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Abstract: Many population systems are subject to seasonally varying environments. As a result, many
species exhibit seasonal changes in their life-history parameters. It is quite natural to try to understand
how seasonal forcing affects population dynamics subject to stoichiometric constraints, such as nutri-
ent/light availability and food quality. Here, we use a variation of a stoichiometric Lotka-Volterra type
model, known as the LKE model, as a case study, focusing on seasonal variation in the producer’s
light-dependent carrying capacity. Positivity and boundedness of model solutions are studied, as well
as numerical explorations and bifurcations analyses. In the absence of seasonal effects, the LKE model
suggests that the dynamics are either stable equilibrium or limit cycles. However, through bifurca-
tion analysis we observe that seasonal forcing can lead to complicated population dynamics, including
periodic and quasi-periodic solutions.

Keywords: ecological stoichiometry; predator-prey model; seasonal forcing; carrying capacity;
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1. Introduction

All living things are made of chemical elements such as hydrogen (H), oxygen (O), nitrogen (N),
phosphorus (P), sulfur (S), and carbon (C), along with energy from light. The study of the balance of
energy and multiple chemical elements (mainly C, P, and N) in ecological interactions to evaluate the
importance of physiological constraints on organisms and, in turn, the impact of these constraints on
food webs and ecosystem functioning is called ecological stoichiometry [1]. Ecological stoichiometry
has been built to study nutrient-limited ecosystems and offer a theoretical framework to understand how
food quality (generally considered through carbon/nutrient ratios) influences organisms (e.g., growth
rates, reproductive success) and their roles in ecosystems (e.g., biomass production, consumer-driven
nutrient recycling, nutrient and energy fluxes in food webs) [2].

The rate at which photosynthetic organisms produce organic compounds in aquatic ecosystems


http://http://www.aimspress.com/journal/MBE
http://dx.doi.org/10.3934/mbe.2019023

502

depends basically both upon light availability and upon the supplies of nutrients such as N and P
[3]. These resources affect the total density of primary producers which then support growth and
reproduction of higher trophic levels. Nonetheless, the ratio of C to P may also shape nutritional
quality of the primary producer [4].

Loladze et al. 2000 [4] constructed and studied a stoichiometric Lotka-Volterra type model of the
first two trophic levels of an aquatic food chain (algae-daphnia), known as the LKE model. The analysis
shows that indirected competition between predator and prey for the limiting nutrient, P, can shift
predator-prey interactions from a (+, —) type, where the predator has a positive effect on the growth rate
of its prey, and the prey has a negative effect on its predator to an exploitative competition (—, —). This
leads to dynamics with two equilibria, where bistability and deterministic extinction of the predator
are possible. The most significant dynamics is the delivery of bistability as a result of large values of
the variable-carrying capacity determined by whatever is limiting, either by C or by P. On the other
hand, most organisms experience environmental seasonality, which often induces periodic fluctuations
in the availability of resources (i.e., food, nutrients, or energy), and it is a well-known fact that periodic
fluctuations can also cause variations in the producer-carrying capacity [5]. Indeed population density
tends to fluctuate as a result of seasonal changes in environmental factors [6]. Therefore, studying
the effects of seasonality in the carrying capacity will contribute to our understanding of predator-prey
relationships and their dynamical evolution.

In this paper, we formulate the stoichiometric prey-predator model more mechanistically by mod-
eling the seasonal variation of the producer’s light-dependent carrying capacity. Our model is a system
of two non-autonomous and non-smooth ordinary differential equations. We have done bifurcation
analysis of the model with respect to average value of light-dependent carrying capacity and we have
studied the effects of different amplitudes of seasonal forcing on the dynamics of the model. Through
the bifurcation analysis, we observe that seasonal forcing can lead to complicated population dynamics,
including periodic and quasi-periodic solutions.

The paper is organized as follows. In section2, we describe our model and provide basic analysis of
positivity and boundedness. In section3, we conduct numerical simulations and present the results of
bifurcation analyses. In section4, we discuss the implications of our results and suggest directions for
further research. Proof of mathematical result is placed in the appendix.

2. Model

Our seasonal producer-grazer system will be based on the following continuous time producer-
grazer system developed by Loladze et al. 2000 [4]

dx X

a bx(l " min{K, (P — ey)/q}) A (2.12)
dy . . (P—6y)/x _

o= emln{l, — }f(x)y dy, (2.1b)

where x is the density of producer (in milligrams of carbon per liter, mg C/1), y is the density of grazer
(mg C/1), b is the intrinsic growth rate of producer (day™!), d is the specific loss rate of grazer that
includes metabolic losses (respiration) and death (day™'), & is maximal production efficiency of grazer,
K is the light-dependent producer constant carrying capacity in terms of C, P is the total phosphorus
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in the system, 6 is the fixed grazer P:C ratio, g is the minimum producer P:C ratio and f(x) is the
functional response of ingestion to producer abundance which is a Holling type II functional response
the following form, f(x) = cx/(a + x) where c is the maximal producer ingestion rate, and a is the half
saturation rate of grazer ingestion.

To facilitate our model formulation and its comparison with model (2.1), it is convenient to recall
the main model assumptions. They are listed below:

Assumption 1. The total mass of phosphorus in the entire system is fixed, i.e., the system is closed for
phosphorus with a total of P (mg P/l).

Assumption 2. Phosphorus to carbon ratio (P : C) in the producer varies, but it never falls below a
minimum q (mg P/mg C); the grazer maintains a constant P : C, 0 (mg P/mg C).

Assumption 3. All phosphorus in the system is divided into two pools: phosphorus in the grazer and
phosphorus in the producer.

From these assumptions, new constraints in terms of P and C can be introduced. According to
Liebig’s law of the minimum, which states that growth is controlled by the strongest limiting environ-
mental factor [1], two minimum functions have been obtained. The first minimum function is used to
describe the producer’s carrying capacity, min{K, (P — 8y)/q}. The first input, K, is the carrying capac-
ity determined by light availability. The second input, (P —68y)/q is the carrying capacity determined by
P availability. It is also noticeable that the carrying capacity of the producer depends on grazer density.
The second minimum function is used to describe the grazer growth rate, min{1, (P — 6y)/x6}. The
first input, 1, is used when grazer growth is limited by carbon. The second input, (P — 8y)/x6, where
(P — 6y)/x is the variable producer P:C ratio, is used when grazer growth is limited by P.

In ecosystems, the light-dependent carrying capacity of primary producers is season-dependent.
Therefore, one additional assumption is necessary.

Assumption 4. K is a periodically varying function of time and is considered as
K@) = Ko(1 + esin(wt))

where K is the average value of K and € is the amplitude of the seasonal forcing; Ky is the magnitude
of the perturbation and w is the angular frequency of the fluctuations caused by seasonality.

Based on model system (2.1) and assumptions (Al)-(A4), the Seasonal LKE model (called the
SLKE) takes the following form:

dx X

a bx(l " min{Ko(1 + esin(wi)), (P — ey)/q}) A (2.22)
dy [ P-t),

o emm{l, 7 }f(x)y dy, (2.2b)

with period 27/w =half-year.

In the SLKE model, the carrying capacity of the producer also depends on grazer density. In the
absence of the grazer, the carrying capacity of the producer depends only on seasonal light and phos-
phorus availability, which it is denoted as
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min{K, P/q} = min{Ky(1 + esin(wt)), P/q}.

Since K cannot be negative, € lies in the interval [0, 1]. € = 0 corresponds to absence of seasonality,
and € = 1 means the maximum value of the parameter is twice its average value, i.e., the maximum
value of the seasonal light availability, K., corresponds to 2K,. Now, by considering the maximum
seasonal light availability and the grazer’s absence, we can redefine the producer carrying capacity as

min{ K., P/q} = min{2Ky, P/q}.

Here, we state a lemma and a theorem on the boundedness and positive invariance of the solutions of
Model (2.2) respect to K,,y.

Lemma 2.1. Solutions with initial conditions in the open rectangle {(x,y) : 0 < x < k =
min{K,,.., P/q},0 <y < P/6} remain there for all forward times.

Proof. The proof is provided in Appendix A. m|

Theorem 2.1. Solutions with initial conditions in the open trapezoid (or triangle if K, ... > P/q)
A={(x,y):0<x<k0<y,gx+60y<P} (2.3)

remain there for all forward times.

Proof. The proof is very similar to that in Loladze et al. 2000 [4] (Appendix C), so the details are
omitted here. O

3. Numerical Simulations

In this section, we provide numerical simulations for Model (2.2) to support and complement our
analytical findings and compare with those of the LKE system. In particular, we will discuss the effect
of seasonal variation on the modeling of the dynamical interaction between producer and grazer. We
choose the Monod type function f(x) = cx/(a+x) as the functional response of the grazer. We will vary
the two parameters in the forcing term, K, and &, for fixed values of the other parameter values which
are biologically realistic values. These parameter values listed in Table 1 are adapted from Andersen
1997 [7] and Urabe and Sterner 1996 [8] except Ky, €, and w.

The parameter K, varies from 0 to 3 mg C/l, which enables us to compare the solutions of the
SLKE model with the solutions of the LKE model. The parameterization of w determines the length
of the seasonal period or the number of peaks for the producer carrying capacity a year. Cebridn
and Valiela 1999 [9] investigated seasonal trends in phytoplankton biomass from multiple northern
temperate coastal ecosystems via the compilation of multiple published data sets and observed that
bimodal cycles, displaying two annual peaks are most commonly observed. Therefore, we assume the
angular frequency of the fluctuations is 47r/365, which results in a seasonal light-dependent producer
carrying capacity with two peaks a year. The SLKE model system is analyzed with the following initial
conditions: x = 0.5 (mg C/l), y = 0.25 (mg C/I).
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Table 1. Parameter values

Parameter Description Value  Units

P Total phosphorus 0.025 mg P/1

e Maximal production efficiency in C terms 0.8 (unitless)

b Maximal growth rate of the producer 1.2 day™!

d Grazer loss rate(includes respiration) 0.25 day™!

0 Grazer constant P:C 0.03 mg P/mg C
q Producer minimal P:C 0.0038 mg P/mg C
c Grazer max ingestion rate 0.81 day™!

a Grazer ingestion half saturation constant 0.25 mg C/1

K Producer carrying capacity limited by light 0-2 mg C/1

Ky The average value of K 0-3 mg C/1

e The amplitude of seasonal forcing 0-1 (unitless)
w The angular frequency of the fluctuations ~ 47/365 day™!
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Figure 1. Parameter values are (&, Kj) = (a) (0, 0.25), (b) (0, 0.75), (¢) (0, 1), (d) (0, 2).

The producer and grazer solutions of system (2.2) are plotted against time (days) for various values
of light-dependent carrying capacity Ky : 0.25,0.75, 1,2 mg C/1 and different forcing amplitudes ¢ :
0,0.1,0.3,0.7. The € values chosen represent the cases: (a) for no forcing (¢ = 0), which corresponds
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exactly to the LKE model; (b) for weak (¢ = 0.1) seasonal forcing; (c) for intermediate (¢ = 0.3)
seasonal forcing; and (d) for high (¢ = 0.7) seasonal forcing.
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Figure 2. Parameter values are (g, Kj) = (a) (0.1, 0.25), (b) (0.1, 0.75), (¢) (0.1, 1), (d) (0.1,

2).

In Figure 1, Kj is varied with no forcing (¢ = 0). Under low light conditions, the producer is
limited by carbon (see Figure 1a). Here the low light levels correspond with a low producer carrying
capacity and producer densities are low. In these conditions the producer P:C ratio is high, however
producer density is low enough that grazers are maintained at fairly low levels. When light and thus
Ky is increased, the predator-prey interaction becomes unstable (see Figure 1b), due to Rosenzweigs
paradox of enrichment [10]. Further increase in K, leads back to a stable system with high density
in both the producer and grazer, but both of them reach much higher densities than in Figure 1a (see
Figure 1c). As K| is increased still further, grazer density steadily decrease due to low quality food.
Finally, under high light condition (see Figure 1d) the producer density is high, but its low quality
drives the grazer to extinction.

In Figure 2- 4, we give four plots for each of three different values of € : 0.1,0.3, and 0.7, respec-
tively.

Low light conditions (K, = 0.25): The grazer density oscillates periodically above the producer den-
sity with weak seasonal forcing (see Figure 2a). When the seasonal forcing is increased, these periodic
oscillations continue and the grazer density gradually decreases until it undergoes prolonged near-
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extinction state and then recovers from it (see Figure 3-4a).

Medium light conditions (K, = 0.75): At weak seasonal forcing quasi-periodic oscillations (QPOs)
can be observed in population densities (see Figure 2b). When the seasonal forcing is increased, the
population densities continue to oscillate quasi-periodically (see Figure 3b). With further increased in
the seasonal forcing, QPOs transform into periodic oscillations (see Figure 4b).

High light conditions (K, = 1): The system displays periodic oscillations in population densities for
varying seasonal forcing (see Figure 2-4c).

Very high light conditions (K, = 2): For weak seasonal forcing, the grazer is driven to extinction (see
Figure 2d). However, when the seasonal forcing is increased, the grazer density undergoes prolonged
near-extinction state and then recovers from it (see Figure 3-4d). It is shown that seasonal forcing plays
a very important role in helping the grazer to survive.
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Figure 3. Parameter values are (&, Kj) = (a) (0.3, 0.25), (b) (0.3, 0.75), (¢) (0.3, 1), (d) (0.3,
2).
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3.1. Bifurcation Analysis

Here, we present bifurcation diagrams, which highlight the extreme grazer population densities
observed during oscillatory solutions (see Figure 5), as well Poincaré bifurcation diagrams, which
characterizes the oscillatory dynamics as periodic and quasi-periodic (see Figure 7). We consider K|
as the bifurcation parameter that varies from O to 3. We will also vary the other parameter in the
forcing term, &, for fixed values of the other parameter values; following Table 1. In Figure 5, the local
minimums and maximums of the grazer population densities are shown in black and red, respectively.
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Figure 4. Parameter values are (&, Ky) = (a) (0.7,0 .25), (b) (0.7,0.75), (¢) (0.7, 1), (d) (0.7,
2).

Figure 5a shows bifurcation diagram for &£ = 0, i.e. no seasonality, which corresponds exactly to the
LKE model (2.1). Under low light conditions, the grazer extincts due to starvation. When light and thus
K is increased, the grazer density steadily rises and a stable periodic orbit can be observed following
a Hopf bifurcation. As K|, continues to increase the periodic orbit collapses and an interior equilibrium
gains stability following a saddle-node bifurcation. The grazer population begins to decline due to
stoichiometric constraints and eventually low quality food drives the grazer to extinction.

With low level of seasonality (¢ = 0.1) the SLKE model (2.2) exhibit similar dynamics, however
the equilibrium are now small amplitude periodic orbits (see Figure 5b). As seasonality increases, the
region of large amplitude oscillations widens and the amplitudes become more extreme (see Figures
5b-d). Under high level of seasonality the grazer densities approach very low values, where they are
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in danger of stochastic extinction. The highlight threshold that cause grazer extinction increases as

seasonality increases. Despite the large amplitude oscillations, under high light conditions seasonality
can rescue grazers from extinction.
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Figure 5. Bifurcation diagrams of the grazer density against K, which varies from 0 to 3.
Numerical simulations conducted using parameter values are listed in Table 1 and varying
forcing amplitudes, (a) € = 0, (b) € = 0.1, (¢) € = 0.3, and (d) € = 0.7. Local minimum
(black) and local maximum (red) population densities are depicted.

Finally, to complement our use of bifurcation diagrams, we present a number of Poincaré diagrams
(Figure 6) and Poincaré based bifurcation diagrams (Figure 7) as a means to qualitatively characterize
the behavioral differences amongst solutions for a variety of € and K, values. This will allow for a more
precise discussion of the rich behavior one can see in Figures 5b-d, which is not present in Figure Sa.
Additionally, we use € = 0.5 to investigate how the dynamics transition from low to high seasonality
(see Figure 7c).

The Poincaré diagrams are constructed by using Runge-Kutta-Fehlberg numerical integration with
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a given set of initial conditions x = 0.5 (mg C/1), y = 0.25 (mg C/1), and parameters K, and . After
waiting for transient effects to die out (after 50 years in this case), x and y pairs are plotted once per
period of the forcing function (every half year) in the resulting Poincaré section until the thousands
of points necessary to make a clear picture are achieved. We use the Poincaré map to classify system
behavior. Distinct points indicate periodicity (pictured in the Poincaré bifurcation diagrams below as
single y-values for a given Kj, or in a typical Poincaré diagram as a single point in which every one
of the thousands of points plotted coincides exactly), continuous curves indicate quasi-periodicity (see
Figure 6), and filled in areas potentially chaos (not found in any solutions explored) according to Lynch
2007 [11].

We do not present a Poincaré diagram for a periodic case, as the Poincaré bifurcation diagrams
capture this behavior, and there is little to be gained from a picture of a single point. All periodic cases
found in the analysis of this model have the same period as the forcing function or that period divided
by a natural number (most likely the former from inspecting many of the cases in Figure 4), as all
periodic cases have only one distinct point. Multiple points (not found here) would instead indicate
period doubling, tripling, or...etc. from the period of the forcing function. We found several cases that
exhibited quasi-periodicity and depict two examples in Figure 6.

The bifurcation diagrams of Poincaré sections presented in Figure 7 take a wide range of Poincaré
sections, plotting only the grazer densities y for a given parameter set along the x-axis, showing for
what combinations of K, and & periodicity, quasi-periodicity, or extinction occur. That is each point
from a Poincaré diagram is mapped from (x,y) to (Kj,y) for the value of K| that corresponds to that
diagram, and all data having to do with the producer is disregarded. This is performed for many
different individual Poincaré diagrams where each one shares the same value of €. The x-axis is
sampled at 0.01 increments of K. Thus, there will be 300 Poincaré diagrams represented in a Poincaré
bifurcation diagram which varies K, from O to 3.

Any sample with only one dot at a given value of K, represents a periodic solution (the positioning
of that dot along the y-axis has no physical significance other than that the grazer population reaches
that density at some point during a given half year), while any sample with multiple points along the
y-axis represents a quasi-periodic solution. Multiple isolated spikes occur in the € = 0.5, 0.7 cases that
are only single points. These too represent very small regions of quasi-periodicity that may be smaller
than the K step size allows for multiple points along the y-axis to show as in the £ = 0.7, Ky = 1.65
case. However, taking a finer step size does reveal that hidden in these spikes are indeed small ranges
of K, for which quasi-periodicity does occur.

For low level of seasonality (¢ = 0.1) the systems exhibit a wide range of quasi-periodicity: K, €
[0.57,0.88] (see Figure 7a). As seasonality increases this zone of quasi-periodicity decreases to K, €
[0.6,0.77] (see Figure 7b); however, smaller isolated regions of quasi-periodicity emerge for higher
light conditions (¢ = 0.7, Ky = 1.65 for example). The amplitudes (K, values) of these isolated
occurrences of quasi-periodicity increase as seasonality increases (see Figure 7c-d).

For low ¢ value, the grazer is able to persist only for K, € (0.15,1.92). As & is increased, it manages
to persist only for Ky € (0.16,1.99). As & continues to increase, it is able to persist only for K, €
(0.17,2.17). As € increases still further, the population is capable of persisting for K, € (0.22,2.52).
One can observe that increasing the value of forcing amplitude (€) increases the parameter space for
which the predatory population persists.
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Figure 6. Sampling of Poincaré diagrams showcasing quasi-periodicity.

4. Conclusion and Future Directions

In the present study, a predator-prey model with periodically varying light-dependent carrying ca-
pacity is proposed and the effects of amplitude of seasonal forcing (&) on the dynamics of the aquatic
food chain are studied. Conditions for positivity and boundedness of solutions are obtained in Lemma
2.1 and Theorem 2.1, respectively. The simulations shown in figures 3 and 4 show seasonal patterns
in algae and Daphnia population densities. These types of patterns are observed in natural systems.
Indeed, a commonly observed phenomenon in seasonal cycles of plankton communities is the clear-
water phase [12], which correspond to periods of time with low algal densities. Additionally, peaks in
zooplankton communities have been observed to occur seasonally, with peaks in the Spring and the fall
for eutrophic lakes [13].Bifurcation analysis of the model with average value of light-dependent carry-
ing capacity and the amplitude of seasonal forcing is performed. Numerical experiments reveal that in
the absence of seasonal variation (LKE model), the dynamics of system are either stable equilibrium
or limit cycles. However, the modified predator-prey system with periodically varying light-dependent
carrying capacity exhibits rich dynamics, including periodic and quasi-period solutions. Also, it can
be observed that increasing the value of the forcing amplitude increases the probability of persistence
for the grazers.
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35

While our model captures the dynamics of incorporating light-dependent seasonality into producer
carrying capacity, seasonal effects can influence many other aspects of population dynamics. In addi-
tion to the effects of light, the effects of temperature are a considerable opportunity for research in the
near future, because temperature also varies periodically during the year. So, by following the proce-
dure used by Schefter et al. 1997 [12], the effects of temperature can also be included in the Seasonal

LKE model (SLKE).

It is important to note that the SLKE model does not explicitly track phosphorus in the prey nor
in the media that supports the prey. Therefore, it can be extended by mechanistically deriving and
accounting for phosphorus in both the prey and the media following the procedure used by Wang et al.
2008 [14]. In addition to these two directions, we also note the opportunity to extend the SLKE model
to include multiple consumer species and to examine subsequent impacts of coexistence and exclusion,
as in the analysis of Loladze et al. 2000 [15].
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A. Proof of Lemma 2.1

Proof. We will use the technique of proof by contradiction, i.e., assume there exists a time #; > 0
such that a trajectory with initial conditions in the open rectangle (0, k) X (O, 2y touches or crosses the
boundary of the closed rectangle [0, k] x [0, £] for the first time. We will have four cases to consider
because the boundary consists of four sides.

Case 1 left border: x(#/) = 0. Let f = £/(0) = lim,o £ and ¥ = maXeo,,; ¥(t) < £. Then for every
t€[0,4]

dx X
dar bx(l " min{Ko(1 + esin(wi)), (P — ey)/q}) A
Ly x S
"\" T min{Ko(1 + esin(wn), P - )/q})  x °
X —
= |2\~ Ko (1 + asint@n), (P = ey)/q}) -y ]x
: . kg
=121 mintko( = o), P - ey)/q}) - ]x =

where « is a constant. Thus, x(f) > x(0)e®, which implies that x(¢;) > x(0)e®® > 0. Therefore, no
trajectory can touch the left-hand-side border of the rectangle.
Case 2 right border: x(#;) = k. Then for every ¢ € [0, #]

D1 - a
ar - O T min(Ko(1 + esin(wr)), (P — 6y)/q)

) - f(x)y

x B i
min{Ko(1 + esin(wr)), (P - Qy)/q}) = bx(l - m) = bx(l - %)_

< bx(l -

By the standard comparison argument we find x(¢) < k, thus, no trajectory touches the right-hand-side
border.
Case 3 bottom border: y(¢;) = 0. Then for every ¢ € [0, #;]

dy . . { (P —0y)/x)
— min{l, ————=
dt 0

[f(x)y = dy > —dy.

This implies that y(¢;) > y(0)e=%" > 0. Therefore, no trajectory can touch the bottom border.
Case 4 top border: y(t)) = g. 0<y<P/@for0<t<t.Letf=f(0)=Ilim,.

Then for every ¢ € [0, ;]

dy . . (P -0y)/x)
d}t) emn{,#}

P/O —
Foy —dy < 21972 py

< &P1o-3)fy = o p(1 - 775)

The standard comparison argument yields a contradiction, y(¢) < % thus no trajectory touches the top
border. O
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