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Abstract: A spatio-temporal eco-epidemiological model is formulated by combining an available
non-spatial model for predator-prey dynamics with infected prey [D. Greenhalgh and M. Haque, Math.
Meth. Appl. Sci., 30 (2007), 911–929] with a spatio-temporal susceptible-infective (SI)-type epidemic
model of pattern formation due to diffusion [G.-Q. Sun, Nonlinear Dynamics, 69 (2012), 1097–1104].
It is assumed that predators exclusively eat infected prey, in agreement with the hypothesis that the
infection weakens the prey, making it available for predation otherwise we assume that the predator
has essentially no access to healthy prey of the same species. Furthermore, the movement of predators
is described by a non-local convolution of the density of infected prey as proposed in [R.M. Colombo
and E. Rossi, Commun. Math. Sci., 13 (2015), 369–400]. The resulting convection-diffusion-reaction
system of three partial differential equations for the densities of susceptible and infected prey and
predators is solved by an efficient method that combines weighted essentially non-oscillatory (WENO)
reconstructions and an implicit-explicit Runge-Kutta (IMEX-RK) method for time stepping. Numeri-
cal examples illustrate the formation of spatial patterns involving all three species.
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1. Introduction

1.1. Scope

Mathematical models are powerful tools to characterize and gain insights into the spatial-temporal
dynamics of complex systems. More specifically, mathematical models are frequently used to gain a
qualitative understanding of the dynamics and control of natural and social dynamic phenomena [44].
For example, systems of mathematical models are often simple and crude approximations that aim to
capture key mechanisms underlying the dynamics of infectious disease transmission in human, animal,
and plant populations. Such first approximation models can be subsequently refined to study the effects
of additional factors and processes including spatial heterogeneity in density of hosts with different
characteristics (e.g., fitness, susceptibility, infectivity) as well as the role of specific host behaviors
(e.g, migration and diffusion patterns) in response to local host density or disease prevalence.

It is the purpose of this contribution to advance a spatio-temporal predator-prey model taking into
account infected prey with a particular focus on its efficient numerical solution and dynamic character-
istics. The resulting eco-epidemiological model combines several submodels that have been proposed
in the recent literature. The population of prey is described by a spatio-temporal SIR-type epidemi-
ological model similar to the one studied by Sun [45] while the predator-prey interaction follows the
treatment by Greenhalgh and Haque [22] (formulated in a non-spatial setting in that paper). The move-
ment of predators is based on the non-local velocity model advanced for the predator movement in a
spatio-temporal predator-prey model by Colombo and Rossi [16]. That velocity model was also used
for the male compartments in a recently published model of hantavirus infection [11]. In particular the
implicit-explicit numerical technique for efficiently solving the governing partial differential equations
(PDEs) is adapted to the new model presented herein.

In most general terms, the governing model considers a prey population with a susceptible and
infective compartment, denoted by S and I, and a variable Y denoting the population of the predator.
In the spatio-temporal context, these variables are understood as local densities that are functions of
position x ∈ Ω and time t ∈ T := [0,T ] on a bounded domain Ω ⊂ R2. The final model for

u := (u1, u2, u3)T := (S , I,Y)T, u = u(x, t)

is given by a convection-diffusion reaction system of the type

∂u
∂t

+ ∇ · Fc(u) =D∆u + s(u), (1.1)

supplied with initial and boundary conditions, where the convective fluxes Fc(u), the diffusion ma-
trixD, and the vector of reaction terms s(u) are specified in later parts of the paper.

It is proposed to describe the movement of the predators in a particular way that depends non-
locally on the density I of infected prey, while the movement of infected and susceptible prey, that is of
members of the compartments I and S , is standard diffusion. This property calls for numerical methods
that allow the efficient computation of numerical fluxes based on the non-local evaluation of data but
avoid the severe time step restriction incurred by explicit time discretizations of the diffusion term
D∆u. As in [11] the first goal can be achieved by a technique based on Fast Fourier Transforms (FFT)
in combination with an implicit-explicit (IMEX) discretization to handle the second. The numerical
method constructed in this way is applied to simulate several scenarios that allow comparing the effect
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of initial conditions and different parameter values. The numerical results exhibit a rich variety of
behavior, including formation of patterns taking the shapes of spots, stripes, both from randomized
perturbations of steady states and in a scenario that describes the invasion of a prey habitat by the
predator. The structure of solutions obtained in the latter case are reminiscent of permanent wave
fronts.

1.2. Related work

The spatial spread of infectious diseases is described mathematically in a number of monographs
that include [18, 35, 36, 41, 48]. The temporal evolution of diseases is also treated in [10, 21]. Our
assumption that all epidemiological compartments are distributed over the whole spatial domain is op-
posed to the alternative metapopulation approach that describes spatial structure through well-identified
sub-populations or “patches” (cf., e.g., [1, 2, 3, 12, 46, 47]). The description of spatial structure by
explicitly specifying the mobilities between “patches” is typical for characterizing the behavior of
humans who undertake directed travels, while a description through a convection-diffusion-reaction
mechanism is more suitable for non-human infectious agents such as spores, insects, and bacteria that
would disperse [18, 36, 37]. A decisive advantage of the spatially continuous approach, namely its
amenability to mathematical analysis, is emphasized in [49].

The introduction of [22] and Hadeler and Freedman [24] provide extensive references to real-world
examples of three-species eco-epidemiological systems of sound prey, infected prey, and predators.
Specifically, in [24] a predator-prey model is described in which the prey is infected by a parasite
and the prey in turn infects the predator with that parasite. The models studied in [22] and herein are
based on the general assumption that the infection weakens the prey and increases its susceptibility
to predation. Furthermore, we mention that the eco-epidemiological system of the Salton Sea in the
desert of Southern California, New Mexico, is an important eco-epidemiological system where birds
(particularly pelicans) prey on fish (particularly tilapia). The mechanism of predation is explained in
[23]: “The vibrio class of bacteria is very common in salt water fish, and those infected with vibrio
may have salt water present in their tissue. As the fish struggle in their death process, they tend to
rise to the surface of the sea for oxygen. When they do, they become very attractive to fish-eating
birds, specifically the pelicans.” Mathematical models of this system were proposed and analyzed by
Chattopadhyay and collaborators in a series of papers [14, 15, 30, 40].

A less common ingredient in mathematical epidemiology is the convective term ∇ · Fc(u). Related
advection terms, for which the essential functional dependence for one compartment is Fc = Fc(x, u) =

b(x)u with a given velocity b(x), arise if the population under study is transported (as is the case with
wind-borne infectious agents, plankton, etc.). In our model the main role of the convective term is
similar to that of [36, Ch. 14] in that it imposes a preferred direction of movement of predators, where
the global dependence of the direction is determined by convolution with population data within a
certain horizon of the current position. This idea of non-local dependence of biological fluxes goes
back to a non-local predator-prey model introduced and analyzed by Colombo and Rossi [16], and for
which a numerical scheme was analyzed in [39]. The scheme of [39] is based on the Lax-Friedrichs
scheme for the ease of demonstrating convergence properties; we here employ higher-order weighted
essentially non-oscillatory (WENO) reconstructions [26, 34] to achieve high-order spatial accuracy.

Furthermore, IMEX Runge-Kutta (IMEX-RK) schemes play an important role for the efficient
numerical solution of (1.1). Roughly speaking, an IMEX-RK method for the convection-diffusion-
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reaction equation (1.1) consists of a Runge-Kutta scheme with an implicit discretization of the diffu-
sive term D∆u combined with an explicit one for the convective and reactive terms, Fc(u) and s(u),
respectively. To introduce the main idea, we assume that

dv
dt

= Φ∗(v) + Φ(v) (1.2)

represents a method-of-lines semi-discretization of (1.1), where Φ∗(v) and Φ(v) are spatial discretiza-
tions of the convective and reactive terms and of the diffusive term, respectively. Assume that the
spatial mesh width is h > 0 in both the x- and y-direction. Then the stability restriction on the time step
∆t that explicit schemes impose when applied to (1.2) is very severe (∆t must be proportional to h2),
due to the presence of Φ(v). The implicit treatment of both Φ∗(v) and Φ(v) would remove any stability
restriction on ∆t. However, the upwind nonlinear discretization of the convective terms in Φ∗(v) that is
needed for stability makes its implicit treatment extremely involved. This situation becomes even more
complicated due to the use of WENO reconstructions [26, 34, 42, 51]. However, numerical integrators
that deal implicitly with Φ(v) and explicitly with Φ∗(v) can be used with a time step restriction dictated
by the convective-reactive term alone. These schemes have been profusely used in convection-diffusion
problems and convection problems with stiff reaction terms [4, 6, 7, 8, 9, 17, 19, 28, 38, 52].

1.3. Outline of the paper

The remainder of the paper is organized as follows. In Section 2 the governing mathematical model
is introduced. To this end, we first formulate (in Section 2.1) a non-spatial predator-prey model, defined
by three nonlinear ordinary differential equations (ODEs), in which an epidemic spreads in the prey.
This model gives rise to five equilibrium points whose respective stability is discussed in Section 2.2,
along with a discussion of the Hopf bifurcation associated with the unique stable one of the five equi-
libria that includes all three species. (These stability results will motivate the choice of parameters
of the simulated spatio-temporal scenarios.) Then, in Section 2.3, we obtain the full spatio-temporal
model by equipping the ODE model with diffusive terms for the prey species and a non-local convec-
tion term for predators. These ingredients are specified in detail in Section 2.4. Section 3 is devoted
to the description of the numerical scheme proposed to solve the spatio-temporal model developed in
Section 2.3. Specifically, the (standard) spatial discretization of local convection and diffusion terms is
introduced in Section 3.1. The spatial discretization of the convolution defining the non-local predator
velocities is described in Section 3.2. These velocities, in turn, are utilized in the definition of the final
discretization of the convective flux by means of a fifth-order WENO discretization, as is detailed in
Section 3.3. The time discretization of the complete model by an IMEX-RK scheme is outlined in
Section 3.4. In Section 4, which is at the core of this paper, numerical solutions to the spatio-temporal
model are presented. To motivate the choice of parameters, we focus on two equilibrium points of
the three-equation ODE model of Section 2.1, as is briefly discussed in Section 4.1. In Section 4.2
we present a total number of 10 examples of numerical solutions of the spatio-temporal model that
give rise to patterns. In Section 4.3 we present Example 11 that has been designed to demonstrate in
a purely visual way the convergence of the numerical scheme to a definite solution upon refinement
of the computational grid, while Example 12 illustrates the influence of the choice of the radius of the
convolution kernel of the non-local prey velocity. Finally, some conclusions and possible directions of
future work are collected in Section 5.
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2. Mathematical model

2.1. Dynamical system for a predator-prey model

Combining the SIR epidemic model of [45] with a second species corresponding to a predator (as in
the model of [22]), and assuming that the predator only eats infected prey. That is, illness arising from
infection debilitates the prey, making it available for predation otherwise we assume that the predator
is not sufficiently fit to access healthy prey. Accordingly, we obtain the following model:

dS
dt

= A − dS − βS I2, (2.1a)

dI
dt

= βS I2 − (d + µ)I −
cYI

mY + I
, (2.1b)

dY
dt

= δY
(
1 −

hY
I

)
, (2.1c)

where t is time, S (t) is the population of susceptible prey, I(t) is the population of infected prey, A is
the recruitment rate of the prey population, d is the natural death rate of the prey population, β is the
force of infection or the rate of transmission, µ is the disease-related death from the infected, Y(t) is the
population of predators, c is the search rate of the predators towards infected prey, δ is the per capita
growth rate of the predators, h is a constant related to the density dependent mortality of the predator
population, and m > 0 is a constant.

The incidence rate in (2.1a) and (2.1b) is chosen here as the nonlinear expression βS I2 in agreement
with Sun [45], who in turn appeals to the justification by Liu et al. [32, 33]. The last term in the right-
hand side of (2.1b) is a ratio-dependent predation term; see, e.g., [29] for further justification of such
expressions. Overall, the right-hand sides of (2.1a) and (2.1b) have been chosen such that they coincide
with the reactive (algebraic, i.e., non-differential) terms of the governing model of [45] (Equations (1a)
and (1b)) of that paper, so that results can in principle be compares. Moreover, the assumption of a
constant recruitment rate A (rather than a per capita growth rate for the prey population) simplifies the
subsequent stability analysis. Furthermore, note that (2.1c), that is the assumption of a logistical growth
rate of the predator population with a carrying capacity proportional to the population size of prey,
coincides with the predator equation [22, Eq. (1)], and that hY/I in that equation is the Leslie-Gower
term [31] which measures the loss in the predator population due to the relative scarcity of the (infected)
prey [23]. An example of a real biological scenario for which (2.1) would be an adequate description is
the “pelican-tilapia” eco-epidemiological model of the Salton Sea mentioned in Section 1.2, where S
and I correspond to the number of susceptible and infected tilapia (fish) and Y to that of the predating
pelicans (birds). In particular, Chattopadhyay and Bairagi [14] and Sarkar et al. [40] argue that in
this scenario the predator only eats infected prey (although later works study variants of the model
advanced in [14] in which the predator also eats susceptible (sound) prey, see [15, 23, 30]).

It is well known that the use of a ratio-dependent terms requires carefully handling situations of zero
denominators. The right-hand sides of the ODE version (2.1) are potentially ill-defined if I(0) = 0.
This issue is treated in [22] as follows: if I(0) = 0 and Y(0) ≥ 0, then (2.1c) is interpreted as implying
that Y(t) = 0 for t > 0 and if I(0) = Y(0) = 0, then (2.1b) is interpreted as implying that I(t) = 0 for
all t. With respect to the PDE version (2.15), we have not encountered any difficulty of division by
zero in our numerical experiments since in all cases we choose the initial datum I(x, 0) > 0 for x ∈ Ω.
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Theorem 1. The system (2.1) has the following equilibrium points:

i) The equilibrium E1 = (A/d, 0, 0) corresponding to the extinction of the epidemic.
ii) The following equilibria in absence of the predator:

E2 =

Aβ +
√

R
2dβ

,
2d(d + µ)

Aβ +
√

R
, 0

 , E3 =

Aβ −
√

R
2dβ

,
2d(d + µ)

Aβ −
√

R
, 0

 ,
where we define R := A2β2 − 4d3β − 8d2βµ − 4dβµ2. These equilibria are feasible if R > 0, which
occurs if β > 4d(d + µ)2/A2.

iii) The following equilibria with presence of the predator:

E4 =

(
A

d + βI2
4

, I4,
I4

h

)
, E5 =

(
A

d + βI2
5

, I5,
I5

h

)
, (2.2)

where I4 < I5 are the solutions of the quadratic equation

αβI2 − βAI + dα = 0, where α = d + µ +
c

m + h
.

They are feasible if

β > 4dα2/A2; (2.3)

if this condition is satisfied, then we have

I4 =
A

2α
−

( A2

4α2 −
d
β

)1/2

, I5 =
A

2α
+

( A2

4α2 −
d
β

)1/2

. (2.4)

2.2. Behavior of the dynamical system

The point E1 corresponds to the extinction of the epidemic. On the other hand, the detailed analysis
in [45] shows that E2 is unstable and E3 is stable. In these states the predator is absent, but we are
especially interested in equilibria in which the predator does participate. To handle the dynamics of
the system around E4 and E5, we first recall that at Ek, k = 4 or k = 5, the stability matrix is given by

J∗(Ek) =


−βI2

k − d −
2c

m + h
− 2d − 2µ 0

βI2
k

2c
m + h

+ d + µ −
cm

(m + h)2 −
ch2

(m + h)2

0 δ/h −δ


=


−βI2

k − d −2α 0

βI2
k α +

ch
(m + h)2 −

ch2

(m + h)2

0 δ/h −δ

 .
A straightforward calculation reveals that

det J∗(Ek) = αδ(d − βI2
k ) for k = 4, 5. (2.5)
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Figure 1. Curves and regions related to the stability of the equilibrium E5 (2.2) of the dy-
namical system (2.1) in the (β, c)-plane, based on the Routh-Hurwitz conditions (2.7) and
with (2.9). The red curve separates region R1, where the feasibility condition for E4 and E5,
(2.3), is not satisfied, from regions R2 to R4, where this condition is satisfied. The green curve
separates region R2, where e1 < 0, from regions R3 and R4, where e1 > 0. The blue curve
corresponds to e1e2− e3 = 0. It separates regions R2 and R3, where e1e2− e3 < 0, from region
R4, where e1e2 − e3 > 0. Since always e3 > 0 (cf. (2.8)), all Routh-Hurwitz conditions (2.7)
are satisfied in R4 only. Thus, for the parameters (2.9), E5 is stable if and only if (β, c) ∈ R4.
A Hopf bifurcation occurs across the blue curve.

For I4 given by the first expression of (2.4), we obtain, after rearranging terms,

det J∗(E4) = αβδ
( A2

4α2 −
d
β

)1/2[A
α
− 2

( A2

4α2 −
d
β

)1/2]
.

Since the term in squared brackets is positive, it follows that det J∗(E4) > 0, and since the entries
of J∗(E4) are real, this means that at least one eigenvalue of J∗(E4) has positive real part. Thus, the
equilibrium E4 is always unstable.

To analyze the stability of E5, we utilize the Routh-Hurwitz criterion. To this end, we write the
characteristic equation of J∗ as

det(J∗ − λI) = 0⇔ λ3 + e1λ
2 + e2λ + e3 = 0, (2.6)

where e1 = − tr(J∗), e2 =
∑3

i=1 Mi, where Mi is the determinant of the matrix obtained by eliminating
row i and column i from J∗, and e3 = − det J∗. Here, the Routh-Hurwitz conditions (cf., e.g., [20,
Sect. 6.4]; see also [50, Th. 2]) mean that there are only roots with strictly negative real parts, and
hence the corresponding state is stable, if and only if

e1 > 0, e3 > 0, and e1e2 > e3. (2.7)
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Figure 2. Plots of quantities (a) e1 on R3 ∪ R4, (b) e2 on R2 ∪ R3 ∪ R4 and (c) γ on R3 ∪ R4.

This criterion is now applied to J∗(E5). From (2.5) for k = 5 we get

det J∗(E5) = αβδ
( A2

4α2 −
d
β

)1/2[
−

A
α
− 2

( A2

4α2 −
d
β

)1/2]
< 0, (2.8)

so we always have e3 > 0 for J∗(E5) wherever E5 is feasible.
The subsequent analysis of e1 and e2, as well as that of the existence and possible type of a Hopf

bifurcation around E5, will be simplified if we fix the parameters

A = 1, µ = 1.8, d = 1, m = 30, h = 0.1, δ = 0.4, (2.9)

where the values of A, µ, and d are those proposed in [45] while the choices of m, h, and δ are assumed
but are comparable with those utilized in [22]. In order identify scenarios of interest for the simulation
of the spatio-temporal model we will only vary the infectious force of the epidemic expressed by the
parameter β, and the search rate c of the predators towards infected prey. The stability of E5 will be
analyzed under variations of β and c only.

To determine suitable choices of β and c, we assume that e1 = e1(β, c), e2 = e2(β, c) and e3 = e3(β, c)
and analyze satisfaction of the Routh-Hurwitz condition (2.7). In addition, and to make the discussion
as short as possible, we utilize numerical evaluation to deduce that e1, e2, and a coefficient function γ
that arises further below, are positive on a relevant (β, c)-region in each case. Combined with the
feasibility condition (2.3) and the fact that e3 > 0 wherever (2.3) holds, this discussion gives rise to
four distinct regions as subregions of the region of the (β, c)-plane where the feasibility condition (2.3),
the first condition in (2.7), and all conditions of (2.7) are satisfied, see Figure 1.

Finally, we demonstrate that a Hopf bifurcation occurs across the curve that separates R3 from R4.
Our reasoning partly follows that of [23, Th. 6]. Figure 1 illustrates that at points where the stability
changes (either from unstable to stable or from stable to unstable), it is the constraint e1e2 > e3 that
changes rather than e1 > 0, where we recall that e3 > 0 is generically satisfied wherever E4 and E5 are
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feasible. Furthermore, for the parameters (2.9) and (β, c) ∈ R := [30, 50] × [0, 20], we also get e2 > 0
wherever E4 and E5 are feasible. (We limit the further discussion to (β, c) ∈ R, and understand that R1

to R4 are subregions of R.)
Let us show that across the curve c 7→ βH(c), which is marked in blue in Figure 1, defined implicitly

by e1(βH(c), c)e2(βH(c), c) − e3(βH(c), c) = 0, a Hopf bifurcation occurs, i.e., we fix c as a parameter
and then consider β as a bifurcation parameter. Clearly, the characteristic equation (2.6) takes the form
(λ2+e2)(λ+e1) = 0 with the three roots λ1 = ie1/2

2 , λ2 = −ie1/2
2 and λ3 = −e1. Thus, in a neighborhood of

(βH(c), c), (2.6) cannot have real positive roots; rather, the roots are of the form λ1 = u + iv, λ2 = u− iv
and λ3 = −φ with φ > 0, and where u, v ∈ R and φ depend on (βH(c), c). It remains to verify the
transversality condition, i.e., (

∂

∂β
Re λ1(β, c)

)∣∣∣∣∣
β=βH(c)

=
∂u(β, c)
∂β

∣∣∣∣∣
β=βH(c)

, 0.

To this end, we substitute λ = λ1 = u + iv into (2.6), equate real and imaginary parts, and calculate
the derivative (see [23]) to obtain the following equations, where u = u(β, c), u′ = ∂u(β, c)/∂β, and
analogously for v, e1, e2, and e3 and quantities ρ = ρ(β, c), σ, τ and ν defined below. This yields

ρu′ − σv′ + τ = 0, σu′ + ρv′ + ν = 0, (2.10)

where

ρ = 3u2 + 2e1u + e2 − 3v2,

σ = 6uv + 2e1v,

τ = u2e′1 + e′2u + e′3 − e′1v2,

ν = 2uve′1 + e′2v.
(2.11)

At β = βH(c), u(βH(c)) = 0 and v(βH(c)) , 0. Since e1 > 0 in a neighborhood of (βH(c), c), it follows
that σ , 0. Applying Cramer’s rule to (2.10) we get

∂u(β, c)
∂c

∣∣∣∣∣
β=βH(c)

= u′(β)|β=βH(c) = −
σν + ρτ

ρ2 + σ2

∣∣∣∣∣
β=βH(c)

. (2.12)

We wish to show that σν + ρτ , 0. Evaluating (2.11) at β = βH(c), we obtain at that state σν + ρτ =

2e2(e1e′2 + e2e′1 − e′3). We already know that e2 > 0 in the region of interest. Furthermore,

e′1 =
∂(βI2

5)
∂β

, e′2 =

(
α + δ −

ch
(m + h)2

)∂(βI2
5)

∂β
, e′3 = αδ

∂(βI2
5)

∂β
;

so that e1e′2 + e2e′1 − e′3 = γ(βH(c), c)∂(βI2
5)/∂β, where we define

γ(β, c) := e1

(
α + δ −

ch
(m + h)2

)
+ e2 − αδ.

For the parameters (2.9), we obtain

γ(β, c) > 0 for all (β, c) ∈ R3 ∪ R4, (2.13)

as we infer from the rightmost plot of Figure 2. (Indeed, γ is positive on a slightly larger subset of R.
However, positivity on R3 ∪ R4 is sufficient for the discussion of the bifurcation across the boundary
between R3 and R4.) Furthermore, we observe that

∂(βI2
5)

∂β
=

A2

2α2 +
A
α

( A2

4α2 −
d
β

)1/2

+
Aβ
2α

( A2

4α2 −
d
β

)−1/2 d
β2 > 0. (2.14)
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Combining (2.13) and (2.14), we deduce from (2.12) that

∂u(β, c)/∂c|β=βH(c) < 0,

which proves the transversality condition. Thus, a Hopf bifurcation occurs across c 7→ βH(c). We have
conducted this analysis for E5 as we are interested in the dynamics around an equilibrium when all
three species are present. To make one of the eigenvalues of J∗(E5) zero, we must have det J∗(E5) = 0,
but here we know that det J∗(E5) < 0 wherever E5 is feasible. In particular, it cannot happen that
J∗(E5) has a complex conjugate pair of purely imaginary eigenvalues with the third one being zero.
Thus, the system does not experience a supercritical bifurcation, and in particular (2.1) does not admit
time periodic solutions. The latter property is a mere consequence of det J∗(E5) < 0, which has been
established symbolically and is therefore valid for any choice of parameters (instead of (2.9)) and (β, c)
for which E5 is feasible.

2.3. Spatio-temporal predator-prey model

The ODE model (2.1) exhibits a rich solution behaviour, which motivates us to analyze a spatial
variant that in turn generalizes the spatio-temporal hyperbolic-parabolic predator-prey model studied
by Colombo and Rossi [16]. Following [11, 16], we then replace (2.1c) by a non-local spatio-temporal
PDE that contains a term describing the spatial movement of predators towards infected prey, and equip
(2.1a) and (2.1b) with diffusion terms. The resulting spatio-temporal model is given by

∂S
∂t
− DS ∆S = A − dS − βS I2, (2.15a)

∂I
∂t
− DI∆I = βS I2 − (d + µ)I −

cYI
mY + I

, (2.15b)

∂Y
∂t

+ ∇ · FY
(
S , I,Y

)
= δY

(
1 −

hY
I

)
, (2.15c)

where ∇· denotes the (spatial) divergence operator. Here x and y are the space variables, ∆ = ∂2/∂x2 +

∂2/∂y2 is the two-dimensional Laplace operator, and DS and DI are the diffusion coefficients, i.e. we
assume standard linear diffusion for the prey compartments S and I.

The right-hand sides of (2.15) are identical to that of the non-spatial ODE model (2.1), i.e., this
model is recovered if all divergence terms on the left-hand sides are set to zero and variables are
considered to depend on t only, and the unknowns represent suitably scaled densities.

2.4. Convective fluxes and diffusion matrix

The flux FY appearing in the left-hand side of (2.15c) is assumed to have the form FY(I,Y) =

κYYV(I), where κY ≥ 0 is constant and

V(w) =
∇(w ∗ η)√

1 + ‖∇(w ∗ η)‖2
(2.16)

is the non-local unscaled velocity function [16]. Here η denotes a radial convolution kernel with radius
ε, i.e., η is a piecewise smooth function such that

η(x) = η(‖x‖2), η(x) ≥ 0, η(x) = 0 for ‖x‖ > ε, and
∫
R2
η(x) dx = 1, (2.17)
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i.e., for any function w defined on Ω × T and x ∈ Ω such that Bε(x) := {y ∈ R2 : ‖y − x‖ < ε} ⊂ Ω, we
have

(w(·, t) ∗ η)(x) =

∫
Bε(x)

w(y, t)η(x − y) dy =

∫
R2

w(y, t)η(x − y) dy

(with slight modifications for points x with dist(x, ∂Ω) < ε.) Since ∇(w ∗ η) = w ∗ ∇η, the velocity
V(w) indeed depends (non-locally) on w and not on its gradient.

Summarizing, we obtain Fc(u) =
(
0, 0, FY(I,Y))T and D = diag(DS ,DI , 0). The vector s(u) =

(s1(u), s2(u), s3(u))T is given by the right-hand sides of (2.15). The system (2.15) is considered on
Ω × T along with the initial condition

u(x, 0) = u0(x), x ∈ Ω, (2.18)

where u0 is a given function, and zero-flux boundary conditions(
Fc(u) −D∇u

)
· n = 0, x ∈ ∂Ω, t ∈ (0,T ], (2.19)

where n is the unit exterior normal vector to the boundary ∂Ω of Ω.

3. Numerical method

3.1. Spatial discretization of local convection and diffusion terms

We take Ω = [0, L] × [0, L] and use a Cartesian grid with nodes (xi, y j), i, j = 1, . . . ,M, with
xi = yi = (i − 1/2)h, h = L/M. We discretize ∇ · Fc(u) by WENO finite differences and ∆u by
the standard second-order scheme with a five-point stencil to get a spatial semi-discretization of (1.1)
for a 3 × M × M-matrix v(t) of unknown approximations v`,i, j(t) ≈ u`(xi, y j, t) for i, j = 1, . . . ,M and
` = 1, . . . , 3. This spatial semi-discretization is given by

v′ = −∇h · F̃
c
(v) +Bv + S(v). (3.1)

Applying a suitable IMEX-RK scheme to (3.1) yields the final fully-discrete scheme (see Section 3.4).
Here ∇h · F̃

c
(v) is the discretization of ∇ · Fc(u), to be defined in Section 3.3, and

(Bv)`,i, j = µ`(∆hv`)i, j, i, j = 1, . . . ,M, ` = 1, . . . , 3 (3.2)

denotes the discretization of the diffusion terms. Here v` denotes the M × M submatrix given by
(v`)i, j = v`,i, j and ∆h is the approximation of the standard two-dimensional Laplacian operator with
Neumann boundary conditions. Furthermore, S(v) is the 3 × M × M-matrix with components

S(v)`,i, j = s`(v`,i, j), i, j = 1, . . . ,M, ` = 1, . . . , 3,

with corresponding submatrices S`(v), given by S`(v)i, j = s`(v`,i, j).
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3.2. Discretization of the convolutions

The following identity arises from (2.16) if we take into account that ∇(w ∗ η) = w ∗ ∇η:

V(w) =
w ∗ ν√

1 + ‖w ∗ ν‖2
, ν =

(
∂η

∂x
,
∂η

∂y

)
. (3.3)

The corresponding convolutions w ∗ ∂η/∂x and w ∗ ∂η/∂y are calculated approximately on the discrete
grid via a composite Newton-Cotes quadrature formula, such as the composite Simpson rule.

Since Bε(0) ⊆ [−rh, rh]2, r = dε/he < M, and according to boundary conditions, w is extended to
the exterior of Ω by reflection, e.g. by setting w(−x, y) = w(x, y), (x, y) ∈ Ω, we obtain

(w ∗ χ)(xi, y j) ≈
r∑

p=−r

r∑
q=−r

βp,qw(xi−p, y j−q), βp,q = h2αpαqχ(xp, yq), (3.4)

where αp and αq are the coefficients in the quadrature rule (e.g., for the composite Simpson rule, α =

(1, 4, 2, 4, . . . , 2, 4, 1)). Consequently, the approximation (3.4) for W = (wi, j) ∈ RM×M, wi, j ≈ w(xi, y j),
is given by

(w ∗ χ)(xi, y j) ≈ (W ∗h β)i, j :=
r∑

p=−r

r∑
q=−r

βp,qw[i−p]M ,[ j−q]M , (3.5)

where we define

[i]M :=


−i + 1 for −r + 1 ≤ i ≤ 0,
i for 1 ≤ i ≤ M,
2M + 1 − i for M + 1 ≤ i ≤ M + r.

The discrete approximation of V(w) in (3.3) is then given by

Vh(W) =
W ∗h ν√

1 + ‖W ∗h ν‖2
.

Since r ≈ ε/h = εM/L, the computational cost of this discrete convolution is M2(2r + 1)2 ≈

4ε2M4/L2, which can be very high for large M. This cost can be substantially reduced to O(M2 log M)
by performing a convolution with periodic data by Fast Fourier Transforms (FFTs) (see [27, 43]). To
achieve this goal, we define from W = (wi, j) ∈ RM×M a matrix W̃ = (w̃i, j) ∈ R2M×2M such that

w̃i, j = w[i]M ,[ j]M , i, j = 1, . . . , 2M

and use the notation [i]′2M = mod (i − 1, 2M) + 1, i.e., [i]′2M = i + 2kM, with k being the integer such
that 1 ≤ [i]′2M ≤ 2M. It is then readily checked that

w[i]M ,[ j]M = w̃[i]′2M ,[ j]′2M
, i, j = −r + 1, . . . ,M + r.

Therefore (3.5) for i, j = 1, . . . ,M can be rewritten as

(W ∗h β)i, j =

r∑
p=−r

r∑
q=−r

βp,qw̃[i−p]′2M ,[ j−q]′2M
. (3.6)

The convolution on the right-hand side of (3.6) can be performed by FFTs applied to the (2M) × (2M)
matrix W̃. To save further computational costs, the FFT of the kernel βp,q is performed only once, son
each convolution entails two two-dimensional FFT of (2M) × (2M) matrices and a product of 4M2

numbers, with an overall computational cost of O(M2 log M).
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3.3. Discretization of the convective term

The convective flux for the prey compartments (S and I, corresponding to ` ∈ {1, 2}) is zero and for
the predator (species Y , ` = 3) is given by Fc

3(u) = u3(κ3V(u2)). To discretize its divergence ∇ · Fc
3(u)

for the approximation v, we first approximate the convolution terms as expounded in Section 3.2 to
obtain

F̃c
3(v)i, j = v`,i, j

(
κ3Vh (v2)i, j

)
∈ R2.

We introduce the notation ( f x
i, j, f y

i, j) := F̃c
`(v)i, j, where we have dropped the index ` in f x

i, j etc. to obtain
clearer expressions. Our purpose is to use a fifth-order WENO finite difference discretization [26, 34,
42] of ∇ · Fc

`(u) for which

∇ · Fc
`(u)(xi, y j) ≈ ∇h · F̃

c(v)`,i, j :=
f̂ x
i+1/2, j − f̂ x

i−1/2, j

h
+

f̂ y
i, j+1/2 − f̂ y

i, j−1/2

h

for suitable numerical fluxes f̂ x
i+1/2, j, f̂ y

i, j+1/2 obtained by WENO reconstructions of split fluxes. For the
numerical flux in the x-direction, the Lax-Friedrichs-type flux splitting f x,± is given by

f x,±
i, j =

1
2
(
f x
i, j ± α

xv`,i, j
)
, αx = max

i, j

∣∣∣Vx
h(v)i, j

∣∣∣,
with an analogous formula for f y,±

i, j . If R± denotes fifth-order WENO upwind biased reconstructions
and we use matlab-type notation for submatrices, then

f̂ x
i+1/2, j = R+( f x,+

i−2:i+2, j
)

+ R−
(
f x,−
i−1:i+3, j

)
,

f̂ y
i, j+1/2 = R+( f y,+

i, j−2: j+2
)

+ R−
(
f y,−
i, j−1: j+3

)
.

3.4. Implicit-explicit Runge-Kutta schemes

To specify the IMEX-RK integrators for (3.1), we rewrite (3.1) as (1.2), where

Φ∗(v) := −∇h · F̃
c
(v) + S(v), Φ(v) := Bv. (3.7)

The diffusive part Φ(v) is handled by an implicit s-stage diagonally implicit (DIRK) scheme with
coefficients A ∈ Rs×s, b, c ∈ Rs, in the common notation, where A = (ai j) with ai j = 0 for j > i.
For the term Φ∗(v) we employ an s-stage explicit scheme with coefficients Â ∈ Rs×s, b̂, ĉ ∈ Rs and
Â = (âi j) with âi j = 0 for j ≥ i. In our simulations, we limit ourselves to the second-order IMEX-RK
scheme H-DIRK2(2,2,2) that corresponds to the pair of Butcher arrays

c A
bT =

1/2 1/2 0
1/2 0 1/2

1/2 1/2

,
ĉ Â

b̂
T =

0 0 0
1 1 0

1/2 1/2
.

Alternative choices are provided and discussed in [5, 6, 38]. If applied to the equation (1.2), the IMEX-
RK scheme gives rise to the following algorithm (see [38]).
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Algorithm 3.1.

Input: approximate solution vector vn of (1.2) for t = tn

for p = 1, . . . , s

if p = 1 then

v̂(1)
← vn, v̄(1) ← vn

else compute v̂(p) and v̄(p) from the known values K1, . . . , Kp−1:

v̂(p)
← vn + ∆t

p−1∑
j=1

âp jK j, v̄(p) ← vn + ∆t
p−1∑
j=1

ap jK j

endif
solve for Kp the linear system

Kp = Φ∗
(
v̂(p)) + Φ

(
v̄(p) + ∆tappKp

)
(3.8)

endfor

vn+1 ← vn + ∆t
s∑

j=1

b jK j

Output: approximate solution vector vn+1 of (1.2) for t = tn+1 = tn + ∆t.

To solve the linear equation (3.8) for Kp, in view of (3.7) we rewrite it as

(
I − ∆tappB

)
Kp = b(p), b(p) := Φ∗

(
v̂(p)) +Bv̄(p), (3.9)

where I denotes the identity operator for 3 × M × M matrices. From the definition of the matrix B in
(3.2) and from the definition of Φ∗ in (3.7), if we equate the ` submatrices along the first dimension of
both sides of (3.9) we get

(
IM×M − ∆tappµ`∆h

)
(Kp)` = −∇h · F̃

c
`(v̂

(p)) + S`(v̂(p)) + µ`∆hv̄(p)
` , ` = 1, 2, 3, (3.10)

where IM×M is the M × M identity operator and, e.g., (Kp)` is the ` submatrix of Kp along the first
dimension, i.e., ((Kp)`)i, j = (Kp)`,i, j. If µ` = 0 (for ` = 3), then

(Kp)` = −
(
∇h · F̃

c(v̂(p))
)
` + S`(v),

otherwise (3.10) is solved by Fast Cosine Transforms (due to boundary conditions), which entails a
nearly optimal computational cost of O(M2 log M).

4. Numerical results

We wish to compare the ODE model (2.1) with the spatio-temporal model (2.15) in different sce-
narios.
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Figure 3. Numerical solution of the ODE model (2.1) with parameters (2.9) and (4.1), start-
ing from S (0) = 0.2, I(0) = 0.3, and Y(0) = 0.3. The blue curve in the right plot is the so-
lution curve in (S , I,Y)-space. The other curves represent projections into the (S , I)-, (Y, S )-
and (Y, I)-planes.

4.1. Solution to the ODE model

For this model we consider parameter values (2.9) along with

(β, c) = (42, 5) ∈ R4, (4.1)

in accordance with the region of stability shown in Figure 1 (these parameters will be varied within
the numerical solution of spatio-temporal models). For the parameters (2.9) and (4.1), we obtain the
following equilibria of Theorem 1 (besides E1 = (1, 0, 0)) where the predator is absent:

E2 = (0.7516611, 0.0886924, 0), E3 = (0.2483389, 0.2684504, 0), (4.2)

as well as the two points

E4 = (0.7013155, 0.1006989, 1.0069894), E5 = (0.2986844, 0.2364426, 2.3644263).

From Section 2.2 we know that all eigenvalues of J∗(E5) have negative real part, and that the equilib-
rium E4 is unstable. As a consequence, whenever predators and prey are present, the solution orbits of
(2.1) approach the stable equilibrium E5, as is illustrated in Figure 3.

4.2. Solution to the spatio-temporal model

In Examples 1 to 10 we select the spatial domain Ω = [0, L] × [0, L] with L = 100. For the
spatial discretization we use M = 400, such that ∆x = L/M = 0.25. For the time discretization
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we employ Algorithm 3.1. The parameters ε = 4 and κY = 1 are chosen in the non-local term,
and the diffusion constants are chosen as DS = 6 and DI = 1, corresponding to the assumption that
infected individuals of the prey population exhibit a lower degree of mobility than their susceptible
counterparts. To observe the effect of the non-local movement of predators in the spatio-temporal
dynamics of the prey, we consider two cases: Case I, where the values of β and µ in combination
with DS and DI have been chosen such that they lie in the Turing region (see [45, Example 6]), and
Case II, where this combination is not in the Turing space. The initial condition for S and I is always
a spatially distributed random perturbation of the respective values 0.3 and 0.2. For both cases, three
scenarios display three different initial conditions of the distributions of the predators: (a) absence of
predators, (b) a “triangular” initial condition for predators to describe how predators invade a region
that is initially only occupied by the prey, and (c) a random initial distribution of the predators. These
three scenarios are illustrated in Figure 4. The simulations are carried out until the non-local system
(2.15) attains a stable non-homogeneous steady state.
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Figure 4. Examples 1 to 10: initial data S 0(x, y), I0(x, y), and Y0(x, y) (a) for Examples 1, 4,
and 7, (b) for Examples 2, 5, and 8, (c) for Examples 3, 6, 9, and 10.

Furthermore, we wish to compare the numerical results with the predictions obtained using the the
non-spatial ODE model. To this end we determine for each compartment X ∈ {S , I,Y} and time instants
tn = n∆t the following quantity:

I(X) = I(X, tn) := h2
N∑

i, j=1

Xn
i, j ≈

∫
Ω

X(x, tn) dx, (4.3)

which represents the approximate total number in Ω of individuals of compartment X at time tn. We
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recall that in the PDE model, the unknowns X ∈ C are densities, and so an integration over Ω is neces-
sary to make results comparable with those of a model that predicts the total number of individuals in
each compartment (as does the dynamical system (2.1)).

Example 1: Case I in the absence of the predator.

Here, only the equations (2.15a), (2.15b) are considered, with the parameters given by (2.9) and
(4.1). The values of β and µ in combination with DS = 6 and DI = 1 have been chosen such that
they lie in the Turing region, see [45, Example 6], which means that the formation of a permanent
spatial pattern by the standard Turing mechanism in reaction-diffusion systems (see, e..g., [36]) is
expected. In our simulation the initial conditions for S and I are those of Figure 4 (a). In Figure 5
we display the numerical solution at three different times. We observe the formation of a pattern of
spots similar to that observed in [45]. This distribution will remain constant over time. Moreover,
Figure 6 shows the integral quantities I(S ), I(I), and wherever appropriate I(Y), for Examples 1 to 6.
For Example 1, and consistently with the nearly stationary spatial pattern, we observe (in Figures 6 (a)
and (b)) that I(S ) and I(I) become practically stationary after very short time, and assume values
close to L2 × 0.2483389 ≈ 2483 and L2 × 0.2684504 ≈ 2684 that would be obtained if the solution
were equal to the stable equilibrium E3 (see (4.2)) on the whole domain. In this sense, in this example
the temporal behavior of the model is consistent with (2.1).
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Figure 5. Example 1: numerical solution of (2.15) in the absence of predators with param-
eters (2.9) and (4.1) at three different times. The initial datum given in Figure 4 (a) leads to
the formation of a pattern in the domain.
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Figure 6. Examples 1 to 6: integral quantities (4.3).

Example 2: Case I with a “triangular” initial distribution of the predator.

Here we introduce predators through the “triangular” initial condition of Figure 4 (b). All other
parameters are the same as in Example 1. In Figure 7 we display the dynamics of model (2.15). The
convective term in (2.15c) defined in terms of the non-local velocity function (2.16) allows the move-
ment of the predators to places where infective prey are present. At simulated time t = 30 we observe
that the distribution of prey varies in comparison with Example 1 in places where predators are present.
At t = 90 we observe that in places where the predators are absent, preys are distributed in forming
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spots as in Example 1, however, where predators are present, these patterns take the form of stripes. At
t = 200, predators are present in the whole domain, and this has motivated that the distribution of the
prey in the domain varies drastically from its natural distribution without predator (Example 1). This
distribution will remain constant over time. The corresponding plots of I(S ) and I(I) (Figure 6 (c))
and I(Y) indicate a growth of the predator population over a very long period of time. Shortly be-
fore t = 200 these quantities become constant. It is worth noting that while I(S ) and I(I) tend to
values that are close to L2 times the first and second component of E5, namely 2986.8 and 2364.4,
respectively, the limit value of I(Y) exceeds L2 times the Y-component of E5, that is 23644.3, by more
than a factor of two.
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Figure 7. Example 2: numerical solution of (2.15) with parameters (2.9) and (4.1) at three
different times. The initial datum given in Figure 4 (b) leads to the formation of patterns
which are different from those obtained in Figure 6.
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Figure 8. Example 3: numerical solution of (2.15) with parameters (2.9) and (4.1) at three
different times. The initial datum given in Figure 4 (c) leads to the formation of patterns
which are different from those obtained in Figures 6 and 7.
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Figure 9. Example 4: numerical solution of (2.15) with parameters (2.9) and (4.4) at three
different times. The initial datum given in Figure 4 (a) leads to a constant equilibrium in the
whole domain.
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Figure 12. Example 7: numerical solution of (2.15) with parameters (2.9) and (4.7) at three
different times. The initial datum given in Figure 4 (a) leads to a constant equilibrium in the
whole domain.
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Figure 10. Example 5: numerical solution of (2.15) with parameters (2.9) and (4.4) at three
different times. The initial datum given in Figure 4 (b) leads to the formation of patterns that
contrast those observed in Figure 9.
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Figure 11. Example 6: numerical solution of (2.15) with parameters (2.9) and (4.4) at three
different times. The initial datum given in Figure 4 (c) leads to the formation of patterns that
contrast those observed in Figure 9 and Figure 10.
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Figure 13. Examples 7 to 10: integral quantities (4.3).
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Figure 14. Example 8: numerical solution of (2.15) with parameters (2.9) and (4.7) at three
different times. The initial datum given in Figure 4 (b) leads to the formation of patterns
that contrast those observed in Figure 12. These patterns are different from those shown
in Figure 10.
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Figure 15. Example 9: numerical solution of (2.15) with parameters (2.9) and (4.7) at three
different times. The initial datum given in Figure 4 (c) leads to the formation of patterns that
contrast those observed in Figure 12 and Figures 10 and 14.
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Example 3: Case I with a random initial distribution of the predator.

Here we consider a random initial condition for predators with the same parameters of Example 1.
The initial condition is shown in Figure 4 (c). In Figure 8 we display the dynamics of the model with
this initial condition. At simulated time t = 30 we observe that stripes and some spots patterns emerge
mixed in the distribution of each species. After the stripe patterns form, they grow steadily with time
until they reach a certain arm length, and the spatial patterns become distinct at t = 200. It is observed
that these stripe patterns are not similar to those obtained in Example 1, instead these patterns in form
of stripes or filaments are very similar to those observed in Example 2. Furthermore, Figures 6 (e)
and (f) indicate that I(S ), I(I) and I(Y) quickly attain steady states, with final values similar to those
of Example 2.

Example 4: Case II in the absence of the predator.

Here, we consider absence of predators like in Example 1 and we use here and in Examples 5 and 6
the parameter values

(β, c) = (46, 4) ∈ R4. (4.4)

In this case the parameters β and µ together with the diffusion constants are not in the Turing space.
The steady states according to Theorem 1 are now, besides E1 = (1, 0, 0),

E2 = (0.7820731, 0.0778310, 0), E3 = (0.2179270, 0.2793118, 0), (4.5)
E4 = (0.7510048, 0.0848976, 0.8489759), E5 = (0.2489953, 0.2560630, 2.5606299). (4.6)

Considering the initial conditions of Figure 4 (a), we obtain in this case that no patterns are formed
and the system quickly arrives at a constant equilibrium (uniform distribution for S and I in whole
domain), which is maintained over time, as can be observed in Figure 9. This figure, as well as
Figures 6 (g) and (h), indicate that the global equilibrium is E3 given by (4.5).

Example 5: Case II with a “triangular” initial distribution of the predator.

In this case we consider the same scenario as in Example 2, namely the triangular initial condition
of Figure 4 (b), but utilize the parameters (4.4) instead of (4.1). In this case, as in Example 2, preda-
tors are heading towards the infected prey, and as is shown in Figure 10, the whole domain becomes
successively filled with a pattern formed of stripes. Note that in regions occupied by the prey before
the arrival of predators the solution is constant (see Example 4), and in particular does not exhibit any
formed pattern (in contrast to Example 2). In a sense this scenario illustrates how the model (2.15),
under the appropriate choice of parameters, predicts the formation of spatial patterns among the prey
upon arrival of the predators. Furthermore, we observe that a “front” of predators is moving into the
domain initially occupied by prey only, which seems to move at a lower velocity than in Example 2.
It is worth noting that the final distribution of prey corresponds to total S and I populations close to
L2 times the corresponding entries of E5 given by (4.6), while as in previous cases the final population
of predators is much higher than L2 times the Y-component of E5.
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Example 6: Case II with a random initial distribution of the predator.

This case is the analogue of Example 2, namely we impose the initial condition of Figure 4 (c).
In Figure 11 we display the dynamics of the model with this initial condition. We observe that at
simulated time t = 50, some stripes and spots emerge as patterns in the distribution of each species.
Comparing the successive solutions for t = 50, t = 100 and t = 200, we observe that once the stripes
form, they grow steadily in time incorporating “spots”, until they reach a certain arm length, and the
spatial patterns become slightly distinct at t = 200 since at this time there are strips and spots. It is
observed that these patterns differ from those obtained in Example 5, where only stripe-like patterns
are formed. The observations corresponding to the evolution of I(S ), I(I) and I(Y) are analogous to
those of Example 3.
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Figure 16. Example 10: variation of the parameter c for β = 48, showing the numerical
solution at t = 50 for (left) c = 4, (middle) c = 6 and (right) c = 10. All the remaining
parameters are as in (2.9). The initial datum is shown in Figure 4 (c).
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Figure 17. Example 11: variation of the spatial discretization ∆x = L/M of the numerical
solution at t = 15 on a domain of side length L = 25.
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Figure 18. Example 12: effect of the variation of convolution radius ε on the numerical
solution at t = 15 on a domain of side length L = 25.
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Figure 19. Example 12: integral quantities (4.3).

Example 7

Here and in Examples 8 and 9 we use the values

(β, c) = (46, c = 10) ∈ R4. (4.7)

The equilibrium points are E1 = (1, 0, 0), E2 and E3 given by (4.5), and

E4 = (0.6916269, 0.984517, 0.9845173), E5 = (0.3083731, 0.2208100, 2.2081005).

The integral quantities for this case and Examples 8 to 10 are plotted in Figure 13.
As in Example 4, the parameters β and µ together with the diffusion constants are not in the Turing

space. Considering the initial condition of Figure 4 (a), in this case no patterns are formed and the
system rapidly tends to a constant equilibrium which is maintained in time, see Figure 12. For this
case we observe a behavior similar to that of Example 4.

Example 8

This case is based on the same initial “triangular” scenario (Figure 4 (b)) as Examples 2 and 5.
The numerical solution (Figure 14) shows that the predators are heading towards the infected prey,
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and for t = 50 and t = 150 we observe that the distribution of the prey varies in comparison with
the uniform distribution of Example 7 in those places were the predators are present. The final spatial
configuration is marked by spots and stripes for the prey as well as for the predators, and remains in
time. However, the structure of patterns that are formed differs from the results of Example 5. It is
interesting to note that the stripes visible at t = 600 are still roughly aligned with the original “front”
of predators separating the triangular region from the rest of the domain. The conclusions concerning
the evolution of I(S ), I(I) and I(Y) (see Figure 13 (c) and (d)) are similar to those for Example 5.

Example 9

We now consider an analogue of Examples 3 and 6 corresponding to the initial configuration of
Figure 4 (c). In Figure 15 we display the dynamics of the model with this initial condition. At t = 50
we observe that some stripes and spots patterns emerge mixed in the distribution of each species. The
pattern distribution is maintained over time after its formation. It is observed that these patterns differ
from those obtained in Examples 5, 6, and 8. As in Examples 3 and 6, the quantities I(S ), I(I)
and I(Y) very quickly attain constant values (see Figures 13 (e) and (f)).

Example 10: Effect of varying parameter c.

In this example, a constant value is considered for β = 48 and in combination with the three different
values c = 4, c = 6 and c = 10 (all pairs (48, c) belong, again, to R4, see Figure 1). For these three
pairs a variation is obtained in the formation of patterns for the different values of c. The initial datum
is given by Figure 4 (c). In Figure 16 the corresponding numerical results are shown. It turns out that
with increasing c the species tend to form more filament-like rather than spot-like spatial structures.
Moreover, there is a marked difference in behavior of I(S ), I(I) and I(Y), as can be inferred from
Figures 13 (g) to (l). Note that the steady-state value of I(I) decreases with increasing c, as does the
steady-state value of I(Y).

4.3. Convergence test and effect of the choice of ε

In Example 11, we investigate the sensitivity of (2.15) to the variation of discretization parameter
∆x = L/M. We take L = 25 and the model parameters (2.9), (4.4) as in Examples 4 to 6. The initial
datum is a random distribution (similar to Figure 4 (c)) defined for a 50 × 50 discretization, which is
also utilized for finer discretizations with M = 100, 200, and 400, so the initial condition is exactly the
same in all cases. We compute the solution at time t = 15 until we obtain a steady state. The results are
displayed in Figure 17. It is observed that the resolution in the solution is improved as ∆x is reduced,
and that the steady-state solution is apparently the same (modulo, of course, sharpness of resolution)
for all values of M. These results do not provide a rigorous convergence proof but indicate that the
numerical simulator is reliable.

Finally, in Example 12 we utilize the same scenario as in Example 11, and now fix the spatial
discretization M = 400 but vary the parameter ε, that is the radius of the convolution kernel of the
non-local velocity function (see (2.17)). The corresponding results are given in Figures 18 and 19. We
observe that the results for the prey compartments S and I are practically the same for all values of ε
considered, while the prey distribution depends appreciably on ε. As ε decreases, the regions in which
predators concentrate become smaller and the densities become higher. Moreover, Figures 19 (b), (d),
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(f), and (h) indicate a decrease of the steady state value of I as ε is decreased.

5. Conclusions

We have shown that a relatively simple three-species model can produce complex spatio-temporal
patterns of predators and prey. As is stated in Section 1.1, the treatment combines the spatio-temporal
epidemic model of [45], the non-spatial three-species predator-prey model analyzed in [22], the non-
local velocity function introduced in [16] and the numerical method developed in [11]. The numerical
method is not fully analyzed herein, and certainly leaves potential for further improvements. For in-
stance, its accuracy deserves further investigation particularly to establish that its order of convergence
corresponds to its design order. Further, we use a second-order spatial discretization of the Laplacian
and a second-order time-stepping, which limit the high-order accuracy of the fifth-order WENO spatial
semidiscretization. Nevertheless, on the basis of our (limited) evidence of robustness of the scheme
(provided by Examples 11 and 12 along with the fact that numerical solutions of Examples 1, 4 and 7
are consistent with those of [45], where, however, the domain Ω has slightly different dimensions), the
numerical results allow us to draw some conclusions and conjectures about solutions of (2.15). Let us
first point out that long-time stable patterned configurations obtained in our numerical experiments are
formed by stripes. This contrasts with the results in [16] obtained for a predator-prey model with one
single prey species only, where the system tends to an asymptotic state with regular arrangements of
spots of high predator concentrations, in agreement with the radial structure introduced by the non-local
velocity function and where the diffusion caused by the Laplacian in the prey equation counterbalances
the first-order non-local differential operator in the predator equation [16]. A similar tendency was ob-
served in some scenarios of the eight-compartment epidemiological model studied in [11], where male
individuals are supposed to move non-locally in response to the sampled density of their female coun-
terparts. Furthermore, it is calling to attention that in our Example 12, the dominant mechanism of
pattern formation seems to be the interaction between susceptible and infected prey, since the solution
(see Figure 18) for the prey compartments S and Y is practically independent of ε. That the effect of
predator location on the formation of the prey pattern should be weak, at least for the parameters (2.9)
and (4.4), can probably be explained by the relative smallness of the predation term on the right-hand
side of (2.15b). Finally, it would be interesting to investigate whether the invasion of predators into
a domain initially occupied by prey solely, as in Examples 2, 5 and 8, can possibly be modeled by
simpler, spatially one-dimensional version of (2.15). Clearly, a more in-depth mathematical analysis
to describe the mechanisms that compel these and other phenomena is necessary.

With respect to further extensions, we mention that the spatio-temporal approach could also be
applied to the model by Greenhalgh et al. [23] that generalizes (2.1) and [22] in the sense that the
assumption that the predator eats infected prey only is replaced by the assumption that the susceptible
and infected populations are both exposed to the predator but to varying degrees. Another model variant
whose predictions should be compared with the findings of the present work arises from replacing the
constant recruitment rate A of susceptible prey (see (2.1a) or (2.15a)) by a per capita growth rate,
for instance by a logistic growth term as is done in [13, 14, 15, 23, 22, 25, 30, 40]. Concerning
the numerical scheme, further analysis could compare results with higher-order discretizations of the
diffusion operator and time-stepping scheme.
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