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Abstract: It is recently known that parasites provide a better picture of an ecosystem, gaining
attention in theoretical ecology. Parasitic fungi belong to a food chain between zooplankton and
inedible phytoplankton, called mycoloop. We consider a chemostat model that incorporates a single
mycoloop, and analyze the limiting behavior of solutions, adding to previous work on steady-state
analysis. By way of persistence theory, we establish that a given species survives depending on the food
web configuration and the nutrient level. Moreover, we conclude that the model predicts coexistence
under bounded nutrient levels.
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1. Introduction

It is important to determine survivors, which ultimately shape an ecosystem. However, answering
this fundamental question depends on what we consider in a food web. There are studies on ecosystems
that incorporate a different concept, like epidemics [10, 11] and allelopathy [8].

Our work considers a microbial food web in the presence of parasitic fungi (e.g., chytrids). The
importance of parasites in food webs has been emphasized in the literature; see [5—7]. According to
a review paper [15] by Sommer et al., researchers have only recently considered parasites as one of
the main drivers for phytoplankton succession. This review highlights the theory of mycoloop, a food
chain conceived by Kagami and her team to explain the transfer of energy from large phytoplankton
(Asterionella) to zooplankton (Daphnia) via parasitic fungi [1-4].
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In this paper, we consider the following chemostat model based on Figure 1, where ’ = d/dt.

N'(t) = [I —gN@@)] - [asPs(t) + aLP, ()] N,  N(0) >0,
P (t) = [asN(t) — bZ(t) — q] Pg(2), Pg(0) > 0,
Pi(1) = [aLN(1) - BF (1) — q] PL(1), P (0) =0, (1.1)
F'(t) = [feBP (1) — yZ(1) - q] F(1), F(0) >0,
Z'(t) = [epbPg (1) + epyF(t) — (g + mz)| Z(t), Z(0) = 0.

The parameters of this model are described in Table 1.

Zooplankton

Fungi
Small phytoplankton e Large phytoplankton

Nutrient

Figure 1. Food web of a microbial ecosystem with a mycoloop (red).

Table 1. Model parameters.

Parameter Description

1 Input amount of phosphorus (nutrient level)

N© Input concentration of nutrient

q Washout rate

q+my Zooplankton mortality rate, m; is the additional death rate
besides washout rate g

ay Nutrient affinity of phytoplankton P, (J = §, L)

B Infectivity constant of fungi

b Zooplankton clearance rate for small phytoplankton

0% Zooplankton clearance rate for fungi

er Gross growth efficiency (GGE) of zooplankton from fungi

ep GGE of zooplankton from small phytoplankton

Ir GGE of fungi from its host P,

Miki, Takimoto and Kagami formulated system (1.1) in their paper [9] and performed a local
(steady-state) analysis to investigate the roles of parasitic fungi. We assume I = gN©.
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We focus on global dynamics and the limiting behavior of the solution

@(t) = (N(0), Pg(1), P (1), F(1), Z(1))

as t goes to infinity. In particular, we determine initial and parameter conditions for the solution to
describe the survival and extinction of species Py, P, F, and Z.
Let
X:={x=(WN,Ps,P,,F,Z): N>0,P; >0,P, >0,F >0,Z > 0}.

It is easy to show the state space X and its interior in#(X) are positively invariant.

The rest of this paper is organized as follows. In Section 2, we establish that our model is
dissipative, from which the nutrient uniformly persists regardless of the input /. In Section 3, we
study the boundary dynamics. Notably, we construct a Lyapunov function to determine the basin of
attraction. An investigation on the local and global stability of boundary equilibrium points is
presented in Section 4. In Section 5, we apply the uniform persistence theory [12, 13, 16] to prove the
coexistence of species P, P,, F, Z with F' — Z link, i.e., y > 0. Section 6 deals with the dynamics of
system (1.1) with the presence of parasitic fungi, but no F — Z link, i.e., y = 0. We conclude the paper
with a discussion in Section 7.

2. Dissipativity and nutrient persistence

First we show that our model system (1.1) is dissipative, as stated in the following theorem.

Theorem 2.1. Each solution of system (1.1) in X satisfies the following inequality:

F(t Z(t
limsup [N(?) + Ps(t) + P, (t) + ® + ® < NO, (2.1)
=00 Ir max{ep, f—i}
1 ) .
Proof. Let c = ——— . We introduce the variable
max{ep, £}
F
u=N+Pg+P, +—+cZ
fr
It follows that u’ < g [N(O) - u] Moreover,
() < NO + |u(0) - N exp(-q1) 2.2)

for all ¢ > 0. Passing the limit supremum to inequality (2.2) as t — oo, we get limsup, , ., u(f) < N,
which is inequality (2.1). O

Theorem 2.2. The nutrient N uniformly persists in X.

Proof. Observe that

N’ >1—-gN — max (as,ar) (Ps + P;) N
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> ] — gN — max (ag, ar) (N(O) + e)N
>1 - (q + max (ag, ay) (N(O) + 6)) N, t>T..

1

g + max (ag,ar) (NO +€)
persistence of N in X. O

Hence N(t) > 6 > O fort > T,, where 6 =

This proves the uniform

3. Boundary Dynamics

The ecologically relevant equilibrium points lie in the state space X. For our analysis, we focus on
boundary equilibrium points, which have at least one zero coordinate. To this end, we let

=L a=L
dg ar,

From [14], our basic assumption is

1
(H) 0<Ag <A < —.
q

That is, we assume phytoplankton species of small size, P, is a strong competitor than that of large
size, P, .
L

3.1. Boundary dynamics in the absence of parasitic fungi

When F = 0, system (1.1) becomes

dN
E:I—QN—CISPSN—GLPLN,
dP
! 3.1)
dP

—L = NP, —qP,,

dt

dz

E = epbPSZ - (q +myz)Z
2.

Figure 2. The food web in the absence of parasitic fungi.

and its food web is shown in Figure

The conditions for the global stability of the equilibrium points of system (3.1) are stated in the next
theorem.
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Theorem 3.1. Let (H) hold and

B 1
q+asP}’

x_ qtmgz
=

*

€pb

For system (3.1), the following statements hold:

(i) If N* < Ag, then Eg = (/15, NO — Aq,0, O) is globally asymptotically stable (G.A.S.).

asN* —q

(ii) If is < N* < Ay, then E%, = (N*, P},0,2*) is G.A.S., where Z* = -

— ~ 1
(iii) If &g < A, < N* < f}, then E.IS:LZ = (/IL,P;',PL,Z) exists and is G.A.S., where Z = 5 (asdp —q)

— ]
and P, = = — A, — =P,
q ar,

Proof. The statements are established as follows:

(i) We introduce the Lyapunov function given by

N & Ps & _ P
V:f ¢ Sd§+c1fsf—sd§+c2PL+c3Z,
PP A

where 7’; = N© — A, and ¢y, ¢, c3 > 0 are to be determined. Then

o 1

V:(N—/ls)(ﬁ —q—aSPS —CZLPL)
+ (PS - 73;) (asN —bZ — q)
+ 2P, (aLN — q) + c3Z (epbPg — (g + mz))

1 1 —

= (N—AS)(N - s (Ps - Py) —aLPL)
+c1 (P = Pg) (as (N = As) - b2)
+ P (ap (N = Ag) —ag (A — Ag))

+c3Z (epb (PS - f’;) - ((q +my) — epbf’;)) )

Choosecy =1,c0=1,¢3 = i Since

q+mg s — 1—-qis . .
=P;>P, = © [ —-qglds <asdsPy © N™ < Ag,
epb § S as g qas asAslg s
it follows that
.__I(N—/ls)z 1 N
V—N—/ls—PLaL(lL_/lS)_;((q-f-mz)—epbPS)Zso-

Therefore, LaSalle’s invariance principle implies that Eg = (/ls , 7’;, 0, O) is G.A.S.
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(i1) Note that N* > Ag implies that Z* > 0 . Define the Lyapunov function
N * P * Z *
nf - N f s é: — PS 1 f f -7
V:f dé + dé+ P, + — dé.
v € Pt & Lo ep A

X./:(N—N*)[é—%—ag(PS—P§)—aLPL]
+(Pg = P5)[as (N=N*) = b(Z-Z")]

+ Py (a. (N = N*) = (g —arN"))

We obtain

b (2 2%) (erb (Ps ~ PY)

_ TN - N*)?

NN — P, (q—arN*)

<0,
by using the equivalent expression
AL >N*" & g—aN*>0.
Hence, by LaSalle’s invariance principle, E?Z = (N *, P30, Z*) is G.A.S.

(i11)) We construct the following Lyapunov function:

N _N PS _PC PL _PC 1 Y4 _Z
y= [ ¢ Cd§+f d Sd§+f ¢ Ld§+—ff € dg,
Ne € P & P¢ & epJz. &
where
qt+mg
Ne=2a,, P$="—2==P;
¢ L § epb $
pc_i L_ — ac<P*
L_aL Nc q stg

1
Zc = b (asNe — q).
From the assumptions that No = A, > Ag = % and N* > A;, we see that PE > 0 and Z- > 0.
Thus
. 1 1 c c
V=N -No)| = 3= —as (Ps - PS) - ar (P, - FY)
+(Pg = P§)las (N = N¢) = b(Z - Zo)]

+(P, = P§)(a (N = Ne))
+ i (Z - Zc) (epb (Ps — FS))

_ —I(N=N¢)’
~ NNc
<O0.
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We conclude from the invariance principle that Ef, , is G.A.S. O

As a consequence of the above theorem, we obtain the following equivalent expressions:

N* < s ©1<As(q+asPs)=q(ds + Py)
As <N* <Ay © As(q+asPy) <1< A,(q+asP3)

A
S q(Ag +P§)<I<q(/lL+/l—LP§)
s
1
/1L<N* < - @ﬂL(q+615P§)<I
q
AL,
& q(A+ —P5) <1
As

Letting I = q(/ls + P;) and I} =gq (/IL + %P;) with I7 < I}, we conclude that
(i) if 0 < I < If, then Ef = (15, P;,0,0)is G.AS.
(ii) if I7 <1 < If, then Ef, = (N*,P},0,Z*)is G.A.S.

(iii) if 15 < I, then Ef,, (., P§, P}, Z)is G.A.S.

The global stability of equilibrium points of system (3.1) is depicted in Figure 3.

Ef is GAS. Ef,is G.AS. Ef_is G.AS.

0 IF IF 1

Figure 3. Operation diagram of system (3.1).

3.2. Boundary dynamics in the absence of zooplankton

We consider the case that Z = 0. Then system (1.1) becomes

N =1-gN —-asP¢N —aP,N,
P =lasN — q] Ps,
Pp=(aN-BF —q) P, (3.2)
F' = (frBP, - q) F,
N(0) > 0,Ps(0)>0,P,(0)>0,F(0) >0

and its food web is presented in Figure 4.
From hypothesis (H), we see that P is a better competitor for nutrient than P,. Obviously from the

fact that parasitic fungi F only consume P, , it follows that EZ = (/ls, 7’;, 0, 0) with ?’; =NO _ A is
G.A.S. Below we state the result without proof.

Theorem 3.2. Under assumption (H), Eg = (/15, 7’;, 0, O) is G.A.S. for system (3.2).
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Figure 4. The food web in the absence of zooplankton.

3.3. Boundary dynamics in the absence of phytoplankton species

For the case when Pg = 0, system (1.1) becomes

dN

=~ =I1-gN-a.P,N,
dt @ aty
dp,

dF

E = fFﬂPLF—’)/ZF—qF,
dz

o =eryFZ —(g+my)F,

N(@0)>0,P,(0)>0,F(@0)>0,Z0) >0

with the corresponding food web provided in Figure 5.

Figure 5. The food web in the absence of phytoplankton species.

(3.3)

Using the same Lyapunov functions V as defined in Theorem 3.1, we can prove Theorem 3.3 stated

below. We thus omit the proof.

Mathematical Biosciences and Engineering
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Theorem 3.3. Let hypothesis (H) : 0 < Ag < A < é hold. Then the solution of system (3.3) satisfies
the following statements:

(i) If0 < I < Arq(1 + 4%), then E, Fs = = (42, N© = 2;,0,0) is G.AS.

(ii) If/qu( —L) <1< /lL(l + f,B) (q+ (q+mz)) then Ef; = (N,P_L,F,O) is G.A.S. Here

epry
q I f _ aN—q
—, F = > 0.
L™ feB g+arP,’ B

(iii) If I > A, (1 + )(q + £ (q + mz)) then the positive equilibrium ELFZ = (7\7, ID:, F,f) exists
and is G.A.S. Here F = q+'"z N = BFtq 7= fFﬁPL 150, P _ N

ar aLN

Taking 1, = Arq(1+ %) and I, = A, (1+4)(q+ £ (q+my)). the global stability of
equilibrium points of system (3.3) is provided in Figure 6.

E," is G.AS. E.5 is G.AS. E,s, is G.AS.

6 2 7 i

—

Figure 6. Operation diagram of system (3.3).

4. Boundary equilibrium points of system (1.1) and their stability

From Section 3, there are seven distinct boundary equilibrium points of system (1.1) listed below :

E, (N(O) 0,0,0, o)
Es = (/1 NO — A.0,0, 0) NO s ),
Esz; = (N*,P%,0,0,Z*),NO > A5 + P%,

A
Esiz = (ﬂL,P_?,PL, O,Z),N(O) > A+ A—P;‘,
s

(4.1)
E, = (/1 L0,N® — 2,0, 0),N<°> > A,
E;r=(N,0,P,,F,0 N(°)>/1(1+ )
tr ( L ) feB
E N.0.P..F.Z N<0>>A(1+—)(1+£(1+@)),
Lz ( L A) B ery q

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.
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where 7 N*
4 _
N*:—*a P,;:waz*:u>o,
— I 5 _ 1
PL:__/lL—a—SP;>0,Z:—(aS/lL_q)>0’
q ar b
B . v B 5 “4.2)
N:—_,PLZL’F:aL q>0’
q+aLPL fFﬁ ﬁ
— g+ ~ BF+q P, - 5 _1=aN
Foltm g BEvg g JBha o 5 lmaN oy,
ver ar Y aLN

Next we discuss the local asymptotic stability of the boundary equilibrium points in (4.1) with
respect to system (1.1). Obviously Ej is unstable under hypothesis (H).

For the stability of Eg, let N < Ag + %. Then
1,
7F (O |gg = frBPL—vZ-q=—-q <0,

1
ZZ(0) |5, = epb (N = 5) = (g +mz) <0, (4.3)
[
P—PL(I) lg, = apds —q <0

L
and all of the eigenvalues of the Jacobian matrix of system (1.1) at Eg are negative. Hence Es is
asymptotically stable if N < g + L2

epb *

For the stability of Esz, if N < A, + 2L P%, then

As
| N
P—PL lgg, = aLtN™ —q <0,
i “4.4)
FF, g, = —vZ* —q < 0.

Thus, if NO < A, + %Pg, then Eg is asymptotically stable .

For the stability of Eg;z, consider

1, — —
FF lgs,, = JABP, —vZ —q <. 4.5

Therefore, Eg;; is asymptotically stable if (4.5) holds.

For the stability of E;, let N© < A, + #. Then

L,
P_SPS lg, =asdp —q >0,
1
FF’ e, = fF,B(N(O) - /lL) -q<0 (4.6)

1
zZ, |EL = —(q+mz) < 0.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.
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Table 2. Conditions for existence and local asymptotic stability of boundary equilibrium
points of system (1.1).

Existence Locally asymptotically stable if
Ey always *
Es under (H) NO < A5 + P}
Es; As+P{<NO NO <2, + j—ng
Esiz Ap+4tP5 < NO feBP, —yZ—q <0
E; under (H) *
Err NO> 2 (1+4%) *

Eirz N(O)>/1L<1+;T€8)(l+£(l+%)) asﬁ—bz—q<0

ery

We conclude that E; is unstable in the P direction and stable in F and Z directions.
For the stability of E; ¢, the assumption and F > ‘Z—myz imply that

| —
P_PS g, =asN—q>0,
s

1, —
ZZ lg,, = erYF — (g +mz) >0

For the stability of E;rz, consider

| = =
P—PS lg,,, = asN —bZ — q. 4.7)
s
Hence E; 7 is asymptotically stable if agﬁ —bZ - q <0.
A summary of the results on the asymptotic stability of boundary equilibrium points of system (1.1)
is provided in Table 2.
Now we present some extinction results in the next theorem.

Theorem 4.1. Suppose fr < j—F” holds. Then the following statements hold.

(i) IFNO < Ag + ";’"Z, then Eg = (/lg, NO —¢.0,0, O) attracts each point (N, P,,P,,F, Z) € R3.

(ii) If As + P} < N® < AL +2L P}, then Esz = (N*, P},0,0,Z*) attracts each point (N, Py, P, F.Z) €
RS,

Proof. (1) Introduce the Lyapunov function

N P _ o) _

-1 s E—|N As

v:f ¢ Sd§+clf ¥d§+czPL+c3F+c4Z.
i € NO_ g '3

Chooseci=cr=1,¢3 = i—i, and ¢4 = i Then

V=(N- /IS)(% - i ~as (Pg — (N© = 2)) - aLPL)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.
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+(Ps = (N9 = 4s)) (as (N = A5) = bZ)
+ Py (ap (N = A5) = BF + (a5 - )
+ LF (foBP, —vZ - q)

ep

# 2 (enb Py~ (N - ) + exyF + (erb (VO = 45) = (g + my)
= (N—/ls)(% - é) + P (apds —q) — Z—in

+P,F (—,8 + fpﬁi—i) +Z(epb (N® = 25) = (g + my))

<0.

It folows from the invariance principle that Eg is a global attractor.
(i1) Define the Lyapunov function by

N _N* P _P* YA _Z*
V:f ¢ d§+c1fsf Sd§+czPL+C3F+c4f £ dé.
v € P} & 7 €

Letci;=1,c,=1,¢3 = ‘;—’;,and Cy = i Then
I I N
N—F—aS(PS _Ps)—aLPL)
+(Pg — PY)(as (N=N*) - b(Z-Z%))
+(ap, (N =N*)=BF + (atN* - q)) P,

¥ — (feBP, -y (Z = Z*) + (~yZ* = q)) F

"/:(N—N*)(

1
+ —(Z-Z")(epb (Pg — PY) + eryF + epbP§ — (q + my))
ep

I 1 er
=(N-N* (———)+FP —Bcy + frf—
( ) N N L( Bc2 fFﬁeP)
H@N* = q) P+ L (2" —q) F
ep
<0.
By invariance principle, Es is a global attractor. O

Remark 4.2: From our numerical simulation results,we conjecture that the equilibria Es and Es,
are G.A.S. even when fr > 2—1’;

5. Uniform persistence of system (1.1) with both parasitic fungi and an F-Z link, i.e., y > 0

In this section, we determine conditions for the species in system (1.1) to coexist by applying the
theory of uniform persistence of Butler, Freedman and Waltman [12, 13, 16]. Since the boundary

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.



528

dynamics for F =0, Z = 0, and P, = 0 are discussed in Section 3 and the acyclic conditions are easy
to verify, it remains only to verify that WS (M;) N Int(R>) = ¢ for each boundary equilibrium M.

Consider the operation diagram in Figure 3 and the case that I > I = 1, (q + aLPg). From the
equation for F in system (1.1), the invasion condition for the boundary equilibrium
Esiz = (A1, P§.P,,0,Z)is £ > 0. That s,

feBP, —yZ —q > 0, (5.1)

where P, = £ — 1, = %P5 > 0,7 = | (asd, — q) > 0, and P} = £52 (See (4.2)).

Lemma 5.1 below shows that inequality (5.1) is equivalent to

I> (g +aPt)+ 25 ( (%S(/lL—/lg)+q):Iz. (5.2)

/i F,B

Next, we consider the operation diagram in Figure 6 and the case that

B
I>12 —/].L(1+ﬁ)(q+a(q+m2))

Similarly, the equation for Pg in system (1.1) provides the following invasion condition for the
boundary equilibrium E; 5, = (ZV ,0, 73: F. , /Z\) :
asN —bZ —q > 0, (5.3)

where F = €22 P~ = =4V 5 0 7 = S8070 ypg N = 604 (See (4.2)).
Y ar,

Yer aL

In Lemma 5.1, we also prove that inequality (5.3) is equivalent to

1< =2.(q+pF) (1 + ;—2) (BF +4) fiﬁ ((ﬁ - 1) —ﬁF)% (5.4)
We state the lemma below.
Lemma 5.1. The three statements hold.
(i) Inequalities (5.1) and (5.2) are equivalent.
(ii) Inequalities (5.3) and (5.4) are equivalent.
(iii) Ifﬁ—[f > fr, then Iy > .

Proof. (1) Equivalence is established by substituting I‘: = é o Z—in and Z = % (asA; — q) into
inequality (5.1). We have

1dF — =
FE'ESLZ:fFﬁPL_'yZ_q>O
= Y = q

S P> ——7Z+ —
L™ B feB

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.



529

1 (1 —
@—(——q—aSPg‘) Y7+ L

ap \ AL kB feB
(:>1>/1L(q+a5P +CIL(%Z+%))

®I>/1L(q+a5P)+ ?(/l[‘—/ls)'f'q):]z.

il
This proves (i).
(i1) First note that N = a%f+ Ay > Ag implies asﬁ — g > 0. We have

1 dP;

P = £,y = asﬁ—bf—q>0
fF,BPL_C[
Y

—~ b — 1
(aSN—q+—q)>PL:—,\—/lL
Y N

= asﬁ—q>b2:b

o Y
bfrB

=~ bq 1
Lt /lL + asN —-qg+—|>——==
Y CZLN

Y
bfrB

S I<aLN(AL+ 4 (asﬁ—q+lﬂ)):13.
bfrp Y

Using the equalities

aLﬁ:,BF+q and

—

— — F
asN—q:aS(N—ﬂs)=as((/1L—/1s)+'i—),
L

we express I3 as

st )

(as (A — Ag) +
ay, Y

I = (BF +q) [/IL + b;ﬁ

Next, by the equivalence

b
q=Aa; < Z(as (/lL—/ls)"'—,BF ;1)
S 1+— 1+

b
A 1 ~ bgl
7B BB (as (1 - —S) + a—S—,BF + —q—),

it follows that I; S = A (1 + L )(q + ﬁf) < Iz. Hence (ii) is established.

(iii) Expanding I; and I3, we have

2
q+mz g q

L =4g+ Qjas—————y— (1, — As) + —,

2 Lq LAs erh fif3 b(L s) B

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.
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and

+m +m
13:ﬁq Z/1L+ﬂq z_Y as (Ap — Ag)
Yeér ver bfef
Bq+mz Y as,9q+tmz q+tmz g

1473 beﬁa_L Yer Yer fePB
Y
+gd; + Ap— A4
qaL bfp,Ban( L s)

+ b
+gisPatmz + 242
a, Yer Y~ bfeB

If er fr < ep, then ;ij—ifF > % Thus, it is easy to verify that 15 — I, > 0.

O

We establish the coexistence of species in the next theorem wherein the proof follows directly from
the above lemma.

Theorem 5.2. The following statements hold:

(i) If I, < I < I, then system (1.1) is uniformly persistent and the positive equilibrium is globally
asymptotically stable.

(ii) If I > I3, then Py (t) > 0 as t — oo.

Using the parameter values g = 1, a5 = 0.8,a, =05, 4, =125, 1, =2, b=1,ep =0.5, e = 0.4,
B=1,y=1, fr =0.6,and mzy = 0.5, we have I, = 11.35 and I3 = 66.92. By setting I = 20, we obtain

a numerical simulation of statement (i) as depicted in Figure 7. Letting / = 80, a numerical simulation
for statement (ii) is shown in Figure 8.

6. Dynamics with parasitic fungi, but without an F-Z link

When y = 0, system (1.1) becomes

dN

Ezl—qN—aSPSN—aLPLN,

dPg

7 :ClsNPS —bZPS —qPS,

dP

d—tL = a;NP, — BFP, — qP,, (6.1)
ar = fgBP, F — gF.

ar P T A

dz

E:epbPSZ—(q+mz)Z

and its food web is shown in Figure 9.

Theorem 6.1. Let (H) : 0 < Ag < A, < é hold.

(i) If Pt > Py, then Es = (15, Pg,0,0,0) is G.A.S., where Py = =% and P} = £z

ag Ag epb *
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Figure 7. Numerical solution of Model (1.1) exhibiting uniform persistence with parameter
values g = 1,a5 =0.8,a, =05, 4, =125 4, =2,b=1,ep=05,e, =04,=1,y =1,
fr=0.6,m; =05, =11.35, 5 = 66.92, and I = 20.

(ii) If P§ < Py and As < N* < A4, then Es; = (N*, P§,0,0,2*) is G.AS., where N* = —loe and
as N*—
Z* — 4 > q’
(iii) If P} < Py and Ne < A, < N*, then Esz = (4, P}, P}.0,Z) is G.A.S., where P = “-% i
S Ky c L ’ en Lgyz = Lyt gsLysYYs s G.AD., where L — ail
(iv) If P¥ < Pg, N* > Ay, and N¢ > Ay, then Ec = (Nc, P§, PS, Fe, Zc) is G.A.S., where P¢ = X

Yk
C _ gtmz _ px I __asNc—q _ aiNc—q
PS = b PS, NC = q+asP§+aLPf’ ZC == and FC - 5

Letl) = qAs +asPSAs, I, = Ay +as PS4, and I = g, +as PS A, +a PSA,. Then I, < I < ;. As
a consequence of Theorem 6.1, the following statements hold.

(i) If 0 < I < 1, then Es is G.A.S.
(i) If I; < I < b, then Egz is G.A.S.
(iii) If I, < I < I, then Es;7 is G.A.S.
(iv) If I > I, then E¢ is G.A.S.
The global stability of system (6.1) is given in Figure 10.
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Figure 8. Numerical solution of system (1.1) exhibiting the extinction of P¢(z) with
parameter values g = 1, a5 = 0.8, a, =05, 4, =125, 4, =2,b =1,ep = 0.5, e = 0.4,
B=1v=1,f=0.6,mz=05,1, =1135,1; =66.92, and I = 80.

Proof. (i) Note that i’; > Py © N* > Ay & Z* > 0. We introduce the Lyapunov function

N P *
V:f dé + dé+ P, + —F + —Z
i € P} & t Ir ep

Then

N A
+ (Pg — P}) las (N = As) = bZ]
+ P, [a, (N = Ag) = (g — apAs) — BF]

+ %FF (8P, — 0)

. I 1
v:(N—AS)[————as(PS—Psf)—aLPL]

1
+ ZZ[epb(PS _P;‘()_ [(q+mZ)_ePbP§]]

~-(N-2) ¢ 1
=7 _JF_ — epbPY) —Z — (¢ — apds)P
N s I3 ((g+mz) —ep S)ep (g —ards)Pr

<0,

from the assumption Py > I/D; Thus Es is G.A.S. by invariance principle.
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Figure 10. Operation diagram of system (6.1).

(ii) Note that ﬁ; > Py ensures that Z* > 0. Introduce the Lyapunov function

Nf—N* Psf_ e 1 f 'f 7*
V= d dé+ P, + —F + — dé.
J e P A A A

Then, by the assumptions P§ < f’; and N* < A,, we have

1 I
N N* —dg (P Pg) - aLPL]

+(Pg = P§)las (N-N*) = b(Z-Z")]
+ P (aL (N —N*) - BF = (q — aLN"))

1
2 F (feBPL = q)

V=(N- N*)[

+ i (Z —Z*)[epb (Pg — PY) — [(g + mz) — epbP%]]

—(N N*)?
NN*

—(g—aN*)P; — %F

<0.
Therefore Es7 is G.A.S. by invariance principle.

(i1i1)) Define the Lyapunov function

Ne- A fpsf ¥ fLé H 1fZ§—Z
V= d. d d. —F — —dé.
fAL ¢ £+ Pt £ £+ Nia +€P Z & d

N

Mathematical Biosciences and Engineering Volume 16, Issue 1, 516-537.



534

Then

1
V (N /lL) [N — /l_L —dg (P P*) ag, (P

+(Ps = P}) |as N = 4) - b(2 - Z)]
+ (P, — Pf)(aL (N — A,) - BF)

+%F(fF,6<P P~ (g - fBPD)

+ el (Z-2Z) (erb (P - PY))

_—IN-) 1 .
= N—/lL_JTF(q_fFﬁPL)'

P)]

Using the assumptions P§ < TD; and N¢ < A, < N*, and the equivalence below

- fifP} >0 & - = PS> Py
B
I—qd; —asPtA
C)Pg> qaL St egAL
CZL/?.L
@(q+aSP§+aLP€)/1L>I

1

& A > Ne =

* C’
q+asPs+ar Py

we have V < 0. Hence Egs is G.A.S. by invariance principle.

(iv) Observe that the assumptions P} < F, N* > A;, and N¢c > A, imply P. > 0,P; >0,and F¢ > 0,
s s s L

respectively. By introducing the Lyapunov function

V_fN chg f &-P Sdg fo—

J}Fchgf ePchf ’

we obtain

V=(N- NC)[N—NL—aS(PS P§)—a (P

+(Ps = P§)las (N = Ne) = b (Z - Zo)]
+ (P, = PS)(arL (N = Ne) = B(F - F¢))

+ %F (F - Fo) (feB (P, - PS))

+ i (Z - Zc) (erb (Ps — FS))
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_ —I(N-Nc)’
B NN¢
<0.

Therefore it follows from invariance principle that Ecis G.A.S.

7. Discussion

In this paper, we study an aquatic ecosystem with five species : a single nutrient resource N
(Phosphorus), the small phytoplankton Pg, the large phytoplankton P;, the zooplankton Z, and the
parasitic fungi F. Both P and P; consume N. In the food web (see Figure 1), the zooplankton Z only
consumes the small phytoplankton P but the large phytoplankton P, is inedible to the zooplankton.
In the absence of zooplankton, we assume that the small phytoplankton P, is a better competitor than
the large P, in the exploitative competition for nutrient. With the presence of parasitic fungi F, we
consider two cases : the food web with an F — Z link and that without an F' — Z link. In Section 3, we
first study the boundary dynamics of the food web, i.e., the population dynamics under the
assumptions that ' = 0, Z = 0 and P; = 0. We then employ Lyapunov functions to establish the
results of global stability as the nutrient input I varies. Section 4 deals with the determination of
conditions for the local stability of boundary equilibrium points of system (1.1) and the proofs of
several partial results on the extinction of species. In Section 5, with the well understood information
of boundary dynamics proven in Section 3, we establish the uniform persistence of the food web.
Section 6 is devoted to determine conditions for the global stability of species in the system of food
web without an F — Z link.

Now we discuss the role played by parasitic fungi in the coexistence of species in the food web.
Recall that, in the absence of parasitic fungi, from Figure 3, coexistence of species occurs when I > I7'.
When parasitic fungi are present in the food web, we consider two cases: one with an F' — Z link and
another without an F' — Z link. In the case without an F' — Z link, coexistence of species occurs when
I > I; (see Theorem 6.1), whereas in the case with an F — Z link, coexistence of species occurs when
I, < I < I (see Theorem 5.2). A comparison of the three quantities 15 , 73 I, shows that

<L <hL<I,

where

q+mgz

AL
L =qld+=P5|, P§=
2 ‘1( LT s) s epb

13 =g+ ClsP A + aL—/lL

JeB

= Ig + aLi/lL

JrB
L=2.(q+asP)+ f,B/lL (q + )/— A - /ls))

L=1+ _/lLV_ (A = As).
feB
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In view of the above, the best case for the coexistence of species of the food web is when I > I}
That is, coexistence of species occurs if there is no parasitic fungus. In the case that parasitic fungus
is present and there is no F' — Z link, coexistence of species occurs if I > I;. With the presence of
parasitic fungi and an F — Z link, we have coexistence in the parameter region I, < I < I53. From our
numerical simulation (see Figure 8), we observe that, if / > I3, then the small phytoplankton P¢ goes
to extinction.

Finally, we note that in [9] the authors discuss the role of parasitic fungi in zooplankton biomass at
steady states. Their conclusion is that the presence of an F — Z link can benefits large phytoplankton
and strengthens competition between small and large phytoplankton reducing material transfer from
smaller phytoplankton to zooplankton. While our analysis shows that without F — Z link if IT <1 < I}
then zooplankton, fungi, small phytoplankton coexist; if I > I7, the zooplankton, fungi, small and large
phytoplankton coexist (see Figure 3). However, with F'—Z link, the system (1.1) is uniformly persistent
if I, < I < Iy (Theorem 5.2). From the inequality I; < I, < I, it is easier to obtain coexistence when
there is no F' — Z link.
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