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Abstract: In the present paper convergence dynamics of one tumor-immune-virus model is examined
with help of the localization method of compact invariant sets and the LaSalle theorem. This model
was elaborated by Eftimie et al. in 2016. It is shown that this model possesses the Lagrange stability
property of positive half-trajectories and ultimate upper bounds for compact invariant sets are obtained.
Conditions of convergence dynamics are found. It is explored the case when any trajectory is attracted
to one of tumor-only equilibrium points or tumor-free equilibrium points. Further, it is studied ultimate
dynamics of one modification of Eftimie et al. model in which the immune cells injection is included.
This modified system possesses the global tumor cells eradication property if the influx rate of immune
cells exceeds some value which is estimated. Main results are expressed in terms simple algebraic
inequalities imposed on model and treatment parameters.

Keywords: tumor model; convergence dynamics; localization; compact invariant set; tumor-free
equilibrium point; tumor-only equilibrium point

1. Introduction

The elaboration of mathematical models that describe interactions between cancer cells and the
immune system is an actively developing field in mathematical medicine. One of the important goals
of this modeling is to analyze the ultimate dynamics which is necessary for monitoring the long-
term tumor dynamics and, in the most optimistic case, for the creation of tumor eradication algo-
rithms as well. Oncolytic virotherapy of cancer attracts attention of many researchers, see e.g. papers
[1, 2, 3, 4, 5, 6, 8, 14] and so on. Eftimie et al. in [5] described and studied the seven-dimensional
model characterizing behavior of the cancer population in the case when the dual immunization pro-
tocol, by vaccine viruses and oncolytic viruses, is applied. They obtained local stability conditions
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for equilibrium points of their model and numerically investigated multi-stability phenomenon which
may exist in the case of four types of equilibrium points. Later, in [6], Eftimie et al. presented the
five-dimensional system which is obtained by a simplification of the model from [5]. This system was
derived from an experimental protocol of the paper [3] and can be written as

·
x1 = rx1

(
1 −

x1 + x2

κ

)
− a1

x1x5

b1 + x1
− a2

x1x4

b2 + x4
(1.1)

·
x2 = a1

x1x5

b1 + x1
− δx2 − a2

x2x4

b2 + x4
·
x3 = p1

x3x5

b3 + x5

(
1 −

x3

m

)
·
x4 = p2

x3x5

b3 + x5
− a3x4 − a4x1x4 + σ

·
x5 = δβx2 − γx5.

Below the system (1.1) is considered on the nonnegative orthant R5
+,0 and it is denoted by x1/x2/x3

/x4/ x5 the density of uninfected tumor cells/ infected tumor cells/ memory cells/ effector immune cells/
oncolytic (Vesicular Stomatitis) virus particles (OVPs) correspondingly. Parameters are supposed to
be positive excepting σ, σ ≥ 0, and are defined as follows: r is proliferation rate for uninfected tumor
cells; κ is carrying capacity for tumor cells; a1 is infection rate of tumor cells with the oncolytic virus;
b1 is half-saturation constant for the tumor cells infected with the oncolytic virus; δ is rate at which
the oncolytic virus kills the tumor cells; a2 is lysis rate of tumor cells (infected and uninfected) by the
immune cells; b2 is half-saturation constant for the effector cells that support half the maximum killing
rate; p1 is proliferation rate of memory cells following secondary encounter with tumor antigens car-
ried by virus particles; b3 is half-saturation constant of viral antigens that induce half the maximum
proliferation rate of immune cells; m is carrying capacity for memory cells; p2 is rate at which memory
cells become effector cells following secondary encounter with tumor antigens carried by virus parti-
cles; effector cells die at rate a3; a4 is inactivation rate of effector immune cells by tumor cells; β is
number of OVPs released from an infected cell, capable of forming plaques; γ is decay rate for the
concentration of OVPs in the blood; σ is the influx rate into the lymphoid tissue at which the naive
cells become effector cells, see [5]. It is pointed out that σ has sufficiently small values and may be
neglected, [6]. In this paper it is assumed that the rate σ reflects the presence of the influx of immune
cells from the external source and the dependence of global behavior of (1.1) is explored with a change
in σ.

Authors of [6] studied only the case σ = 0. They found equilibrium points and performed local sta-
bility analysis. As well, authors of [6] fulfilled numerical studies transient and asymptotic behavior of
the system which are based on using bifurcation diagrams. In particular, they showed the existence of
periodic orbits and a chaotic attractor for some values of parameters. Nevertheless, the rigorous explo-
ration of long time-dynamics is of interest for better understanding potentialities of cancer virotherapy
described by equations (1.1).

The purpose of this paper and its novelty consist in studies of the case of convergence dynamics of
(1.1), with σ ≥ 0. In particular, conditions are found under which every trajectory in the nonnegative
orthant tends to one of equilibrium points. It is worth to remind that systems with convergence dynam-
ics have been investigated in articles of Hirsch; R.A. Smith; Li and Muldowney, see [7, 15, 16], in the
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broader perspective of studies of competitive or cooperative systems; higher dimensional generaliza-
tions of Bendixon’s criterion and Dulac’s criterion. Our results are based on the LaSalle theorem and
the localization method of compact invariant sets (LMCIS), see [10, 11]. It is worth to mention that the
LMCIS has been efficiently utilized in papers [12, 13, 17, 18, 19, 20] for analysis of ultimate dynamics
of various cancer models.

The dynamics of (1.1) has some distinctive features: the unbounded set of equilibrium points,
positive Lagrange stability of trajectories and several invariant planes that are useful in this analysis.
In the case of a sufficiently large σ > 0 it is found that (1.1) acquires a new global qualitative property
consisting in the fact that all trajectories are attracted to the tumor-free plane x1 = x2 = 0. This
property may be characterized quantitatively as well. Namely, it is computed a bound σ(1)

min called the
first eradication bound such that if σ ≥ σ(1)

min then each ω-limit set is located in x1 = x2 = 0 plane. This
signifies that the population of tumor cells is under control after sufficiently large time of observations.
From the biological point of view, this case may correspond to the immunotherapy injection of some
agent like IL-2 which is combined with virotherapy. Although the tumor may be cleared for σ ≥ σ(1)

min,
but the harmful side effects from an over-activated immune system may eliminate the benefits of tumor
clearance. We propose an approach for reducing this risk. We show that there is the sequence of
eradication bounds {σ(k)

min}, k = 1, 2, ..,with the property that for σ ≥ σ(k)
min each ω-limit set is located in

x1 = x2 = 0 plane. The value σ(k)
min appears as the minimal positive root of some algebraic equation of

degree k. The existence of σ(k)
min is established in Theorem 5.1. The formula for σ(2)

min is provided; here
we have that σ(1)

min > σ(2)
min. It is demonstrated numerically that σ(2)

min > σ(3)
min. We expect that {σ(k)

min} is a
decreasing sequence. Figs.1-3 show the tumor eradication dynamics with σ = σ(i)

min, i = 1, 2, 3.
In the present paper ultimate upper bounds are computed for variables of (1.1). The domain defined

by these bounds contains all compact invariant sets including a chaotic attractor found in [6] for some
values of parameters. Further, it is noted that in the case σ = 0 tumor-free TF-equilibrium points are
always locally unstable [6]. Main results of this paper are

1) Theorem 4.2 containing conditions under which the ω-limit set of any positive half trajectory in
R5

+ is either one of TF-equilibrium points or one of tumor-only TO-equilibrium points and

2) Propositions 3;4 and Theorem 5.1 in which we give minimal bounds for σ guaranteeing con-
vergence dynamics of any positive half trajectory in R5

+ to one of tumor-only TO-equilibrium
points.

Therefore conditions of this paper may be utilized for a prediction of the possible health scenario
for a sufficiently long time of observations.

The results of this work are stated in terms of inequalities imposed on parameters of the model.
This may be important in applications, because in medical models, as a rule, biological parameters are
known in a certain range.

The present paper is organized as follows. Helpful auxiliary results are provided in Section 2 and
in Appendix. In Section 3 ultimate dynamics of the system (1.1) is studied via computing ultimate
bounds in case σ ≥ 0. These bounds form a domain in which the chaotic attractor is detected for
some values of parameters given in [6]. Further, Section 4 contains conditions under which (1.1)
possesses convergent dynamics to one of TO- or TF-equilibrium points in case σ = 0. In Section 5 we
describe the case when the immunotherapy is utilized σ > 0. Here we show that the tumor clearance
phenomenon may be achieved with a sufficiently large value of σ. The tumor eradication bounds for
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σ are derived. Section 6 contains concluding remarks. Appendix contains the derivation of the cubic
equation for finding σ(3)

min.

2. Some useful results

With the goal of describing helpful results the following objects are introduced:
1) a nonlinear system

ẋ = v(x) (2.1)

where v is a C1−differentiable vector field; x ∈ Rn is the state vector;
2) a C1−differentiable function h(x) such that h is not the first integral of (2.1);
3) the set S (h) := {x ∈ Rn | Lvh(x) = 0} where Lvh is the Lie derivative;
4) values hinf := inf{h(x) | x ∈ S (h)}; hsup := sup{h(x) | x ∈ S (h)}.
If it is set up the localization problem of compact invariant sets contained in the set M ⊂ Rn then

the sets

S (h; M) := S (h) ∩ M = {x ∈ M | Lvh(x) = 0};
hinf(M) := inf{h(x) | x ∈ S (h; M)};
hsup(M) := sup{h(x) | x ∈ S (h; M)} .

are defined.
Assertion 1 [9, 10, 11] For any h(x) ∈ C1(Rn) all compact invariant sets of the system (2.1) located

in M are contained in the localization set K(h; M) defined by the formula K(h; M) = {x ∈ M | hinf(M) ≤
h(x) ≤ hsup(M)} as well. If M ∩ S (h) = ∅ then there are no compact invariant sets located in M.

The function h mentioned in this assertion is called localizing.
Below the following notations are used: if the system is examined on the positive orthant M = Rn

+,0
then K(h) := K(h; M). If the system is considered on the domain M := Rn

+,0 ∩ {x5 > 0} then this M is
indicated.

Further, it is utilized
Assertion 2 [12]. Let h be a differential function which is bounded below on the set D ⊂ Rn and

Lvh(x) |D≤ −ε for some ε > 0. Then the solution ϕ(x, t) of the system (2.1), with initial condition
ϕ(x, 0) = x ∈ D, leaves the set D in a finite time.

To formulate the following useful result, the nonautonomous system

ẏ = G(y, t), y ∈ Rn, (2.2)

is introduced; here G is a C1−differentiable vector function. The system (2.2) is called asymptoti-
cally autonomous with the limit system (2.1) if G(x, t)→ v(x), with t → ∞, for any compact subset in
Rn, see e.g. [21].

Theorem 2.1. (Markus), see e.g. [21]. Let us consider systems (2.1) and (2.2) in case n = 2. Now if Ω

is the ω-limit set of a forward bounded solution x of (2.2) then Ω either contains equilibria of (2.1) or
Ω is the union of periodic orbits of (2.1).

The Markus theorem is applicable to the nonnegative orthant R2
+,0 in case when R2

+,0 is a positively
invariant domain.
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3. Preliminary considerations

The planes x1 = 0; x1 = x2 = 0; x3 = 0; x3 = m; x2 = x5 = 0 are invariant.
Further, if σ = 0 then there are four types of equilibrium points, [6]:
a) TF-equilibrium points are given by E1 := (0, 0, e13, 0, 0)T ; e13 ∈ R1

+,0;
b) TO-equilibrium points are given by E2 := (κ, 0, e23, 0, 0)T ; e23 ∈ R1

+,0;
c) a tumor with virus but no immune response TV-equilibrium point is given by E3 :=

(e31, e32, 0, 0, e35)T , with

e31 =
b1γ

a1β − γ
;

e32 =
rδβ(κ − e31)(b1 + e31)
a1δβκ + b1rγ + e31rγ

;

e35 =
e35γ

βδ
;

d) an internal tumor virus ITV-equilibrium point is given by
E4 := (e41, e42,m, e44, e45)T , with components e4 j, j = 1, 2, 4, 5, defined by very cumbersome formulas
and omitted here.

Since TF-equilibrium points and TO-equilibrium points form an unbounded set the system (1.1)
does not possess the bounded positively invariant domain.

It is noted that if σ = 0 then each TF-equilibrium point (0, 0, e13, 0, 0)T is connected with TO-
equilibrium point (κ, 0, e13, 0, 0)T by a heteroclinic orbit which is located in the invariant plane xi =

0, i = 2, 4, 5; x3 = e13 and is an arc directed from (0, 0, e13, 0, 0)T to (κ, 0, e13, 0, 0)T . So heteroclinic
orbits cover half strip x3 ≥ 0, x2 = x4 = x5 = 0.

Next, upper ultimate bounds are got for all state variables of the system (1.1) with help of computing
the localization domain containing all compact invariant sets.

1. Bound x1 max. The localizing function h1 = x1 is applied. Then

S (h1) ∩ {x1 > 0} =

{
r
(
1 −

x1 + x2

κ

)
= a1

x5

b1 + x1
+ a2

x4

b2 + x4
≥ 0

}
⊂

{
r
(
1 −

x1 + x2

κ

)
≥ 0

}
.

Therefore the localization set K1 max := {0 ≤ x1 ≤ κ := x1 max} is derived.
2) Bound x2 max . Here the function h2 = x1 + x2 is utilized. Then

L f h2 = rx1

(
1 −

x1 + x2

κ

)
− a2

(x1 + x2)x4

b2 + x4
− δx2

Therefore the inequality
δ(x1 + x2) ≤ (δ + r)x1 −

r
κ

x2
1 (3.1)

holds on S (h2). Considering the last inequality within K1 max the following inequality holds

δ(x1 + x2) ≤ ζ :=
{

δκ, δ > r
κ(δ+r)2

4r , δ ≤ r

}
.
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Thus the localization set K21 :=
{
h2 ≤ h2 max := ζδ−1

}
is derived. So the upper bound x2 max given in

K2 max :=
{
x2 ≤ ζδ

−1 := x2 max

}
(3.2)

is obtained.
3) Bound x5 max. Here using h3 = x5 it is noted that

S (h3) ∩ K2 max ⊂

{
x5 ≤

δβ

γ
x2 max

}
and so the localization set with the bound x5 max is obtained:

K5 max :=
{

x5 ≤ x5 max :=
δβ

γ
x2 max

}
. (3.3)

4) The bound x3 max is computed with respect to the domain R5
+,0 ∩ {x5 > 0} . The function h4 = x3

provides the localization set:

K3 max(h4,R5
+,0 ∩ {x5 > 0}) := {0 ≤ x3 ≤ m; x5 > 0} .

5) The bound x4 max is computed with respect to the domain R5
+,0 ∩ {x5 > 0} . Here the function

h5 = x4 is applied. Then
L f h5 = p2

x3x5

b3 + x5
− a3x4 − a4x1x4 + σ

and therefore the set S (h5) ∩ K5 max ∩ {x5 > 0} is contained in the set defined by the inequality

x4 ≤
p2x3x5

a3(b3 + x5)
+
σ

a3
≤ x4 max :=

p2mx5 max

a3(b3 + x5 max)
+
σ

a3
.

Therefore the localization set:

K4 max(h5,R5
+,0 ∩ {x5 > 0}) := {0 ≤ x4 ≤ x4 max; x5 > 0}

is got.
As a result, it is established
Proposition 1. All compact invariant sets in R5

+,0 ∩ {x5 > 0} are located in the domain

Π := ∩i=1,2,5Ki max ∩ K3 max(h4,R5
+,0 ∩ {x5 > 0}) ∩ K4 max(h5,R5

+,0 ∩ {x5 > 0}) .

Let ϕ(x, t) be a solution of (1.1), with ϕ(x, 0) = x for all x. Further, the following fact is used in this
paper:

Lemma 3.1. Let σ ≥ 0. The system (1.1) is positively Lagrange stable in R5
+,0, i.e. for any point

x ∈ R5
+,0 the time functions ϕi(x, t), t ≥ 0, i = 1, ..., 5, are upper bounded. So there are no escaping to

infinity trajectories in positive time.
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Proof. 1. Taking the function h1 = x1 and the domain D1 = {x1 ≥ κ + ε1} ∩ R5
+,0 for ε1 > 0 it is easy to

see that

L f h1 |D1≤ −rε1 −
rε2

1

κ
< 0.

So applying Assertion 2 it is established that each trajectory leaves D1 in a finite time. So ϕ1(x, t) is
upper bounded as a time function.

2. Since x3 = m is an invariant plane any trajectory with an initial condition satisfying the inequality
x3 ≤ m has the property that ϕ3(x, t) is upper bounded as a time function. From the other side, if a
trajectory has an initial condition satisfying x3 > m then since ẋ3(t) ≤ 0 on the domain x3 > m then
ϕ3(x, t) is upper bounded as a time function.

3. We have in R5
+,0 that

ẋ4 ≤ −a3x4 + p2ϕ3(x, t) + σ.

Integrating this inequality we obtain that the function ϕ4(x, t) is upper bounded.
4. Taking the function h2 = x1 + x2 and the domain

D2 = {x1 + x2 ≥ h2 max + ε2; x1 < κ + ε1} ∩ R5
+,0,

for ε2 > 0 it is easy to see that

L f h2 |D2≤ −rε1 −
rε2

1

κ
− a2(h2 max + ε2) inf

t>0

ϕ4(x, t)
a2 + ϕ4(x, t)

< 0.

So applying Assertion 2 it is established that each trajectory leaves D2 in a finite time. So both of
ϕi(x, t), i = 1, 2 , are upper bounded time functions.

5. At last, it follows from integration of ẋ5 with the upper bounded time function ϕ2(x, t) that ϕ5(x, t)
is the upper bounded time function as well.

�

4. Convergence dynamics conditions

The main purpose of this section is to present attraction conditions to either TF- equilibrium points
or TO- equilibrium points in case σ = 0. All statements are established in the form of simple inequal-
ities imposed on the decay rate γ of VSV particles in the blood. Here γ can be considered as a control
parameter. Firstly, it is introduced a system obtained from (1.1) by a restriction on the invariant plane
x3 = x4 = 0:

·
x1 = rx1

(
1 −

x1 + x2

κ

)
− a1

x1x5

b1 + x1
;

·
x2 = a1

x1x5

b1 + x1
− δx2; (4.1)

·
x5 = δβx2 − γx5.

By g it is denoted its vector field. This system has the following equilibrium points

e1 = (0, 0, 0)T ; e2 = (κ, 0, 0)T ;
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e3 = (e31, e32, e33)T ,

with

e31 =
b1γ

a1β − γ
;

e32 =
rb1γ(κ − e31)(e31 + γ)

rb1γ(e31 + γ) + e31κa1βδ
;

e33 =
δβ

γ
e32 .

Before considering the system (1.1) it is formulated

Lemma 4.1. The system (4.1) has the localization domain Π1 in R3
+,0 defined by

x1 ≤ x1 max := κ; x2 ≤ x2 max; x5 ≤ x5 max,

where x2 max is defined by (3.2). This polytope contains all compact invariant sets and the attracting
set of (4.1).

These bounds are derived as in case of Proposition 1.
Proposition 2. Assume that

γ > γmin :=
a1βκ

κ + b1
. (4.2)

Then each trajectory of the system (4.1) in R3
+,0 tends to e1 or e2.

Proof. Let us apply the function h6 = x2 + β−1x5. Then

Lgh6 = (
a1x1

b1 + x1
−
γ

β
)x5. (4.3)

It is noted that all ω-limit sets of the system (4.1) are located in Π1. So one may examine the equality
(4.3) on Π1 and proceed as follows

Lgh6 |Π1≤ (
a1κ

b1 + κ
−
γ

β
)x5 |Π1≤ 0.

�

By using Lemma 4.1 and the LaSalle theorem it is established that the ω-limit set of any point of the
system (4.1) is not empty and belongs to the set {x5 = 0}. Therefore, in order to analyze the ultimate
dynamics of (4.1) it should be examined the ultimate dynamics of the system

·
x1 = rx1

(
1 −

x1 + x2

κ

)
− a1

x1ϕ5(x, t)
b1 + x1

(4.4)

·
x2 = a1

x1ϕ5(x, t)
b1 + x1

− δx2,

with the input ϕ5(x, t) satisfying the condition

lim
t→∞

ϕ5(x, t) = 0.
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The system (4.4) is asymptotically autonomous with the limit system

·
x1 = rx1

(
1 −

x1 + x2

κ

)
(4.5)

·
x2 = −δx2,

All solutions of the system (4.5) in R2
+,0 are convergent to the equilibrium point (κ, 0)T . In virtue of

the Markus theorem, all solutions of the system (4.4) are convergent to the equilibrium point (κ, 0)T .
Therefore any solution of the system (4.1) tends to e1 or e2.

Remark 1. If the inequality

1 <
a1β

γ
< 1 +

b1

κ

then there is the third equilibrium e3 which is not contained in R3
+,0 because κ − e31 < 0 and, therefore,

e32 < 0. It follows from formulas for equilibrium points.

Now it is established

Theorem 4.2. Suppose that (4.2) is fulfilled. Then theω-limit set in R5
+,0 is either one of TF-equilibrium

points or one of TO-equilibrium points.

It should be noted that the condition (4.2) is the condition of local stability of TO-equilibrium points,
see [6].

Proof. Let us apply the function h6 = x2 + β−1x5. In this case

L f h6 = a1
x1x5

b1 + x1
−
γ

β
x5 − a2

x2x4

b2 + x4
. (4.6)

Since all ω-limit sets of the system (1.1) in R5
+,0 ∩ {x5 > 0} are nonempty and are located in K1 max one

may restrict the equality (4.6) on K1 max and proceed as follows

L f h6 |K1 max≤ {(
a1κ

b1 + κ
−
γ

β
)x5 − a2

x2x4

b2 + x4
} |K1 max≤ 0.

Using the condition (4.2) and the LaSalle theorem it is possible to conclude that any ω-limit set belongs
to the set {x2 = x5 = 0} ∪ {x4 = x5 = 0}. Hence, any ω-limit set is one of TF-equilibrium points or
TO-equilibrium points. �

5. Global eradication conditions in case σ > 0

Below everwhere we take the case a2 > r. We shall utilize the notation x(1)
1 max := x1 max.

Proposition 3. Then all compact invariant sets are located in the domain K(1)
4 min ∩ K(2)

1 max, with

K(1)
4 min : = {x4 ≥ x(1)

4 min :=
σ

a3 + a4κ
};

K(2)
1 max : = {x1 ≤ x(2)

1 max := κ −
a2κx(1)

4 min

r(b2 + x(1)
4 min)

}.
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Here these formulas are valid under condition

σ < σ(1)
min :=

b2r(a3 + a4κ)
a2 − r

. (5.1)

2) Further, if
σ ≥ σ(1)

min (5.2)

then all ω-limit sets are located in the plane x1 = 0. Moreover, all ω-limit sets are located in the plane
x1 = 0; x2 = 0 as well.

The value of σ(1)
min is called the first eradication bound.

Proof. 1). Using the function h5 one may obtain inequalities

σ ≤ p2
x3x5

b3 + x5
+ σ = a3x4 + a4x1x4 ≤ (a3 + a4κ)x4

within the set K1 max ∩ S (h5) and, as a result, the localization set K(1)
4 min is got. Next,

ẋ1 |x1>0≤ (r −
r
κ

x1 −
a2x4

b2 + x4
) |x1>0 (5.3)

and the inequality (5.3) on the domain K(1)
4 min leads to the inequality

0 <
r
κ

x1 ≤ r −
a2x(1)

4 min

b2 + x(1)
4 min

.

This implies the desirable assertion.
2) It follows from (5.3), the LaSalle theorem and the fact that the second equation of (1.1) with

x1 ≡ 0 is globally asymptotically stable. �

Now we discuss how we can decrease the value for σ for which the tumor clearance can be reached.
One may iterate this argument and obtain sequences of localization sets

K(1)
4 min ⊂ K(2)

4 min ⊂ . . .

K(2)
1 max ⊃ K(3)

1 max ⊃ . . . ,

with

x(k)
1 max(σ) := κ −

a2κx(k−1)
4 min(σ)

r(b2 + x(k−1)
4 min)(σ)

, k = 3, 4, . . .

and
x(k)

1 max(σ) > x(k+1)
1 max(σ), k = 1, 2, ...

So similarly as above, we establish
Proposition 4. If for given value of the influx rate σ there is k such that

x(1)
1 max(σ) > x(2)

1 max(σ) > ... > x(k−1)
1 max(σ) > 0

but x(k)
1 max(σ) ≤ 0 then we have the tumor clearance for this value of σ.
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The minimal positive root of the equation (5.4)

x(k)
1 max(σ) = 0 (5.4)

is called the k−th eradication bound which will be denoted by σ(k)
min. In what follows, we examine

the issue concerning the existence of a positive root of (5.4) for any k. Finding bounds for the value
σ(k)

min encounters computational difficulties and is not the subject of this study. We notice that though the
function x(k)

1 max(σ) may possess more than one positive root, this fact does not contradict the biological
meaning of the use of the treatmentσ. This is because in Propositions 3 and 4 only sufficient conditions
of the tumor clearance are given.

Below we shall utilize notations

Ak(σ) =
Pk(σ)
Qk(σ)

= x(k)
1 max(σ); Bk(σ) = x(k)

4 min(σ) (5.5)

and for simplicity we shall omit σ for functions introduced in (5.5). Further, our goal is to establish

Theorem 5.1. The equation (5.4) for k ≥ 2 has at least one positive root.

Proof. Firstly, we prove

Lemma 5.2. We have for any k ≥ 2 that 1) deg Pk = deg Qk = k−1; 2) coefficients of Pk and Qk satisfy
the following condition:

coe fσ0(Pk) > 0; coe fσ0(Qk) > 0;
coe fσk−1(Pk) < 0; coe fσk−1(Qk) > 0.

Proof. We shall prove this statement by induction on k. For k = 2 this result is valid since

A2 =
P2

Q2
= κ −

κa2B1

r(b2 + B1)

=
rb2κ(a3 + a4κ) + σκ(r − a2)

r[b2(a3 + a4κ) + σ]
.

Suppose that this assertion is proven for k. Let us consider this assertion for k + 1. Then

Ak+1 =
Pk+1

Qk+1
= κ −

κa2Bk

r(b2 + Bk)
=
κrb2 + Bkκ(r − a2)

r(b2 + Bk)
. (5.6)

Using the formula

Bk =
σ

a3 + a4Ak
=

σQk

a3Qk + a4Pk

we proceed (5.6) as follows:

Ak+1 =
κrb2(a3Qk + a4Pk) + σQkκ(r − a2)

r[b2(a3Qk + a4Pk) + σQk]
. (5.7)

Now we get from the inductive hypothesis and the formula (5.7) that the first assertion of this lemma
is valid and, besides, we notice that

coe fσ0(Pk+1) = κrb2[a3coe fσ0(Qk) + a4coe fσ0(Pk)] > 0;
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coe fσ0(Qk+1) = rb2[a3coe fσ0(Qk) + a4coe fσ0(Pk)] > 0;
coe fσk(Pk+1) = κ(r − a2)coe fσk−1(Qk) < 0;
coe fσk(Qk+1) = rcoe fσk−1(Qk) > 0.

Therefore Lemma 5.2 is proven. �

As a result, in virtue of Lemma 5.2 and the formula (5.7) we obtain the desirable assertion. �

Now we compute the value σ(2)
min. Then we have that

B2 =
σr(b2 + B1)

r(a3 + a4κ)(b2 + B1) − a2a4κB1
.

Examining the equation A3(σ) = 0 we get the equation

rb2 = B2(a2 − r). (5.8)

For our convenience we introduce notations

α1 =
b2

a2 − r
;

α2 = rb2(a3 + a4κ)2;
α3 = r(a3 + a4κ) − a2a4κ

in (5.8) and after this we come to the equation

σ2 + σ(b2(a3 + a4κ) − α1α3) − α1α2 = 0.

Its unique positive root has the form

σ+ =
α1α3 − b2(a3 + a4κ)

2
+

√
(α1α3 − b2(a3 + a4κ))2

4
+ α1α2

We notice that σ(2)
min = σ+. Finally, by the routine computations omitted here it is easy to establish that

σ(1)
min +

b2(a3 + a4κ) − α1α3

2
> 0

and, its square exceeds
(α1α3 − b2(a3 + a4κ))2

4
+ α1α2.

So, we have that σ(1)
min > σ(2)

min and in case of using σ ≥ σ(2)
min we still achieve the tumor eradication.

Now taking parameters from Table 2 [6], we demonstrate by calculations that the tumor eradication
bounds σ(1)

min;σ(2)
min;σ(3)

min are decreasing: σ(1)
min = 1118.3;σ(2)

min = 530.3;σ(3)
min = 419.9.

On Figures 1;2;3 we show the tumor eradication dynamics corresponding these values of σ at
γ = 1.26; 1.46 and 1.66 :
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Figure 1. Tumor eradication dynamics derived at γ = 1.26.

Figure 2. Tumor eradication dynamics derived at γ = 1.46.

Figure 3. Tumor eradication dynamics derived at γ = 1.66.
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It should be said that one can get improved bounds for x2 and x5 with help of using formulas (3.2)-
(3.3). In this case the function h2 = x1 + x2 it should be employed in the same way as above in the
formula (3.1). So considering S (h2) within K(1)

1 max ∩ K(1)
4 min it is easy to see that this set is located in the

set defined by the inequality

(δ +
a2x4 min

b2 + x4 min
)(x1 + x2) ≤ ζ .

Thus the localization set K22 :=
{
h2 ≤ h2 max := ζδ−1

1

}
is obtained, with

δ1 = δ +
a2x4 min

b2 + x4 min
.

As a result, one can get upper bounds indicated in the formula

K(1)
2 max : =

{
x2 ≤ ζδ

−1
1 := x(1)

2 max

}
,

K(1)
5 max : = {x5 ≤ x(1)

5 max :=
σβ

γ
x(1)

2 max} .

Hence one may conclude:
Proposition 5. All compact invariant sets are located in the domain K(1)

1 max∩K(1)
2 max∩K(1)

5 max∩K(1)
4 min.

6. Concluding remarks

Convergence conditions for trajectories of the model (1.1) are presented in this paper. Such kind
of ultimate dynamics may be important for predicting the patient’s health scenario, its monitoring,
correction and a proper application of treatments. For this purpose one may vary the parameters γ (the
decay rate for the concentration of OVPs in the blood) and σ (the rate of influx of immune cells from
the external source).

1) Ultimate upper bounds for x1-, x2-cells populations and for concentration of OVPs (x5) are
obtained. Upper bounds for x3-, x4-cells populations are given provided we examine compact
invariant sets outside the plane x5 = 0. As a result, it is shown that ultimate dynamics of the
system (1.1) outside the plane x5 = 0 is contained in the domain defined by these bounds. Then it
is established that in case σ > 0 upper bounds for x1-, x2-,x5- variables and the lower bound for
x4- variable can be improved by some number of iterations.

2) In the case σ = 0 we examine one specific type of the convergence dynamics (1.1), which
excludes the existence of TV-, ITV-equilibrium points, periodic orbits and the chaotic attractor.
All results are expressed in terms of γ. It is computed the lower bound γmin such that for γ > γmin

any trajectory is attracted to either one of TO-equilibrium points or one of TF-equilibrium points.
This problem is solved in Theorem 4.2.

3) In Proposition 3 conditions for the global tumor elimination are presented for sufficiently large
values of the influx rate σ of immune cells from the external source σ,σ ≥ σ(1)

min. The formula
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(5.2) describes how the eradication bound σ(1)
min depends on parameters of the model. It is shown

that the bound σ(1)
min may be decreased if we apply the iterational procedure. This leads to a

reduced risk of over-immunization. As a result, we get the sequence of bounds σ(k)
min which are

characterized in Theorem 5.1. It is demonstrated that σ(2)
min < σ(1)

min. The decrease of the sequence
of eradication bounds {σ(k)

min} seems clear from the point of view of common sense and is confirmed
by calculations. However, the additional analysis is still required and deserves a separate research.
On Figures 1;2;3 it is shown numerically that there is the tumor eradication dynamics at different
values of γ and σ = σ(1)

min;σ(2)
min;σ(3)

min. Our statements about the tumor eradication are presented in
a convenient form for applications and may be helpful in administering immunotherapy.

Appendix

Further, let us derive an equation for finding σ(3)
min. With this goal we notice that .

A2 =
θ1 + σθ2

θ3 + σθ4
, (6.1)

with

θ1 = κrb2(a3 + a4κ); θ2 = κ(r − a2);
θ3 = rb2(a3 + a4κ); θ4 = r.

Utilizing these formulas for B2 we have that

B2 =
σ

a3 + a4A2
=
θ3σ + θ4σ

2

θ5 + θ6σ
,

with
θ5 = a3θ3 + a4θ1; θ6 = a3θ4 + a4θ2.

Next, we compute

A3 = κ −
κa2B2

rb2 + rB2
= κ

θ7 + σθ8 + σ2θ9

θ10 + σθ11 + σ2θ12
,

with

θ7 = rb2θ5; θ8 = rb2θ6 + (r − a2)θ3; θ9 = (r − a2)θ4;
θ10 = rb2θ6 + rθ3; θ11 = rθ4.

Further,

B3 =
σ

a3 + a4A3
=
σθ7 + σ2θ10 + σ3θ11

θ12 + σθ13 + σ2θ14
,

with
θ12 = (a3 + a4κ)θ7; θ13 = a3θ10 + a4κθ8; θ14 = a3θ11 + a4θ9

Finally, we notice that σ(3)
min is a minimal positive root of the cubic equation rb2 + B3(r − a2) = 0 which

can be written in the form

σ3θ11(r − a2) + σ2(rb2θ14 + (r − a2)θ10) + σ(rb2θ13 + (r − a2)θ7) + rb2θ12 = 0.
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