γk(a)ik(t, a)da − µkRk(t),

(3)

where bk denotes the birth rate, γk is the recovery rate with respect to infection age a, µk is the natural
death rate in group k. In order to satisfy the biological meaning, all the parameters are assumed to be
nonnegative and bk > 0 and µk > 0. Note that the total population Nk(t) = S k(t) +

∫ ∞
0

ik(t, a)da + Rk(t) +
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0

vk(t, a)da satisfies the following equation:

dNk(t)
dt

= bk − µkNk(t), (4)

which yields lim
t→∞

Nk(t) = bk
µk

. Without loss of generality, we assume that the total population is Nk = bk
µk

.
Since the first four equations in (3) do not contain the variable Rk, we can consider the following closed
subsystem:

dS k(t)
dt

= bk − S k(t)λk(t) − (µk + pk)S k(t) +

∫ ∞

0
εk(a)vk(t, a)da,

∂ik(t, a)
∂t

+
∂ik(t, a)
∂a

= −(µk + γk(a))ik(t, a),

∂vk(t, a)
∂t

+
∂vk(t, a)
∂a

= −(µk + εk(a))vk(t, a), (5)

ik(t, 0) = S k(t)λk(t), vk(t, 0) = pkS k(t),
S k(0) = S k0 ∈ R+, ik(0, a) = ik0(a) ∈ L1

+(R+), vk(0, a) = vk0(a) ∈ L1
+(R+).

Once behaviors of S k(t), ik(t, a) and vk(t, a) are known, those of Rk(t) can be derived from the fourth
equation in (3). For convenience, we make the following assumption:

Assumption 1.1. For system (5), we assume

(i) For each j, k ∈ {1, 2, · · · , n}, β jk(a), γk(a), εk(a) ∈ L∞+ (0,∞). That is, there exist positive constants
β+

jk and ε+
k such that

ess sup
a∈[0,+∞)

β jk(a) = β+
jk, ess sup

a∈[0,∞)
γk(a) = γ+

k , ess sup
a∈[0,∞)

εk(a) = ε+
k .

(ii) For each j, k ∈ {1, 2, · · · , n}, β jk(a) satisfies the following property:

lim
h→0

∫ ∞

0
|β jk(a + h) − β jk(a)|da = 0.

(iii) For each j, k ∈ {1, 2, · · · , n}, there exists an ε0 > 0 such that for almost all a ∈ [0,+∞), β jk(a) ≥ ε0.

(iv) For each j, k ∈ {1, 2, · · · , n}, the matrix (β jk)n×n is irreducible.

The assumptions above on the parameters in system (5) are naturally satisfied for some real diseases.
Evidence exists that the infectivity β jk(a) has been addressed by Gamma and Log-normal distributions
for smallpox [16, 17], Weibull distribution for Ebola [18]. It is easy to find that all of these probability
distribution functions have peak values and they are continuous. Hence, (i) and (ii) in Assumption 1.1
readily hold. As for (iii) in Assumption 1.1, we can modify it in a more generalized form:

(iii)’ There exists a positive constant aβ such that β jk(a)(k, j ∈ N) is positive in a neighbourhood
of aβ.

Obviously, the distribution functions mentioned above have this property. If we assume that every
group keeps up close exchanges in mutual contact, then the generated graph is strongly connected. (iv)
in Assumption 1.1 is satisfied automatically.
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2. Well-posedness of the problem

In order to investigate the dynamic behavior of system (5), define the functional spaces

X = (R × L1(R+,R))n, Y = X × X, Z = Rn × X × X,

and
X0 =

(
{0} × L1(R+,R)

)n
, Y0 = X0 × X0, Z0 = Rn × X0 × X0

with the norm

‖φ‖Rn=

n∑
j=1

|φ j|, φ = (φ1, φ2, · · · , φn)T ∈ Rn,

‖φ‖X0=

n∑
j=1

∫ ∞

0
|φ j(a)|da, φ = (φ1, φ2, · · · , φn)T ∈ L1(R+,R

n),

‖ψ‖Y0= ‖ψ1‖X0+‖ψ2‖X0 , ‖ψ‖Z= ‖ψ1‖Rn+‖ψ2‖X0+‖ψ3‖X0 ,

where ψi = (ψi1, ψi2, · · · , ψin)T ∈ Rn or L1(R+,R
n) (i = 1, 2, 3). In addition, denote X+,Y+ and Z+ as the

positive cones of X,Y and Z. We define

X0+ = X0

⋂
X+, Y0+ = Y0

⋂
Y+, Z0+ = Z0

⋂
Z+.

Under Assumption 1.1 we see that the set

Ω =

{
(S(t), 0, i(t, ·), 0, v(t, ·)) ∈ Z0+

∣∣∣S k(t) +

∫ ∞

0
ik(t, a)da +

∫ ∞

0
vk(t, a)da ≤

bk

µk

}
is invariant, where S = (S 1, S 2, · · · , S n)T , i = (i1, i2, · · · , in)T and v = (v1, v2, · · · , vn)T . In the following,
we just assume that all the initial values are taken from Ω.

Next, we will show that system (5) has a globally classic solution in Ω. Let b, p, µ, γ(a), and ε(a) be
diagonal matrixes given by

b =diag(b1, b2, · · · , bn),
p =diag(p1, p2, · · · , pn),
µ =diag(µ1, µ2, · · · , µn),

γ(a) =diag(γ1(a), γ2(a), · · · , γn(a)),
ε(a) =diag(ε1(a), ε2(a), · · · , εn(a)).

(6)

Then let us define a linear operatorAi : D(Ai) ⊂ X → X as

Ai

(
0
ψ

)
=

(
0

Aiψ

)
=

(
0

− d
daψ − (µ + γ(a))ψ

)
,

and

Av

(
0
ψ

)
=

(
0

Avψ

)
=

(
0

− d
daψ − (µ + ε(a))ψ

)
,
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where D(A j) = {(0, ψ) ∈ X0|ψ is obsolutely continuous, ψ′ ∈ L1(R+,R
n), ψ(0) = 0}, j = i, v. If

λ ∈ ρ(Ai) (ρ(Ai) denotes the resolvent set of Ai), for any initial value (θi, φi)T
∈ X, we have

ψi(a) = e−
∫ a

0 [µi+γi(s)+λ]dsθi +

∫ a

0
φi(s)e−

∫ a
s [µi+γi(ξ)+λ]dξds. (7)

Similarly, for any λ ∈ ρ(Av) and any initial value (θv, φv)T
∈ X, we have

ψv(a) = e−
∫ a

0 [µi+εi(s)+λ]dsθv +

∫ a

0
φi(s)e−

∫ a
s [µi+εi(ξ)+λi]dξds. (8)

Furthermore, define two nonlinear operators as

F j

(
0
ψ

)
=

(
B j(ψ)

0

)
, j = i, v,

where Bi(φ) = S
n∑

j=1

∫ ∞
0
β j(a)φi j(a)da and Bv(φ) = pφS . We further define another nonlinear operator

FS (ψ) = b − pψS − Bi(ψi) +

∫ ∞

0
ε(a)ψv(a)da.

If we set u =

(
S ,

(
0
i

)
,

(
0
v

))T

∈ Z, A = diag(−µ,Ai,Av), and F = (Fs, Fi, Fv), (5) can be

rewritten as the following abstract Cauchy problem

du(t)
dt

= Au(t) + F(u(t)), u(0) = u0 ∈ Ω. (9)

Proposition 2.1. There exists a uniquely determined semiflow {U(t)}t≥0 on Z0+ such that, for each

u =

(
S (t),

(
0

i(t, ·)

)
,

(
0

v(t, ·)

))
∈ Z0+, there exists a unique continuous map U ∈ C(R+,Z0+) which is

an integral solution of the Cauchy problem (9), that is, for all t ≥ 0,

U(t)u = u0 +A

∫ t

0
U(s)uds +

∫ t

0
F(U(s)u)ds. (10)

Proof. By the definition ofA and equations (7) and (8),A is dense in part of X0 (see Page 1117, [22]),
and the resolvent operator is bounded. From Proposition 3.2 in [23], we need only to verify that F
satisfies Lipschitz condition. Denote

xk =

(
ψS k,

(
0
ψik

)
,

(
0
ψvk

))T

∈ Z, x̄k =

(
ψ̄S k,

(
0
ψ̄ik

)
,

(
0
ψ̄vk

))T

∈ Z,

and

LS k = max

pk + pk

∫ ∞

0
εk(a)da +

bk

µk

n∑
j=1

β+
k j,

bk

µk

n∑
j=1

β+
k j

 .
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By calculation, we have

|FS k(xk) − FS k(x̄k)| =

∣∣∣∣∣∣∣−pk(ψS k − ψ̄S k) + ψS k

n∑
j=1

∫ ∞

0
βk j(a)ψi j(a)da

−ψ̄S k

n∑
j=1

∫ ∞

0
βk j(a)ψi j(a)da +

∫ ∞

0
εk(a)dapk(ψS k − ψ̄S k)

∣∣∣∣∣∣∣
≤pk

∣∣∣ψS k − ψ̄S k

∣∣∣ +

n∑
j=1

∫ ∞

0
βk j(a)ψi j(a)da

∣∣∣ψS k − ψ̄S k

∣∣∣
+ ψS k

n∑
j=1

∫ ∞

0
βk j(a)

∣∣∣ψi j(a) − ψ̄i j(a)
∣∣∣ da

+ p
∫ ∞

0
εk(a)da

∣∣∣ψS k − ψ̄S k)
∣∣∣

≤pk

∣∣∣ψS k − ψ̄S k

∣∣∣ +
bk

µk

n∑
j=1

β+
k j

∣∣∣ψS k − ψ̄S k

∣∣∣ (11)

+
bk

µk

n∑
j=1

β+
k j

∥∥∥ψi j − ψ̄i j

∥∥∥
L1

+ pk

∫ ∞

0
εk(a)da

∣∣∣ψS k − ψ̄S k)
∣∣∣

≤LS k ‖x − x̄‖ .

Similarly, we have ‖Flk(xk)−Flk(x̄)‖≤ Llk‖x− x̄‖, l = i, v,where Lik = bk
µk

n∑
j=1
β+

k j, and Lvk = pk. Therefore,

‖F(x) − F(x̄)‖≤
n∑

k=1
‖Fk(xk) − F(x̄k)‖≤ L‖x − x̄‖, where L = max{LS k, Lik, Lvk}. �

In order to prove the positivity of the solution of (5), we first rewrite the operator Av and the
nonlinear function Fvk as follows:

A′v

(
0
ψ

)
=

(
0

Avψ

)
=

(
0

− d
daψ − µψ

)
and

F′v

(
0
ψ

)
=

(
pS −

∫ ∞
0
ε(a)ψ(a)da
0

)
.

DenoteA′ = diag(µ,Ai,A
′
v), and F′ = (FS , Fi, F′v). Then system (9) can be written as

du(t)
dt

= A′u(t) + F′(u(t)), u(0) = u0. (12)

It is obvious that eA
′tu0 ∈ Ω+ if u0 ∈ Ω+, where Ω is the positive cone of Ω. Then we need to show that∫ t

0
eA(t−s)F′k(Ω+)ds ∈ Ω+.
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For any ψlk ∈ R and φlk ∈ Ω+, it follows from the definitions ofA′ and F′ that

ψ1 + ψ2 + ψ3 =

∫ t

0
e−µ(t−s)FS (φ(s))ds +

∫ t

0
e−µ(t−s)−

∫ t
s γ(a)daFi(φ(s))ds

+

∫ t

0
e−µ(t−s)F′v(φ(s))ds

≤

∫ t

0
bke−µ(t−s)ds

=
bk

µk
(1 − eµkt) ≤

bk

µk
.

(13)

On the other hand, choose a κk ∈ R+ and redefine the operator in (12) as follows: Aκk = diag(−(µk +

κk),Aiκk ,Avκk), where

Aiκk

(
0
ψ

)
=

(
0

− d
daψ − (µk + γk(a) + κk)ψ

)
,

and

Avκk

(
0
ψ

)
=

(
0

− d
daψ − (µk + κk)ψ

)
.

The nonlinear functions in (12) are defined as Flκk(φ) = Flk + κk‖φk‖(l = S , i, v) for any φ ∈ Z. Hence,
we have ∫ t

0
e−(µk+κk)(t−s)FS κk(φk(s))ds

=

∫ t

0
e−(µk+κk)(t−s)

[
bk − pkφS k(s) − φS k(s)

n∑
j=1

∫ ∞

0
βk j(a)φik(t, a)da

+

∫ t

0
εk(a)φvk(a)da + κk‖φS k‖

]
ds

≥

∫ t

0
e−(µk+κk)(t−s)

bk + (κk − pk −

n∑
k=1

β+
k j)‖φi j‖)

 φS k(s)ds,

(14)

∫ t

0
e−(µk+κk)(t−s)e−

∫ s
0 γk(a)daFiκk(φk(s))ds

=

∫ t

0
e−(µk+κk)(t−s)

φS k(s)
n∑

j=1

∫ ∞

0
βk j(a)φi j(t, a)da + κk‖φik‖

 ds

≥

∫ t

0
e−(µk+κk)(t−s) [φS k(s)ε0 + κk

]
‖φik‖ds,

(15)

and ∫ t

0
e−(µk+κk)(t−s)Fvκk(x)ds

=

∫ t

0
e−(µk+κk)(t−s)

[
pkφS k(s) −

∫ ∞

0
εk(a)φvk(s, a)da + κ‖φvk‖

]
ds

≥

∫ t

0
e−(µk+κk)(t−s) [pkφS k(s) + (κk − ε

+
k )‖φvk‖

]
ds.

(16)

Mathematical Biosciences and Engineering Volume 16, Issue 2, 636–666.



644

If we choose κk > max{pk +
n∑

j=1
β+

k j‖φi j‖, ε
+
k }, it follows from (14)-(16) that

∫ t

0
eAκk (t−s)Fκk(φ(s))ds > 0, if φ > 0.

From what has been discussed above, we have the following result.

Proposition 2.2. If Assumption 1.1 holds, system (5) has a unique positive solution in Ω.

3. The basic reproduction number

In this section, we show the computation process of the basic reproduction number R0, which is the
average number of secondary cases produced by a classical infected individual during its infectious
period in a fully susceptible population. Many literatures have given different methods to solve this
problem. In this paper, it follows from the renewal process mentioned in Diekman et al in [24] that
its value is determined by a next generation operator. Note that E0 = (Ŝ0, 0, 0, 0, v̂0(a)) is the disease-
free equilibrium of system (5) where Ŝ0 = (S 1

0, S
0
2, · · · , S

0
n) and v̂0(a) = (v0

1(a), v0
2(a), · · · , v0

n(a)) with
S 0

k = bk
µk+pk(1−K1

k ) , v
0
k(a) = pkS 0

kπ
1
k(a), and π1

k(a) = e−
∫ a

0 (µk+εk(s))ds, K1
k =

∫ ∞
0
εk(a)π1

k(a)da. Linearizing
system (5) at the disease-free equilibrium E0, the subsystem (5) can be rewritten as

∂i(t, a)
∂t

+
∂i(t, a)
∂a

= −(µ + γ(a))i(t, a),

i(t, 0) = S 0Λ(i(t, ·)),
(17)

where

Λ(i(t, ·)) = diag j∈N

 n∑
k=1

∫ ∞

0
β jk(a)ik(t, a)da

 ,
and

S 0 = diag
(
S 0

1, S
0
2, · · · , S

0
n

)
.

Let B : D(B) ⊂ X → X be a linear operator defined by

B

(
0
φ(a)

)
=

(
−φ(0)

− d
daφ(a) − {µ + γ(a)}φ(a)

)
,

D(B) =
{
φ ∈ X : φ is absolutely continuous, φ′ ∈ L1(R+)

}
,

(18)

where µ and γ are defined in (6). Based on the above definition, (17) can be rewritten as the following
linear Cauchy problem in Z0:

d
dt

I(t) = BI(t) + S 0ΛI(t), I(0) = I0 ∈ X, (19)

Let u(t) = etB be the C0 semigroup generated by the generator B. By the variation of constants
formula, we have

I(t) = u(t)I0 +

∫ t

0
u(t − s)S 0ΛI(s)ds.
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Mapping S 0Λ on both sides of the above equation yields

v(t) = f (t) +

∫ t

0
Ψ(s)v(t − s)ds, (20)

where v(t) = S 0ΛI denotes the density of newly infectives in the linear invasion phase, f (t) = S 0Λu(t)I0

and Ψ(s) = ΛS 0u(s). Then the next generation operator is defined by

K =

∫ ∞

0
Ψ(s)ds = Λ(−S 0B)−1,

where we used the relation (z − B)−1 =
∫ ∞

0
e−zsV(s)ds, for z ∈ ρ(B)(ρ(B) denotes the resolvent set of

B) and 0 ∈ ρ(B). In fact, the next generation operator is calculated as follows:

K = (K1,K2, · · · ,Kn)T , (21)

where

K j =

n∑
k=1

S 0
k

∫ ∞

0
β jk(a)πk(a)da, j = 1, 2, · · · , n. (22)

Based on Diekmann et al [24], the basic reproduction number R0 = r(K) is the spectral radius of the
next generation operatorK , where r(A) denotes the spectral radius of a bounded operator A. It follows
from Inaba [25] that Malthusian parameter or asymptotic growth rate of infectives is positive if R0 > 1,
otherwise it is negative.

4. Existence of endemic equilibria

In this section, we focus on the existence of the endemic equilibrium E∗ of system (5). It follows
from Section 2 that equilibria of system (5) satisfyAu∗ + F(u∗) = 0. Actually, it satisfies the following
equations

0 = bk − (µk + pk)S ∗k − S ∗kλ
∗
k +

∫ ∞
0
εk(a)v∗k(a)da,

di∗k(a)
da

= −(µk + γk(a))i∗k(a),

i∗k(0) = S ∗kλ
∗
k,

λ∗k =
n∑

j=1

∫ ∞
0
βk j(a)i∗k(a)da,

dv∗k(a)
da

= −(µk + εk(a))v∗k(a),

v∗k(0) = pkS ∗k.

(23)

From the last two equations of (23), we have

v∗k(a) = pkS ∗kπ
1
k(a), π1

k(a) = e−
∫ a

0 [µk+εk(s)]ds. (24)

Substituting (24) into the first equation of (23) yields

S ∗k =
bk

µk + pk(1 − K1
k ) + λ∗k

. (25)
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It follows from the second and the third equations of (23) that

i∗k(a) = i∗k(0)πk(a) = S ∗kλ
∗
kπk(a), πk(a) = e−

∫ a
0 [µk+γk(s)]ds.

Note that

λ∗k =

n∑
j=1

∫ ∞

0
βk j(a)i∗j(a)da =

n∑
j=1

i∗j(0)Kk j =

n∑
j=1

b jλ
∗
j

µ j + p j(1 − K1
j ) + λ∗j

Kk j, (26)

where Kk j =
∫ ∞

0
βk j(a)π j(a)da. Hence, we can define a nonlinear operator

H(φ) := (H1(φ),H2(φ), · · · ,Hn(φ))T ∈ X, φ ∈ R, (27)

where

Hk(φ) =

n∑
j=1

b jφ j

µ j + p j(1 − K1
j ) + φ j

Kk j.

In fact, it follows from (26) that the endemic equilibrium of (23) is a positively nontrivial fixed point
of the operator H. Note that the Fréchet derivative of H at φ = 0 is given by

H′k[0] = lim
h→0

Hk[h] − Hk[0]
h

= lim
h→0

n∑
j=1

hb jKk j

h(µ j + p j(1 − K1
j ) + h)

= lim
h→0

n∑
j=1

b jKk j

µ j + p j(1 − K1
j ) + h

=Kk.

Let
H′[0] = (Ĥ1, Ĥ2, · · · , Ĥn),

where

Ĥk =

n∑
j=1

b j

µ j + p j(1 − K1
j )

Kk j =

n∑
j=1

S 0
j Kk j = Kk, k = 1, 2, · · · , n.

Consequently, H′[0] is equal to the next generation operator K defined by (21).
Next, we show that R0 determines the existence of the positive fixed point of operator H. Under

Assumption 1.1, the following lemma holds.

Lemma 4.1. Let K be defined by (21). We have
(a) K is compact.
(b) K is nonsupporting.

Proof. Assume that B0 is an arbitrary bounded subset of R. Then there exists a positive constant c0
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such that ‖φ‖≤ c0 for all φ ∈ B0. Note that

‖K(φ)‖=
n∑

j=1

|K j(φ)|

≤

n∑
j=1

n∑
k=1

S 0
k

∫ ∞

0
β jk(a)|φk(a)|da

≤

n∑
j=1

n∑
k=1

S 0
kβ

+
jk

∫ ∞

0
|φk(a)|da

=

n∑
j=1

n∑
k=1

S 0
kβ

+
jk‖φk‖L1 .

(28)

(28) implies that the operator K is bounded. It follows from Fréchet-Kolmogorov Theorem [31] that
the operator K is compact. It is obvious that K is nonsupporting under (iii) or (iii)’ of Assumption
1.1. �

Lemma 4.1, together with the monotonicity of the operator H with respect to φ manifests that the
following lemma holds.

Lemma 4.2. Let H be defined (27). H is compact and H(R+) is bounded.

Employing Theorem 4.11 in [26] (Krasnoselskii fixed theorem) and Krein-Rutman Theorem in [27],
Lemma 4.2 implies that r(K) is the uqiue eigenvalue of the operator K associated with a positive
eigenvector and there is no eigenvector of K associated with eigenvalue 1. As a consequence of
Corollary 5.2 in [15], the following result is immediate.

Proposition 4.1. If R0 > 1, then H has at least one nontrivial fixed point in Z0+.

Corollary 4.1. If R0 > 1, then system (5) has at least one positive endemic equilibrium E∗ =

(S∗, 0, i∗, 0, v∗) ∈ Z0+, where S∗ = (S ∗1, S
∗
2, · · · , S

∗
n), i∗ = (i∗1, i

∗
2, · · · , i

∗
n), v∗ = (v∗1, v

∗
2, · · · , v

∗
n).

In order to determine the uniqueness of the solution of system (23), we define two operators by (ii)
and (iii) of Assumption 1.1 as follows:

H+
k (φ) =

n∑
j=1

b jβ
+
k jφ j

µ j + p j(1 − K1
j ) + φ j

∫ ∞

0
π j(a)da, k ∈ N,

and for a small positive value δ

H−k (φ) =

n∑
j=1

b jε0φ j

µ j + p j(1 − K1
j ) + φ j

∫ aβ+δ

aβ−δ
π j(a)da, k ∈ N.

For convenience, define
H+(φ) = diag(H+

1 (φ),H+
2 (φ), · · · ,H+

n (φ)),

and
H−(φ) = diag(H−1 (φ),H−2 (φ), · · · ,H−n (φ)).

It is obvious that 0 ≤ H−(φ)e ≤ H(φ)e ≤ H+(φ)e, where e = (1, 1, · · · , 1)T .
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Theorem 4.3. If R0 > 1, then the operator H defined in (27) has at most one nontrivial fixed point in
Z0+.

Proof. By Proposition 4.1, we assume that there are two different nontrivial fixed points in R+, denoted
by φ∗ and φ̂∗. Borrowing the definitions of H− and H+, we have

φ∗ = H(φ∗)
≥ H−(φ∗) =

H−(φ∗)
H+(φ∗) H

+(φ∗)
≥

H−(φ∗)
H+(φ∗) H(φ∗) =

H−(φ∗)
H+(φ∗)φ

∗.

Hence, there exists a positive constant q = sup{r ≥ 0, φ∗ ≥ rφ̂∗} > 0. Suppose 0 < q < 1, for all φ ∈ R+

and k ∈ N, then
Hk(qφ) = qHk(φ) + ξk(φ, q), (29)

where ξk(φ, q) = q(1 − q)
n∑

j=1

b jφ j

(µ j+p j(1−K1
j )+φ j)(µ j+p j(1−K1

j )+qφ j)
Kk j. It follows from 0 < q < 1 and (iii) of

Assumption 1.1 that ξk is positive for all k ∈ N+ and φ ∈ R+. Furthermore,

H(qφ) ≥ qH(φ) + ξ(q, φ)e, ξ = diag(ξ1, ξ2, · · · , ξn). (30)

Inequality (30), together with the monotonicity of H implies that

φ∗ = H(φ∗)
≥ qH(φ∗) + ξ(φ̂

∗, q)e
= qφ̂∗ + ξ(φ̂∗, q){H+(φ̂∗)}−1H+(φ̂∗)e
≥ qφ̂∗ + ξ(φ̂∗, q){H+(φ̂∗)}−1H(φ̂∗)
= qφ̂∗ + ξ(φ̂∗, q){H+(φ̂∗)}−1φ̂∗.

(31)

This contradicts the definition of q. Therefore, q ≥ 1 and φ∗ ≥ qφ̂∗ ≥ φ̂∗. Exchanging the role of φ∗

and φ̂∗, we can prove φ∗ ≤ φ̂∗. This implies that φ∗ = φ̂∗. �

5. Asymptotic smoothness

In this section, we will show the relative compactness of the positive orbit {U(t, u0)}t≥0 defined by
(5). This process is spurred by Lemma 19 in [28] and Theorem 2.46 in [29]. To apply them, we define

φ̃k(t, a) :=
{

0, t > a,
ik(t, a), t ≤ a,

ψ̃k(t, a) :=
{

0, t > a,
vk(t, a), t ≤ a,

and
ĩk(t, a) = ik(t, a) − φ̃k(t, a), ṽk(t, a) = vk(t, a) − ψ̃k(t, a).

Then we can divide the solution of semigroupU(t) into two parts:

V(t)u0 = (0, 0, φ̃(t, ·), 0, ψ̃(t, ·)) (32)

and
W(t)u0 = (S(t), 0, ĩ(t, ·), 0, ṽ(t, ·))T (33)

Mathematical Biosciences and Engineering Volume 16, Issue 2, 636–666.



649

where

φ̃ = (φ̃1, φ̃2, · · · , φ̃n)T , ψ̃ = (ψ̃1, ψ̃2, · · · , ψ̃n)T , ĩ = (ĩ1, ĩ2, · · · , ĩn)T , ṽ = (ṽ1, ṽ2, · · · , ṽn)T .

This implies thatU(t)u0 = V(t)u0 +W(t)u0.

Theorem 5.1. The semiflowU : R+×X0 → X0 is asymptotically smooth if there are mapsV(t),W(t) :
R+×X0 → X0 such thatU(t)u0 = V(t)u0 +W(t)u0, and the following statements hold for any bounded
closed set Ω that is forward invariant underU :

(i) For any u0 ∈ Ω, there exists a function δ : R+ × R+ → R+ such that for any r > 0 lim
t→+∞

δ(t, r) = 0
with ‖u0‖Ω≤ r, then ‖V(t, u0)‖Ω≤ δ(t, r);

(ii) there exists a tΩ ≥ 0 such thatW(t)(Ω) has a compact closure for each t ≥ tΩ.

Lemma 5.2. There exists a function δ : R+ × R+ → R+ such that for any r > 0,

lim
t→+∞

δ(t, r) = 0 (34)

and
‖V(t)u0‖Ω≤ δ(t, r), ∀u0 ∈ Z, ‖u0‖Ω≤ r, t ≥ 0. (35)

Proof. Integrating ik and vk equations along the characteristic line t − a = const. yields

φ̃(t, a) =

{
0, t > a,
ik0(a − t) πk(a)

πk(a−t) , t ≤ a, ψ̃(t, a) =

 0, t > a,

vk0(a − t) π1
k (a)

π1
k (a−t) , t ≤ a

for all k ∈ N. Hence for any u0 ∈ Y and ‖u0‖Y≤ r,

‖V(t)x0‖Ω=‖0‖+‖φ̃(t, ·)‖X+‖ψ̃(t, ·)‖X

=

n∑
j=1


∫ ∞

t
i j0(a − t)

π j(a)
π j(a − t)

da +

∫ ∞

t
v j0(a − t)

π1
j(a)

π1
j(a − t)

da


≤eµt

n∑
j=1

∫ ∞

0

[
i j0(a) + v j0(a)

]
da

=e−µt
{‖i0‖X+‖v0‖X}

≤e−µtr

where δ(t, r) = e−µtr and µ = min
k∈N
{µk}. Obviously, ‖V(t)u0‖Ω approaches 0 as t goes to infinity. �

Lemma 5.3. W(t) maps any bounded subsets of Ω into sets with compact closure in Y.

Proof. It follows from the first equation of (5) that S k(t) remains in the compact set {φ ∈ Rn
+|0 ≤ φk ≤

bk
µk
, k ∈ N} for all t ≥ 0. Therefore, we need to show that ĩ and ṽ still remain in pre-compact subsets of

Y0 which is independent of u0. Note that

ĩk(t, a) =

{
ik(t − a, 0)πk(a), t > a,
0, t ≤ a,

ṽk(t, a) =

{
vk(t − a, 0)π1

k(a), t > a,
0, t ≤ a.
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Since for all k ∈ N+, 0 ≤ ĩk(t, a) = ik(t − a, 0)πk(a) ≤ bk
µ2

n∑
j=1
β+

k jb je−µa := ∆ke−µa where ∆k = bk
µ2

n∑
j=1
β+

k jb j,

and 0 ≤ ṽk(t, a) ≤ bk pk
µk

e−µa. It is easy to see that (i) - (iii) of Theorem B.2 in [29] hold.
In what follows, we need to show that (iv) of Theorem B.2 in [29] also holds. Assume that h ∈ (0, t)

without loss of generality. Then

n∑
j=1

∫ ∞

0
|ĩ j(t, a + h) − ĩ j(t, a)|da

=

n∑
j=1

∫ t

t−h
|0 − ĩ j(t, a)|da +

n∑
j=1

∫ t−h

0
|ĩ j(t, a + h) − ĩ j(t, a)|da

≤

n∑
j=1

∆ jh +

n∑
j=1

∫ t−h

0
ĩ j(t, a)|π(h) − 1|da

≤

n∑
j=1

∆ jh +

n∑
j=1

∆ j(t − h)h

=

n∑
k=1

∆ jh(1 + t − h).

(36)

Similarly,
n∑

j=1

∫ ∞

0
|ṽ j(t, a + h) − ṽ j(t, a)|da ≤

n∑
k=1

b j p j

µ j
h(1 + t − h). (37)

Obviously, both (36) and (48) uniformly converge to 0 as h→ 0 which is independent of u0. �

Lemmas 5.2 and 5.3, together with ‖U(t)u0‖Z0≤
n∑

k=1

bk
µk

, imply thatU(t) has compact closure in Z for

u0 ∈ Ω. It follows from Proposition 3.13 in [32] that the solution orbit is relatively compact and the
semiflowU(t) is asymptotically smooth.

Proposition 5.1. The semiflowU(t) defined in (10) is asymptotically smooth.

6. Uniform persistence

In this section, we establish the uniform persistence of (5) when R0 > 1. This property guarantees
the well-definition of the Lyapunov functionals in Section 7. For some k ∈ N, define ρk : Γ → R+ and
u0 = (S0, 0, i0(·), 0, v0(·)) ∈ Ω0 by

ρk(S(t), 0, i(t, ·), 0, v(t, ·)) = λk(t) =

n∑
j=1

∫ ∞

0
βk j(a)i j(t, a)da for u0 ∈ Ω.

Let
Ω0 = {(S0, 0, i0(·), 0, v0(·)) ∈ Ω : ρk(U(t0, u0)) > 0 for some t0 ∈ R+}.

Obviously, if u0 ∈ Ω \ Ω0, then (S(t), 0, i(t, ·), 0, v(t, ·)) → E0 as t → ∞. Hence, if U has a global
compact attractor in Ω0, then it also has a global compact attractor in Ω.
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Assumption 6.1. The support of the initial age-since-infection value ik0(a) ∈ L1(R+) lies to the right
of the support the infectivity function βk j for all k, j ∈ N.

Proposition 6.1. If R0 > 1 and Assumption 6.1 hold, then system (5) is uniformly weakly ρ-persistent
for some k ∈ N.

Proof. Since R0 > 1, there exists an η j0 > 0 and φ j ∈ R+ for k, j ∈ N such that

n∑
j=1

S̃ 0
j(η j0)K̂k j(η j0)φ j > φk, (38)

where S̃ 0
k(ηk0) = bk

µ+ηk0+pk(1−K1
k ) − ηk0(> 0) and K̂k j(·) =

∫ ∞
0

e−λaβk j(a)πk(a)da.
Suppose that, for any ηk0 > 0, there exists an u0 ∈ Ω0 such that

lim sup
t→∞

ρk(U(t, u0)) ≤ ηk0

and show a contradiction. Therefore, there exists a t0 ∈ R+ such that ρk(U(t, u0)) ≤ ηk0 for t ≥ t0 and
all k ∈ N. Without loss of generality, we shift the time to t0 = 0. Then λk(t) ≤ ηk0 for t ≥ t0 = 0 and
k ∈ N.

Next, we show that S k∞ ≥ S 0
k(ηk0) := bk

µk+ηk0+pk(1−K1
k ) , where S k∞ = lim inf

t→∞
S k(t). By the Fluctuation

Lemma [35], we can pick up a sequence {tn} such that S k(tn)→ S k∞, dS k(tn)
dt → 0 as n→ ∞. Then from

the first equation of (5), it follows that

dS k(tn)
dt

≥ bk − (µk + pk)S k(tn) − ηk0S k(tn) +

∫ ∞

0
εk(a)v(tn, a)da.

This, combined with (40), gives

dS k(tn)
dt

≥ bk − (µk + pk)S k(tn) − ηk0S k(tn) +

∫ tn

0
εk(a)pkS k(tn − a)π1

k(a)da.

Letting n→ ∞ leads to
0 ≥ bk − (µ + φ)S k∞ − ηk0S k∞ + pkS k∞K1

k .

This implies that S k∞ ≥ S 0
k(ηk0).

Finally, since S k∞ ≥ S 0
k(ηk0), there exists a t1 ∈ R+ such that S k(t) ≥ S̃ 0

k(ηk0) for t ≥ t1. Again,
without loss of generality, we can assume t1 = 0. Solving ik(t, a) by the characteristic line method
yields

ik(t, a) =

{
bk(t − a)πk(a), t ≥ a,
ik0(a − t) πk(a)

πk(a−t) , t < a, (39)

where bk(t) = S k(t)λk(t). Then

λk(t) =

n∑
j=1

∫ ∞

0
βk j(a)i j(t, a)da

≥

n∑
j=1

∫ t

0
βk j(a)S j(t − a)λ j(t − a)π j(a)da
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≥

n∑
j=1

S̃ j(η j0)
∫ t

0
βk j(a)π j(a)λ j(t − a)da.

Taking Laplace transforms on both sides of the above inequality gives

λ̂k(ξ) ≥
n∑

j=1

S̃ j(η j0)K̂k(ξ)λ̂ j(ξ).

This inequality holds for any ξ and ηk0. If we take ξ and ηk0 small enough, then this is a contradiction
with (38). This completes the proof. �

Clearly, for all k ∈ N, ρk is a continuous function on R+. Proposition 5.1 implies that {U}t≥0 has
a global attractor. From Theorem A.34 in [34], we need to show that for any bounded total orbit
h(t + s) = U(s, u(t)) of Ut such that ρk(h(t)) > 0 for all t ∈ R and s ∈ R+. For the total trajectory, we
have

ik(t, a) = bk(t − a)πk(a), vk(t, a) = pS k(t − a)π1
k(a)

for t ∈ R and a ∈ R+. In order to prove the strongly uniform persistence, the following lemma is
helpful.

Lemma 6.1. Let (S(t), 0, i(t, ·), 0, v(t, ·)) be a solution of (5). Then S∞k ≤ S 0
k , where S∞k = lim sup

t→∞
S k(t)

for k ∈ N.

Proof. By Fluctuate Lemma in [35], there exists {tn} such that tn → ∞, S k(tn) → S∞k , and dS k(tn)
dt → 0

as n→ ∞. Integrating vk equation in (5) along the characteristic equation t − a = const., we have

vk(t, a) =

 pkS k(t − a)π1
k(a), t ≥ a,

vk0(a − t) π1
k (a)

π1
k (a−t) , t < a,

for all k ∈ N. (40)

Substituting vk into S k equation yields

dS k(tn)
dt

= bk − (µk + pk)S k(tn) − S k(tn)λk(tn) +

∫ ∞

0
εk(a)vk(tn, a)da

≤ bk − (µk + pk)S k(tn) +

∫ tn

0
εk(a)pkS k(tn − a)π1

k(a)da

+

∫ ∞

tn
εk(a)vk0(a − tn)

π1
k(a)

π1
k(a − tn)

da

≤ bk − (µk + pk)S k(tn) +

∫ tn

0
εk(a)pkS k(tn − a)π1

k(a)da

+

∫ ∞

0
εk(a + tn)vk0(a)

π1
k(a + tn)

π1
k(a)

da.

Applying Fluctuate Lemma, we immediately obtain

0 ≤ bk − (µk + pk)S∞k + pkS∞k K1
k

or S∞k ≤
bk

µk+pk(1−K1
k ) = S 0

k as required. This completes the proof. �
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Lemma 6.2. Let us define Θ(b(t)) =
n∑

k=1
bk(t). Suppose that Assumption 6.1 holds, then Θ(b(t)) for total

trajectory h(t) is identically zero on R, or it is strictly positive on R.

Proof. Suppose that there exists a t1 > 0 such that bk(t) = 0 for all t ≤ t1. By the definition of λk, we
have

bk(t) =S k(t)
n∑

j=1

∫ ∞

0
βk j(a)i j(t, a)da

=S k(t)
n∑

j=1

∫ ∞

0
βk j(a)b(t − a)π j(a)da ≤ S 0

k β̄

∫ ∞

0
Θ(b(t − a))da

=S 0
k β̄

∫ t−t1

0
Θ(b(t − a))da ≤ S 0

k β̄

∫ t

0
Θ(b(a))da,

(41)

where β̄ = max
j,k∈N
{β+

k j}. Summing k from 1 to n on both sides of (41) yields

Θ(b(t)) ≤
∫ t

0
Θ(b(a))daS 0

β̄
, S 0

β̄
=

n∑
k=1

β̄S 0
k

for all t > t1. It follows from Gronwall inequality that Θ(b(t)) = 0 for all t ≥ t1.

Suppose there doesn’t exist a t1 such that Θ(b(t)) = 0 for all t ≤ t1. Thus, there exists a sequence
{tm} towards −∞ such that Θ(b(tm)) > 0 for each m. That means that bk(tm) > 0 for each m. Moreover,
there exists a sequence am such that ik(tm, am) = ik(tm − am, 0)πk(am) > 0 for each m. In view of the first
equation, with the dissipative property of system (5), we obtain

S ′k(t) ≥ bk − (µk + pk)S k(t).

Hence, there exists a positive constant ζ > 0 such that S k(t) > ζ > 0 holds for all t ∈ R. Let
bkm(t) = bk(t + t∗m) for each n, where t∗m = tm − am. Recalling equation (41), we arrive at

bkm(t) ≥ζ

 n∑
j=1

∫ t

0
βk j(a)b jm(t − a)π j(a)da + Θ̃km(t)


≥ζ

[
ε0

∫ t

0
Θ(bm(t − a))da + Θ̃km(t)

]
,

(42)

where ε0 is defined in (iii) of Assumption 1.1 and

Θ̃km(t) =

n∑
j=1

∫ ∞

t
βk j(a)i jm0(a − t)

π j(a)
π j(a − t)

da.

Consequently,

Θ(bm(t)) ≥ ζ
[
ε0n

∫ t

0
Θ(bm(a))da + Θ̃(t)

]
, Θ̃m(t) =

n∑
k=1

Θ̃km(t). (43)

Since Θ̃m(0) =
n∑

k=1

n∑
j=1

∫ ∞
0
βk j(a)i jm0(a)da > 0 and Θ̃m(t) is continuous at t = 0, it follows from Assump-

tion 6.1 and Gronwall inequality that Θ(bm(t)) and Θ̃m(t) are positive for sufficiently small t. Further-
more, from Corollary B.6 [29], we conclude that there exists a constant l > 0 such that Θ(bm(t)) > 0
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for all t > l. Since Θ(bm(t)) is a time shift of Θ(b(t)) by t∗m with t∗m → −∞ as m → ∞, it follows that
Θ(b(t)) > 0 for all t ∈ R. This completes the proof. �

Corollary 6.1. Suppose that Assumption 6.1 holds. Then for all k ∈ N, bk(t) for the total trajectory
h(t) is strictly positive for every t ∈ R.

From Propositions 5.1 and 6.1, together with Corollary 6.1, we apply Theorem 5.2 in [29] to illus-
trate the ρ− strongly uniform persistence of system (5).

Lemma 6.3. Suppose that R0 > 1 and the assumption of Corollary 6.1 hold. Then system (5) persists
uniformly strongly, in this sense, there exists some ηk0 such that

lim inf
t→∞

λk(t) ≥ ηk0

for some k ∈ N and λk(0) 6= 0.

Proof. From Corollary 6.1, we readily see that inf λk(0) > 0 for some k ∈ N. Applying Theorem A.34
in [34], we conclude that there exists a constant ηk0 > 0 such that lim inf

t→+∞
ρk(U(t, u0)) > ηk0. �

By Lemma 6.3, we present the following theorem to state the uniformly strong persistence of system
(5).

Theorem 6.4. Suppose that R0 > 1 and Assumption 6.1 hold. There exist some positive constants
ηk0 > 0(k ∈ N) such that for all t ∈ R and a ∈ R+

lim inf
t→∞

S k(t) ≥ ηk0, lim inf
t→∞

ik(t, a) ≥ ηk0πk(a), lim inf
t→∞

vk(t, a) ≥ ηk0π
1
k(a).

7. Global attractivity of the equilibria

In this section, we will show the global behavior of the equilibria of system (5). To achieve this
goal, we employ a Volterra type functional defined by g(x) = x − 1 − ln x in [22], which is positive
and attains minimum value 0 at x = 1. In what follows, we check this Volterra type functional is
well-defined in infinite dimension and make the following assumption.

Assumption 7.1. For all j ∈ N+, S j0 ∈ R+,

∫ ∞

0
|ln h j0(a)|da < +∞, h = i, v.

Lemma 7.1. If Assumption 7.1 holds, then
∫ ∞

0
v0

j(a) ln
v j(t, a)
v0

j(a)
da is bounded.

Proof. For t > a,∣∣∣∣∣∣∣v0
j ln

v j(t, a)
v0

j(a)

∣∣∣∣∣∣∣ =|v0
j(a) ln v j(t, a) − v0

j(a) ln v0
j(a)|

≤|v0
j(a) ln v j(t, a)|+|v0

j(a) ln v0
j(a)|

=|p jS 0
jπ

1
j(a) ln p jS 0

j(t − a)π1
j(a) + |p jS 0

jπ
1
j(a) ln p jS 0

jπ
1
j(a)|

≤2p jS 0
j ln

p jΛ j

µ j
e−µ ja + 2p jS 0

je
−µ jaµ ja.

(44)
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For t ≤ a, ∣∣∣∣∣∣∣v0
j ln

v j(t, a)
v0

j(a)

∣∣∣∣∣∣∣ ≤|v0
j(a) ln v j(t, a)|+|v0

j(a) ln v0
j(a)|

=|p jS 0
jπ

1
j(a) ln v j0(a − t)π1

j(t)|+|p jS 0
jπ

1
j(a) ln p jS 0

jπ
1
j(a)|

≤p jS 0
j |ln v j0(a − t)π1

j(t)|+p jS 0
j ln

p jΛ j

µ j
e−µ ja

+ 2p jS 0
je
−µ jaµ ja.

(45)

It follows from (44) - (45) that

∫ ∞

0

∣∣∣∣∣∣∣v0
j(a) ln

v j(t, a)
v0

j(a)

∣∣∣∣∣∣∣ da

=

∫ ∞

0
|v0

j(a) ln v j(t, a) − v0
j(a) ln v0

j(a)|da

≤p jS 0
j ln

p jΛ j

µ j

∫ t

0
e−µ jada + p jS 0

j

∫ ∞

t
|ln v j0(a − t)|e−µ jtda

+ p jS 0
j ln

p jΛ j

µ j

∫ ∞

0
e−µ jada + 2p jS 0

j

∫ ∞

0
ae−µ jada (46)

=p jS 0
j ln

p jΛ j

µ j
(1 − e−µ jt) + p jS 0

je
−µ jt

∫ ∞

0
|ln v j0(a)|da

+
p jS 0

j

µ j
ln

p jΛ j

µ j
+

2p jS 0
j

µ j

≤2p jS 0
j ln

p jΛ j

µ j
+ p jS 0

je
−µ jt

∫ ∞

0
|ln v j0(a)|da +

2p jS 0
j

µ j
.

Therefore, it follows from Assumption 7.1 that
∫ ∞

0
v0

j(a) ln
v j(t, a)
v0

j(a)
da is bounded. �

Theorem 7.2. Let Assumption 7.1 hold. If R0 = r(K) < 1, the disease-free equilibrium E0 is a global
attractor in Ω.

Proof. For j ∈ N, define

V j(t) =

n∑
k=1

K jkS 0
kg

(
S k(t)
S 0

k

)
+

n∑
k=1

∫ ∞

0
α jk(a)ik(t, a)da +

n∑
k=1

K jk

∫ ∞

0
δk(a)g

(
vk(t, a)
v0

k(a)

)
da,

where αk j(a) =
∫ ∞

a
βk j(s) π j(s)

π j(a)ds and δk(a) =
∫ ∞

a
εk(s)v0

k(s)da. Lemma 7.1 ensures V j(t) is well-defined.
Then

α′k j(a) = −βk j(a) + (µk + εk(a))αk j(a), δ′k(a) = −εk(a)i0
k(a). (47)
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From Lemma 7.1, together with 6.4, V j(t) is well-defined. Deviating it along the solution of (5) yields

dV j(t)
dt |(5)=

n∑
k=1

{
K jk

(
1 − S 0

k
S k(t)

)
S ′k +

∫ ∞
0
α jk(a)∂i jt(t,a)

∂t da + K jk

∫ ∞
0
δk(a)∂vk(t,a)

∂t da
}

=
n∑

k=1

[
K jk

(
1 − S 0

k
S k(t)

) (
bk − (µk + pk)S k − ik(t, 0) +

∫ ∞
0
εk(a)vk(t, a)da

)]
+

n∑
k=1

[
K jkik(t, 0) −

n∑
j=1

∫ ∞
0
βk j(a)ik(t, a)da

]
+

n∑
k=1

[
K jk

∫ ∞
0
εk(a)

(
g
(

vk(t,0)
v0

k

)
− g

(
vk(t,a)
v0

k (a)

))
da

]
= −

n∑
k=1

[
K jk(µk + pk(1 − K1

k ))
(
2 − S k(t)

S 0
k
−

S 0
k

S k(t)

)]
−

n∑
k=1

[
K jk

∫ ∞
0
εk(a)g

(
vk(t,a)S 0

k

v0
k (a)S k(t)

)
da

]
+

n∑
k=1

(S 0
k K jk − 1)

∫ ∞
0
β jk(a)ik(t, a)da.

(48)

Note that R0 = r(K) < 1 implies that
n∑

k=1
S 0

k K jk < 1. Therefore, V ′j(t) ≤ 0 and it is easy to see that

the equality holds if and only if (S(t), 0, i(t, ·), 0, v(t, ·)) = (S0, 0, 0, 0, v0(·)). This implies that the largest
positive invariant subset of {u(t) ∈ Ω|V ′j(t) = 0} is the singleton {(S0, 0, 0, 0, v0(·))}. This shows that the
disease-free equilibrium E0 is a global attractor. �

In the following, we give a lemma to show the boundedness of the Lyapunov functional for proving
the global attractivity of the endemic equilibrium E∗.

Lemma 7.3. If Assumption 7.1 holds, then
∫ ∞

0
h∗j(a) ln

h j(t, a)
h∗j(a)

da (h = i, v) is bounded.

Proof. Prior to this proof, denote β+
j = max

k∈N
ess. sup

a∈R+

β jk(a) for all j ∈ N. For t > a, it follows from

b j(t) ≤ β+
j

Λ2
j

µ2
j

that

∣∣∣∣∣∣i∗j(a) ln
i j(t, a)
i∗j(a)

∣∣∣∣∣∣ =|i∗j(a) ln i j(t, a) − i∗j(a) ln i∗j(a)|

≤|i∗j(a) ln i j(t, a)|+|i∗j(a) ln i∗j(a)|

=|i∗j(0)π j(a) ln b j(t − a)π j(a) + |i∗j(0)π j(a) ln i∗j(0)π j(a)|

≤4
(
Λ j

µ j

)2

e−µ jaβ+
j ln β+

j
Λ j

µ j
+ 2

(
Λ j

µ j

)2

e−µ jaµ ja.

(49)
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For a > t, ∣∣∣∣∣∣i∗j(a) ln
i j(t, a)
i∗j(a)

∣∣∣∣∣∣ =|i∗j(a) ln i j(t, a) − i∗j(a) ln i∗j(a)|

≤|i∗j(a) ln i j(t, a)|+|i∗j(a) ln i∗j(a)|

=|i∗j(0)π j(a) ln i j0(a − t)π j(a) + |i∗j(0)π j(a) ln i∗j(a)π j(a)|

≤2
(
Λ j

µ j

)2

e−µ ja|ln i j0(a − t)|+2
(
Λ j

µ j

)2

e−µ jaβ+
j ln β+

j
Λ j

µ j

+ 2
(
Λ j

µ j

)2

e−µ jaµ ja.

(50)

Then, ∫ ∞

0

∣∣∣∣∣∣i∗j(a) ln
i j(t, a)
i∗j(a)

∣∣∣∣∣∣ da

=

∫ ∞

0
|i∗j(a) ln i j(t, a) − i∗j(a) ln i∗j(a)|

≤2
Λ2

j

µ3
j

β+
j ln β+

j
Λ j

µ j

∫ t

0
e−µ jada + 2

(
Λ j

µ j

)2 ∫ ∞

t
|ln i j0(a − t)|e−µ jtda

+ 2
Λ2

j

µ3
j

β+
j ln β+

j
Λ j

µ j

∫ ∞

0
e−µ jada + 2

(
Λ j

µ j

)2

µ j

∫ ∞

0
ae−µ jada

=2
Λ2

j

µ3
j

β+
j ln β+

j
Λ j

µ j
(1 − e−µ jt) + 2

(
Λ j

µ j

)2 ∫ ∞

0
|ln i j0(a)|e−µ jtda (51)

+ 2
Λ2

j

µ3
j

β+
j ln β+

j
Λ j

µ j
+ 2

Λ2
j

µ3
j

≤4
Λ2

j

µ3
j

β+
j ln β+

j
Λ j

µ j
+ 2

(
Λ j

µ j

)2

e−µ jt
∫ ∞

0
|ln i j0(a)|da +

2Λ2
j

µ3
j

.

By the assumption, it follows that
∫ ∞

0
i∗j(a) ln

i j(t, a)
i∗j(a)

da is bounded.

Similarly,
∫ ∞

0
v∗j(a) ln

v j(t, a)
v∗j(a)

da is also bounded. �

Assume that f (t, a) ∈ R × L1(R+) is a solution of the following system

∂ f (t, a)
∂t

+
∂ f (t, a)
∂a

= − m(a) f (t, a),

f (t, 0) =L(t)
∫ ∞

0
η(a) f (t, a)da,

f (0, a) = f0(a),

(52)
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where m(a), η(a) ∈ L1(R+) and L(t) ∈ R. Obviously, the nontrivial equilibrium E∗1 of system (52)
satisfies the following equations:

d f ∗(a)
da

= − m(a) f ∗(a),

f ∗(0) =L∗
∫ ∞

0
η(a) f ∗(a)da.

(53)

Define a Lyapunov functional V1(t) =
∫ ∞

0
M(a)g

(
f (t,a)
f ∗(a)

)
da, where M(a) =

∫ ∞
a
β(s) f ∗(s)ds.

Lemma 7.4. Suppose that
∫ ∞

0
|ln f0(a)|da is bounded. There exists a positive value η0 > 0 such that

f (t, a) > η0e−
∫ a

0 m(s)ds, then

dV1(t)
dt

=

∫ ∞

0
M(a) f ∗(a)

[
g
(

f (t, 0)
f ∗(0)

)
− g

(
f (t, a)
f ∗(a)

)]
da, (54)

where M(a) =

∫ ∞

a
η(s) f ∗(s)da.

Proof. Note that

∂g
(

f (t,a)
f ∗(a)

)
∂a

=
∂

∂a

(
f (t, a)
f ∗(a)

− 1 − ln
f (t, a)
f ∗(a)

)
=
∂

∂a
f (t, a)
f ∗(a)

−
∂

∂a
ln

f (t, a)
f ∗(a)

=
f ′a(t, a) f ∗(a) − f (t, a) f ∗a (a)

( f ∗(a))2 −
f ∗(a)
f (t, a)

f ′a(t, a) f ∗(a) − f (t, a) f ∗
′

a (a)
( f ∗(a))2

=

(
1

f ∗(a)
−

1
f (t, a)

) (
f ′a(t, a) − f (t, a)

) f ∗
′

a (a)
f ∗(a)

=

(
1

f ∗(a)
−

1
f (t, a)

)
f ′a(t, a) +

(
1

f ∗(a)
−

1
f (t, a)

)
m(a) f (t, a),

(55)

where we denote h′l(s, l) =
∂h(s,l)
∂l .

It follows from the proving process of Lemma 7.3, together the assumption of Lemma 7.4 that V1(t)
is well-defined. Deviating it along the solution of (52), we obtain

dV1(t)
dt
|(52)=

∫ ∞

0
M(a)

∂g
(

f (t,a)
f ∗(a)

)
∂t

da

=

∫ ∞

0
M(a)

(
1 −

f ∗(a)
f (t, a)

)
f ′t (t, a)
f ∗(a)

da

=

∫ ∞

0
M(a)

(
1

f ∗(a)
−

1
f (t, a)

)
(− f ′a(t, a) − m(a) f (t, a))da

= −

∫ ∞

0
M(a)

(
1

f ∗(a)
−

1
f (t, a)

)
f ′a(t, a)da

−

∫ ∞

0
M(a)m(a) f (t, a)da.

(56)
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Observing (55), we have

dV1(t)
dt

∣∣∣
(52)

= −

∫ ∞

0
M(a)

∂g
(

f (t,a)
f ∗(a)

)
∂a

da. (57)

With the help of integral by parts, we obtain

dV1(t)
dt

∣∣∣
(52)

= − M(a)g
(

f (t, a)
f ∗(a)

) ∣∣∣∞
0

+

∫ ∞

0
M′

a(a)g
(

f (t, a)
f ∗(a)

)
da

=M(0)g
(

f (t, 0)
f ∗(0)

)
−

∫ ∞

0
η(a) f ∗(a)g

(
f (t, a)
f ∗(a)

)
da

=

∫ ∞

0
η(a) f ∗(a)

[
g
(

f (t, 0)
f ∗(0)

)
− g

(
f (t, a)
f ∗(a)

)]
da,

(58)

here we used the fact M(0) =
∫ ∞

0
η(a) f ∗(a)da, and M′(a) = −η(a) f ∗(a). �

Next, we will give the global attractivity of the endemic equilibrium E∗.

Theorem 7.5. Suppose R0 > 1, (iv) of Assumption 1.1 and Assumption 7.1 hold. Then the endemic
equilibrium E∗ is a global attractor in Ω0.

Proof. Define

V(t) =

n∑
j=1

κ j

S ∗jg
S j(t)

S ∗j

 +

∫ ∞

0
α j(a)g

 i j(t, a)
i∗j(a)

 da +

∫ ∞

0
δ j(a)g

v j(t, a)
v∗j(a)

 da

 ,
where α j(a) =

n∑
k=1

∫ ∞
a
β jk(s)i∗k(s)da and δ j(a) =

∫ ∞
a
ε j(s)v∗j(s)ds. κ j will be determined later and con-

sidered as a weighted coefficient. The well-definition of V(t) follows from Lemma 7.3. From the
definitions of α j(a) and δ j(a), it follows that

α′j(a) = −

n∑
k=1

β jk(a)i∗k(a),

and
δ′j(a) = −ε j(a)v∗j(a).

Assisting with Lemma 7.4 and deviating V(t) along the solution of (5) yield

dV(t)
dt

∣∣∣
(5)

=

n∑
j=1

κ j

{(
1 −

S ∗j
S j(t)

)
S ′j(t)

+

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)

g  i j(t, 0)
i∗j(0)

 − g
 i j(t, a)

i∗j(a)

 da

+

∫ ∞

0
ε j(a)v∗j(a)

g v j(t, 0)
v∗j(0)

 − g
v j(t, a)

v∗j(a)

 da


=

n∑
j=1

κ j

{
(1 −

S ∗j
S j(t)

)
[
−(µ j + p j)(S j(t) − S ∗j)
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−

S j(t)
n∑

k=1

∫ ∞

0
β jk(a)ik(t, a)da − S ∗j

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)da


+

∫ ∞

0
ε j(a)(v j(t, a) − v∗j(a))da

]
+

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)

g  i j(t, 0)
i∗j(0)

 − g
 i j(t, a)

i∗j(a)

 da (59)

+

∫ ∞

0
ε j(a)v∗j(a)

g v j(t, 0)
v∗j(0)

 − g
v j(t, a)

v∗j(a)

 da


=

n∑
j=1

κ j

−(µk + pk)
(
2 −

S k(t)
S ∗k
−

S ∗k
S k(t)

)
+ S ∗j

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)

×

 i j(t, 0)
i∗j(0)

−
i j(t, a)
i∗j(a)

−
ik(t, a)S j(t)

i∗k(a)S ∗j
+

ik(t, a)
i∗k(a)

−
S ∗j

S j(t)

 da

+

∫ ∞

0
ε j(a)v∗j(a)

 S ∗j
S j(t)

+
S j(t)
S ∗J
− 1 −

S ∗jv j(t, a)

S j(t)v∗j(a)
+ ln

S ∗jv j(t, a)

S j(t)v∗j(a)

 da

 .
Note that

S ∗j
n∑

k=1

∫ ∞

0
β jk(a)i∗k(a)

ik(t, a)S j(t)
i∗k(a)S ∗j

da =S j(t)
n∑

k=1

∫ ∞

0
β jk(a)ik(t, a)da

=i j(t, 0) (60)

=S ∗j
n∑

k=1

∫ ∞

0
β jk(a)i∗k(a)

i j(t, 0)
i∗j(0)

da.

Equation (60) implies that

S ∗j
n∑

k=1

∫ ∞

0
β jk(a)i∗k(a)

ik(t, a)S j(t)i∗j(0)

i∗k(a)S ∗ji j(t, 0)
da = S ∗j

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)da. (61)

Noting that
∫ ∞

0
εk(a)v∗k(a)da = pkS ∗k

∫ ∞
0
εk(a)π1

k(a)da = pkS ∗kK1
k , it follows from (60) and (61) that

dV(t)
dt

∣∣∣
(5)

=

n∑
j=1

κ j

−(µ j + p j(1 − K1
j ))

2 − S j(t)
S ∗j
−

S ∗j
S j(t)


− S ∗j

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)

g ( S ∗j
S j(t)

)
+ g

 ik(t, a)S j(t)i∗j(0)

i∗k(a)S ∗ji j(t, 0)

 da

+ S ∗j
n∑

k=1

∫ ∞

0
β jk(a)i∗k(a)[Hk(i(t, a)) − H j(i(t, a))]da

−

∫ ∞

0
ε j(a)v∗j(a)g

 S ∗jv j(t, a)

S j(t)v∗j(a)

 da

 , (62)
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where H j(i) =
i j(t, a)
i∗j(a)

− ln
i j(t, a)
i∗j(a)

. Define Θ jk = S ∗j
∫ ∞

0
β jk(a)i∗k(a)[Hk(i) − H j(i)]da, ( j, k = 1, 2, · · · , n)

and a Laplacian matrix

Θ =



∑
k 6=1

θ1k −θ21 · · · −θn1

−θ12
∑
k 6=2
θ2k · · · −θn2

...
... . . . ...

−θ1n −θ2n · · ·
∑
k 6=n
θnk


.

By Lemma 2.1 in [21], we have that the solution space of the linear system Θκ = 0 is 1 and one of its
basis is given by

κ = (κ1, κ2, · · · , κn)T = (c11, c22, · · · , cnn)T ,

where c j j > 0( j = 1, 2, · · · , n) denotes the cofactor of the j−th diagonal element of matrix Θ. This

implies that
n∑

k=1
θ jkκ j =

n∑
j=1
θk jκk and

n∑
j=1

κ j

n∑
k=1

∫ ∞

0
β jk(a)i∗k(a)[Hk(i(t, a)) − H j(i(t, a))]da

=

n∑
j=1

n∑
k=1

κk

∫ ∞

0
βk j(a)i∗j(a)[H j(i(t, a)) − Hk(i(t, a))]da. (63)

Employing the graph-theoretic approach mentioned in [21], (63) is equal to zero. Therefore, V ′(t) ≤ 0.
The equality holds if and only if ik(t,a)

i∗k(a) =
i j(t,0)
i∗j(0) =

i j(t,a)
i∗j(a) . This implies that i = ci∗. It follows from the

first equation of (5) with respect to the monotonicity of c that c = 1. Hence, the largest invariant
set of {u(t) ∈ Ω0|V ′(t) = 0} is the singleton E∗. Combining the relative compactness of the solution
orbit (see Lemma 5.3) with the invariance principle (see [Theorem 4.2, [30]]), we see that the endemic
equilibrium E∗ is a global attractor in Ω0. �

8. Simulations

In this section, we perform some numerical experiments to illustrate our theoretical results. For the
experimental operability, we set amax = 10 instead of infinity. For simplicity, we assume system (5)
describes some sexually transmission diseases, such as Zika, Ebola and genital warts etc, which consist
of two groups - male group and female group. As some news reported in [33], human papillomaviruses
(HPV) is an effective and safe vaccine to control some sexually transmitted diseases inducing by virus.
In order to illustrate system (5), we firstly fix the demographic parameters as follows:

b1 = 20.5, b2 = 40.5, µ1 = µ2 = 0.01.

Hence the total male population maintains the size N1(t) = 2050 and the size of the total female
population is N2(t) = 4050. It has been reported that nearly half of newly infections are diagnosed as
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(a) (b)

(c) (d)
Figure 1. The solution of (5) with initial conditions S j0 = 200, i j0(a) = 10,V0 = 10 and all
the parameters except B = 9 are enclosed in the text.

(a) (b)

(c) (d)
Figure 2. The solution of (5) with initial conditions S j0 = 200, i j0(a) = 10,V0 = 10 and all
the parameters except B = 8 are enclosed in the text.
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females in age range between 15 to 24. Therefore, we assume that the vaccination rates p1 = 0.21 for
male and p2 = 0.22 for female. Other parameters are associated with infection age in the form of

y(x, A, B) =
1

BAΓ(A)
xA−1e−

x
B

where Γ(n) = (n − 1)! , or Γ(z) =
∫ ∞

0
xz−1e−xdx(z ∈ N). Obviously, y(x, A, B) satisfies (iii)’ of Assump-

tion 1.1. We fix γ(a) = y(a, 2, 5), ε(a) = y(a, 1, 1) and verify the transmission rate β(a) = y(a, 6, B).
If we choose B = 9, this implies that the mean of the transmission function is 54 and the variance
is 486. It follows from Figure 1 that the disease-free equilibrium E0 is asymptotically stable. Then
we decrease B = 8 associated with the variance changed as 384. Figure 2 shows that the endemic
equilibrium E∗ is asymptotically stable.

Comparing infected male and female populations in Figure 2, we find that the total infected number
for female population is larger than that for male population. However, the first peak time for female
population is later than the time for male population. Although the vaccination rate for female de-
signed is higher than such rate for male, the level of infected peak and the total number for female
population are still larger than those for male population. Consequently, the government should pay
more attentions to female population.

9. Discussion

In this paper, we proposed a multi-group SIVS epidemic model with age-since-infection. We cal-
culated the basic reproduction number R0 by the renewal equation, which is the spectral radius of the
next generation operator K . From Theorems 7.2 and 7.5, we see that the global attractivity of system
(5) is totally determined by R0. This implies that the basic reproduction number is a sharp threshold
determining that the disease prevails or vanishes. Implicit Euler method performed illustrates the the-
oretical results. Numerical experiment shows that the number of the infected females is larger than
the number of the infected male although the vaccination rate for female group is higher than that for
male group. The government should pay much more concerns on female group for suppressing sexual
diseases prevalence.

Irreducibility of the transmission matrix β jk, j, k ∈ N has been highly influential in analyzing the
global stability of equilibria. This assumption is still a basic assumption of epidemics spreading on
scale free networks. Therefore, we hope our analysis method proving theoretical results and numerical
method can be generalized to investigate the dynamics of some epidemic models on complex net-
works [36]. Besides, oscillation is one of the important phenomena in diseases transmission. What
mechanisms resulting in oscillation has been becoming an increasing trend in investigating epidemic
models with age-since-infection [37]. We leave this for our future work.
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