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Abstract: Based on the development of heroin vaccine, in this paper, we propose an age structured
heroin transmission model with treatment and vaccination. The model allows the drug reuse rate of the
individuals in treatment to depend on a treatment-age and the vaccine waning rate of the vaccinated
to depend on a vaccination age. Meanwhile, the model allows that the heroin vaccine provides an
imperfect protection (i.e., the vaccinated individuals can also become drug addicted). We derive
the basic reproduction number which dependents on vaccination. The basic reproduction number
completely determines the persistence and extinction of heroin spread, i.e., if the basic reproduction
number is less than one the drug-free steady state is globally asymptotically stable (i.e., the heroin
spread dies out), if the basic reproduction number is larger than one, there exists an unique positive
steady state and it is locally and globally stable in some special cases. Finally, some numerical
simulations are carried out to illustrate the stability of the positive steady state.
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1. Introduction

Heroin is a highly abused opioid and incurs a significant detriment to society worldwide. Heroin
usually appears as a white or brown powder or as a black sticky substance, known as “black tar heroin”
[1], and its most frequent routes of delivery were intravenous injection (25%) and inhalation [12].
It crosses the blood-brain barrier within 15–20 seconds, rapidly achieving a high level syndrome in
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the brain and the central nervous system which causes both the ‘rush’ experienced by users and the
toxicity [25]. Heroin users are at high risk for addiction. It is estimated that about 23% of individuals
who use heroin become dependent on it.

More recently, a heroin conjugate vaccine attracted much attentions. It was developed through
comprehensive evaluation of hapten structure, carrier protein, adjuvant and dosing, which can generate
a significant and sustained antidrug IgG titers in each subject and it is effective in rhesus monkeys [3].
Also, it is found that immunization of mice with an optimized heroin-tetanus toxoid (TT) conjugate
can reduce heroin potency by > 15% and the vaccine effects proved to be durable and persisting for
over eight months. Although it is unknown what will happen if the heroin vaccine is used in clinical
setting, the heroin vaccine brings much hope for the defence against and control of heroin abuse.

In fact, the spread of heroin habituation and addiction can be well modeled by epidemic type
models as “transmission” occurs in the form of peer pressure where established users recruit
susceptible individuals into trying and using the drug [4, 9, 16], that is, mathematical modelling is a
means to provide a general insight for how classes of drug takers behave, and as such, could hopefully
becomes a useful device to aid specialist teams in devising treatment strategies. Modeling heroin
addiction and spread in epidemic fashion is not new [21]. Recently, Fang et al. [10] proposed a
age-structured heroin transmission model and proved its global dynamics behaviors. Usually, the
population is divided into three classes, namely the number of susceptibles, S (t), the number of drug
users not in treatment, U1(t) and the number of drug users in treatment, U2(t), respectively. Naturally,
we wonder how the heroin vaccine effects the heroin transmission process.

The study of vaccination has been the subject of intense theoretical analysis [2,7,8,14,17–20,27,29].
Based on the study of classical epidemic models, Kribs-Zaleta and Velasco-Hernández [17] added
a compartment V into an S IS model and studied the vaccination of disease such as pertussis and
tuberculosis; Kribs-Zaleta and Martcheva [18] studied the effects of a vaccination campaign upon
spread of a non-fatal disease which features both acute and chronic infective stages, as well as variable
infectivity and recovery rates in the chronic stage. Interestingly, Xiao and Tang [29] developed a
simple SIV epidemic model including susceptible, infected and imperfectly vaccinated classes, with
a nonlinear incidence rate and there would be backward bifurcations; Arino et al. [2] also showed
that, if vaccines are imperfect, i.e., vaccinated individuals can be infected, there could be backward
bifurcations.

To study the role of the heroin vaccine in the control of heroin abuse, adding a compartment V(t)
into a heroin transmission model is necessary. To our best knowledge, there is no related work in
this field by now. Hopefully, mathematical modeling can provide a new insight into the interaction
mechanism between the vaccinated, the susceptibles, the drug users and the individuals in treatment.

Motivated by the development of the heroin vaccine, in this paper, we present an age structured
heroin transmission S U1U2V model which incorporates a drug reuse rate α(a) dependant on treat-age
(i.e., the time since the host has been in treatment) and a vaccine waning rate dependant on vaccination
age (i.e., the time since the host has been vaccinated). We also assume the susceptible population
is vaccinated at a constant rate ψ, the vaccinated individuals can be infected at reduced rate σβ with
0 ≤ σ ≤ 1. Obviously, σ = 0 means the vaccine is completely effective in preventing infection, while
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σ = 1 means that the vaccine is utterly ineffective. As a result, the system is as follows:

dS
dt

= Λ − (µ + ψ)S (t) − βS (t)U1(t) +

∫ ∞

0
α(a)V(a, t)da,

dU1

dt
= βS (t)U1(t) + σβU1(t)

∫ ∞

0
V(a, t)da +

∫ ∞

0
p(θ)U2(θ, t)dθ

−(µ + δ1 + γ)U1(t),

∂U2(θ, t)
∂θ

+
∂U2(θ, t)

∂t
= −(µ + δ2 + p(θ))U2(θ, t),

∂V(a, t)
∂a

+
∂V(a, t)
∂t

= −(µ + α(a) + σβU1(t))V(a, t)

(1)

for t > 0, with the initial and boundary conditions: U2(0, t) = γU1(t), V(0, t) = ψS (t),

S (0) = S 0, U1(0) = U10, U2(θ, 0) = U20(θ), V(a, 0) = V0(a),
(2)

where U20(θ),V0(a) ∈ L1
+(0,∞).

In system (1)–(2), θ is the treat-age, that is the time that has elapsed since a drug user is in
treatment; U2(θ, t) is the density of drug users in treatment with age θ at time t; S (t) is the density of
the susceptibles at time t; U1(t) is the density of drug users not in treatment, initial and relapsed drug
users. The positive constant Λ is the recruitment of susceptible, µ the natural death rate of the general
population, β is the force of drug use per contact with the susceptible per unit time, σβ is the force of
drug use per contact with the vaccinated individuals per unit time, γ is the rate of drug users who enter
treatment, δ1 a removal rate that includes drug-related deaths of users not in treatment and a
spontaneous recovery rate, individuals not in treatment who stop using drugs but are no longer
susceptible, δ2 a removal rate that includes the drug-related deaths of users in treatment and a rate of
successful “cure” that corresponds to recovery to a drug free life and immunity to drug addiction for
the duration of the modelling time period. The function p(θ) is the probability of a drug user in
treatment with the treatment-age θ relapsing to the untreated users.

Throughout the paper, we make the following assumptions: (A1) there is a positive number of drug
users not in treatment, i.e., U10 > 0; (A2) the initial conditions U20(θ) and V0(a) are uniformly bounded
respectively for θ, a ∈ (0,+∞); (A3) the maps θ → p(θ) and a→ α(a) are almost everywhere bounded
and belong to L∞+ ((0,+∞),R) \ {0L∞}.

The paper is organized as follows. In the next section, we present some preliminary results of
system (1)–(2). In Section 3, we prove the local and global stability of the drug-free steady state of
system (1). In Section 4, we present the existence and the stability results of the drug spread steady
state of system (1) when the basic reproduction number is larger than one. Finally, in Section 5, a brief
discussion and some numerical examples are presented.

2. Preliminary results

In this section, we give some basic results prepared for the further study of system (1).
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For the sake of convenience, we let

Φ1(θ) =e−
∫ θ

0 (µ+δ2+p(τ))dτ,

∫ ∞

0
Φ1(θ)dθ = φ1,

Φ(θ) =γp(θ)e−
∫ θ

0 (µ+δ2+p(τ))dτ,

∫ ∞

0
Φ(θ)dθ = φ,

k1(a) =e−
∫ a

0 (µ+α(τ))dτ,

∫ ∞

0
k1(a)da = K1,

k(a) =α(a)e−
∫ a

0 (µ+α(τ))dτ,

∫ ∞

0
k(a)da = K .

By simple calculations, we have that K = 1 − µK1 and φ = γ − γ(µ + δ2)φ1.
Naturally, system (1)–(2) has a unique drug-free steady state E0(S 0, 0, 0,V0(a)) which satisfies that

0 = Λ − (µ + ψ)S 0 +

∫ ∞

0
α(a)V0(a)da,

dV0(a)
da

= −(µ + α(a))V0(a),

V0(0) = ψS 0.

(3)

Solving the last two equations, we have that

V0(a) = ψS 0e−
∫ a

0 (µ+α(τ))dτ = ψS 0k1(a). (4)

Substituting Equation (4) into the first equation of (3), we have that

S 0 =
Λ

µ + ψ(1 −K )
=

Λ

µ(1 + ψK1)
. (5)

Thus, we have that

V0(a) =
ψΛ

µ(1 + ψK1)
k1(a). (6)

According to the definition of the basic reproduction number in existing literatures [5,6,28], we define
the basic reproduction number R0 as:

R0 =
β

µ + δ1 + γ − φ

(
S 0 + σ

∫ ∞

0
V0(a)da

)
=

β

µ + δ1 + γ(µ + δ2)φ1
·

Λ

µ(1 + ψK1)
· (1 + σψK1) .

(7)
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According to [24], any positive equilibrium (S ∗, U∗1, U∗2(θ), V∗(a)) of system (1), if it exists, must
be a constant solution of the following equations

0 = Λ − βS ∗U∗1 − (µ + ψ)S ∗ +

∫ ∞

0
α(a)V∗(a)da,

0 = βS ∗U∗1 + σβU∗1

∫ ∞

0
V∗(a)da − (µ + δ1 + γ)U∗1 +

∫ ∞

0
p(θ)U∗2(θ)dθ,

dU∗2(θ)
dθ

= −(µ + δ2 + p(θ))U∗2(θ),

U∗2(0) = γU∗1,

dV∗(a)
da

= −(µ + α(a) + σβU∗1)V∗(a),

V∗(0) = ψS ∗.

(8)

Let
π(a) = e−

∫ a
0 (µ+α(τ)+σβU∗1)dτ, Kπ =

∫ ∞

0
π(a)da. (9)

By simple calculations, we have that∫ ∞

0
ψα(a)π(a)da = ψ − ψ(µ + σβU∗1)Kπ. (10)

From the third and the forth equation of (8), we have that

U∗2(θ) = γU∗1Φ1(θ). (11)

From the fifth and the sixth equation of (8), we have that

V∗(a) = ψS ∗π(a). (12)

Substituting (11) and (12) into the second and the first equation of (8) respectively, we have that the
following equations  0 = Λ − βS ∗U∗1 + (ψ − ψ(µ + σβU∗1)Kπ)S ∗ − (µ + ψ)S ∗

0 = βS ∗U∗1 + σβU∗1KπψS ∗ − (µ + δ1 + γ)U∗1 + φU∗1.
(13)

It follows from the first equation of (13), we have that

S ∗ =
Λ

βU∗1 + ψ(µ + σβU∗1)Kπ + µ
. (14)

Substituting (14) into the second equation of (13) and eliminating U∗1, we have that

1 =
βΛ(1 + σψKπ)

(βU∗1 + ψ(µ + σβU∗1)Kπ + µ)(µ + δ1 + γ − φ)
. (15)

Define a function F (U∗1) to be the right hand side of Equation (15). Obviously, F (0) = R0. It
follows from (9) we have that F (U∗1) is a decreasing function of U∗1 and F (U∗1)→ 0 as U∗1 → ∞. Thus,
there exists an unique positive root of Equation (15) only if R0 > 1.

Summarizing the above discussion, we have the following result.
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Theorem 2.1. System (1) always has a drug-free steady state E0, besides that, it has an unique drug
spread steady state E∗ only if R0 > 1.

Now, by setting

N(t) = S (t) + U1(t) +

∫ ∞

0
U2(θ, t)dθ +

∫ ∞

0
V(a, t)da,

we deduce from (1) that N(t) satisfies the following ordinary differential equation:

N′(t) = Λ − µN(t) − δ1U1(t) + δ2

∫ ∞

0
U2(θ, t)dθ ≤ Λ − µN(t), (16)

and therefore lim sup
t→∞

N(t) ≤ Λ
µ

. Denote

Ω =
{
(S ,U1,U2,V) ∈R+ × R+ × L1

+(0,∞) × L1
+(0,∞) :

S + U1 +

∫ ∞

0
U2(θ, ·)dθ +

∫ ∞

0
V(a, ·)da ≤

Λ

µ

}
Then Ω is the maximum positively invariant set of system (1) that attracts all positive solutions of of
(1). Therefore, we restrict our attention to solutions of (1) with initial conditions in Ω.

In the following, we use the approach introduced by Thieme [26]. Consider

X = R × R × R × L1((0,∞),R) × R × L1((0,∞),R),
X0 = R × R × {0} × L1((0,∞),R) × {0} × L1((0,∞),R),
X+ = R+ × R+ × R+ × L1

+((0,∞),R) × R+ × L1
+((0,∞),R)

and

X0+ = X0 ∩ X+.

Let the linear operator A : Dom(A) ⊂ X → X defined by

A



S
U1(
0

U2

)
(

0
V

)


=



−(µ + ψ)S
−(µ + δ1 + γ)U1(
−U2(0)

−U′2 − (µ + δ2 + p(θ))U2

)
(

−V(0)
−V ′ − (α(a) + µ)V

)


with

Dom(A) = R × R × {0} ×W1,1((0,+∞),R) × {0} ×W1,1((0,+∞),R),

where W1,1 is a Sobolev space. Then Dom(A) = X0 is not dense in X. We consider a nonlinear map
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F : Dom(A)→ X which is defined by

F (t) =



Λ − βS (t)U1(t) +

∫ ∞

0
α(a)v(a, t)da

βS (t)U1(t) + σβU1(t)
∫ ∞

0
V(a, t)da +

∫ ∞

0
p(θ, t)U2(θ, t)dθ(

ψS (t)
0L1

)
(

γU1(t)
(σβU1(t)V(a, t))L1

)


,

and let

u(t) =

(
S (t), U1(t),

(
0

U2(·, t)

)
,

(
0

V(·, t)

))T

.

Then, we can reformulate system (2.3) as the following abstract Cauchy problem:

du(t)
dt

= Au(t) + F (t) for t ≥ 0, with u(0) = x ∈ X0+. (17)

By applying the results in Hale [11], Magal [22], and Magal and Thieme [23], we obtain the following
theorem.

Theorem 2.2. System (1) generates a unique continuous semiflow {U(t)}t≥0 on X0+ that is bounded
dissipative and asymptotically smooth. Furthermore, the semiflow {U(t)}t≥0 has a global compact
attractorA in X0+, which attracts the bounded sets of X0+.

3. The stability of the drug-free steady state

In this section, by use of characteristic equation, we will prove the local and global stability of the
drug-free steady state E0.

For the sake of convenience, we give the following Laplace transforms of the corresponding
functions

Φ̂(λ) =

∫ ∞

0
Φ(θ)e−λθdθ, Φ̂1(λ) =

∫ ∞

0
Φ1(θ)e−λθdθ,

K̂ (λ) =

∫ ∞

0
k(a)e−λada, K̂1(λ) =

∫ ∞

0
k1(a)e−λada.

(18)

By direct calculations, we have the following relationships

K̂ (λ) = 1 − (λ + µ)K̂1(λ) and Φ̂(λ) = γ − γ(λ + µ + δ2)Φ̂1(λ). (19)

Theorem 3.1. The drug-free steady state E0 is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.

Proof. By linearization of system (1) at the drug-free steady state E0, we can obtain the corresponding
linearized system. We let

S (t) = S̃ (t) + S 0, U1(t) = Ũ1(t), U2(θ, t) = Ũ2(θ, t) and V(a, t) = Ṽ(a, t) + V0(a).
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By linearization of system (1) at the drug free steady state E0, we obtain the following system

dS̃ (t)
dt

= −(µ + ψ)S̃ (t) − βS 0Ũ1(t) +

∫ ∞

0
α(a)Ṽ(a, t)da,

dŨ1(t)
dt

= βS 0Ũ1(t) + σβ

∫ ∞

0
V0(a)daŨ1(t) +

∫ ∞

0
p(θ)Ũ2(θ, t)dθ

−(µ + δ1 + γ)Ũ1(t),

∂Ũ2(θ, t)
∂θ

+
∂Ũ2(θ, t)

∂t
= −(µ + δ2 + p(θ))Ũ2(θ, t),

Ũ2(0, t) = γŨ1(t),

∂Ṽ(a, t)
∂a

+
∂Ṽ(a, t)
∂t

= −(µ + α(a))Ṽ(a, t) − σβV0(a)Ũ1(t),

Ṽ(0, t) = ψS̃ (t).

(20)

To analyze the asymptotic behaviors around E0, we let

S̃ (t) = xeλt, Ũ1(t) = yeλt, Ũ2(θ, t) = z(θ)eλt, and Ṽ(a, t) = w(a)eλt

where x, y, z(θ) and w(a) can be determined. Thus, we consider the following eigenvalue problem

λx = −(µ + ψ)x − βS 0y(t) +

∫ ∞

0
α(a)w(a)da,

λy = βS 0y + σβ

∫ ∞

0
V0(a)day − (µ + δ1 + γ)y +

∫ ∞

0
p(θ)z(θ)dθ,

dz(θ)
dθ

= −(λ + µ + δ2 + p(θ))z(θ),

z(0) = γy,

dw(a)
da

= −(λ + µ + α(a))w(a) − σβV0(a)y,

w(0) = ψx.

(21)

Solving the third equation of (21), we have

z(θ) = z(0)e−λθΦ1(θ) = γye−λθΦ1(θ). (22)

Solving the fifth equation of (21), we have

w(a) = w(0)e−λak1(a) − σβy
∫ a

0
e−λ(a−s) k1(a)

k1(s)
V0(s)ds

= ψxe−λak1(a) − σβψS 0k1(a)y
∫ a

0
e−λ(a−s)ds

= ψxe−λak1(a) − σβψS 0k1(a)y
1
λ

(
1 − e−λa

)
.

(23)
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Substituting (23) and (22) into the first and the second equation of (21), we have the characteristic
equation

det(∆(λ)) =

∣∣∣∣∣∣ A11 A12

0 A22

∣∣∣∣∣∣ = 0, (24)

where

A11 =(λ + µ)
(
1 + ψK̂1(λ)

)
,

A12 =βS 0
(
1 +

1
λ
σψ(K̂ − K̂ (λ))

)
,

A22 =λ + (µ + δ1 + γ) − Φ̂(λ) − σβψS 0K1 − βS 0.

Then the roots of Equation (24) are determined by the following equations

(λ + µ)
(
1 + ψK̂1(λ)

)
= 0 (25)

and
λ + (µ + δ1 + γ) − Φ̂(λ) − σβψS 0K1 − βS 0 = 0. (26)

Obviously, λ = −µ is the root of Equation (25). Then we need only to consider the root of Equation
(26) which can be rewritten as

λ + µ + δ1 + γ(λ + µ + δ2)Φ̂1(λ) = (σψK1 + 1) βS 0. (27)

We also have that

1 =
(σψK1 + 1) βS 0

λ + µ + δ1 + γ(λ + µ + δ2)Φ̂1(λ)
. (28)

Define a functionH(λ) to be the right-hand side of Equation (28). It follows from the definition of
the basic reproduction number R0 (see (7)), we have that H(0) = R0. By direct computing, it is easy
to show thatH ′(λ) < 0, that is,H(λ) is a decreasing function of λ with lim

t→+∞
H(λ) = 0.

Assume that λ = x + iy is a root of Equation (28). Then it follows from (28) that

x ≥ 0⇒ 1 = |H(λ)| ≤ |H(x)| ≤ H(0) = R0, i.e., R0 ≥ 1.

Thus, we can have that <(λ) is negative if R0 < 1, and therefore the steady state E0 is locally
asymptotically stable if R0 < 1 and it is unstable if R0 > 1. �

In the following, we will use the Fluctuation Lemma to establish the global stability of the drug-free
steady state E0. To this end, we first introduce the notation

g∞ = lim inf
t→∞

g(t) and g∞ = lim sup
t→∞

g(t).

Then the Fluctuation Lemma is given as follows.

Lemma 3.2. (Fluctuation Lemma [13]) Let g : R+ → R be a bounded and continuously differentiable
function. Then there exist sequences {sn} and {tn} such that sn → ∞, tn → ∞, g(sn) → g∞, g′(sn) → 0,
g(tn)→ g∞ and g′(tn)→ 0 as n→ ∞.
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Lemma 3.3. [15] Suppose f : R+ → R be a bounded function. Then

lim sup
t→∞

∫ t

0
h(θ) f (t − θ)dθ ≤ f∞‖h‖1,

where ‖h‖1 =
∫ ∞

0
h(s)ds.

Using integration, U2(θ, t) and V(a, t) satisfy the following Volterra formulation:

U2(θ, t) =


γU1(t − θ)Φ1(θ), if t ≥ θ,

U2(θ − t, 0)
Φ1(θ)

Φ1(θ − t)
, if θ ≥ t.

(29)

V(a, t) =

 ψS (t − a)e−
∫ a

0 (µ+α(τ)+σβU1(t−τ))dτ, if t ≥ a,

V(a − t, 0)e−
∫ t

0 (µ+α(a−τ)+σβU1(τ))dτ, if a ≥ t.
(30)

Theorem 3.4. If R0 < 1, then the drug-free steady state E0 is the unique steady state of system (1),
and it is globally stable.

Proof. Theorem 3.1 shows that the drug-free steady state E0 of system (1)) is locally stable if R0 < 1.
To use the Fluctuation Lemma, substituting the expressions of V(a, t) and U2(θ, t) into the first two
equations of system (1), we have that

dS
dt

= Λ − βS (t)U1(t) +

∫ t

0
ψα(a)e−

∫ a
0 (µ+α(τ)+σβU1(t−τ))dτS (t − a)da

−(µ + ψ)S (t) + FV(t)

dU1

dt
= βS (t)U1(t) + σβU1(t)

∫ t

0
ψe−

∫ a
0 (µ+α(τ)+σβU1(t−τ))dτS (t − a)da

−(µ + δ1 + γ)U1(t) +

∫ t

0
Φ(θ)U1(t − θ)dθ + FU(t) + FUV(t),

(31)

where

FV(t) =

∫ ∞

t
ψα(a)V(a − t, 0)e−

∫ t
0 (µ+α(a−τ)+σβU1(τ))dτda,

FU(t) =

∫ ∞

t
p(θ)U2(θ − t, 0)

Φ1(θ)
Φ1(θ − t)

dθ,

FUV(t) =σβU1(t)
∫ ∞

t
V(a − t, 0)e−

∫ t
0 (µ+α(a−τ)+σβU1(τ))dτda

with lim
t→∞

FV(t) = 0, lim
t→∞

FU(t) = 0 and lim
t→∞

FUV(t) = 0.

Choose the sequences t1
n → ∞ such that S (t1

n) → S∞ and S ′(t1
n) → 0. Then FV(t) → 0 as n → ∞.

With the assistance of the Fluctuation Lemma, it follows from the first equation of (31) we have that

0 = Λ − βS∞U1(t) − (µ + ψ)S∞ + S∞ψK ,
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and

S∞ ≤
Λ

µ + ψ − ψK
.

Choose the sequences t2
n → ∞ such that U1(t2

n) → U∞1 and U′1(t2
n) → 0. Then FU(t) → 0 and

FUV(t) → 0 as n → ∞. With the assistance of the Fluctuation Lemma, it follows from the second
equation of (31) we have that

0 ≤βS∞U∞1 + σβψK1S∞U∞1 − (µ + δ1 + γ)U∞1 + φU∞1
= (βS∞(1 + σψK1) − (µ + δ1 + γ) + φ) U∞1

≤

(
β

Λ(1 + σψK1)
µ + ψ − ψK

− (µ + δ1 + γ) + φ

)
U∞1

=(µ + δ1 + γ − φ)(R0 − 1)U∞1 .

Thus we obtain that U∞1 → 0 if R0 < 1. It then follows from (29) we have that lim
t→∞

U2(θ, t) = 0.

Choose the sequences t3
n → ∞ such that S (t3

n) → S∞ and S ′(t3
n) → 0. Note that lim

n→∞
U1(t3

n) = 0 and

lim
n→∞

FV(t3
n) = 0. It then follows from the first equation of (31) we have that

0 = Λ − βS∞U∞1 − (µ + ψ)S∞ + ψK S∞ = Λ − (µ + ψ)S∞ + ψK S∞.

It follows that
Λ

µ + ψ − ψK
= S∞ ≤ S∞ ≤

Λ

µ + ψ − ψK
,

which implies that lim
t→∞

S (t) = Λ
µ+ψ−ψK

. It follows from (30) we have that

lim
t→∞

V(a, t) =
ψΛ

µ + ψ − ψK
k1(a) = V0(a).

Therefore, (S ,U1,U2,V)→ E0 in R+ × R+ × L1
+ × L1

+ as t → ∞. This completes the proof of Theorem
3.4. �

4. Stability of the drug spread steady state

This section aims to establish the stability of the drug spread steady state of system (1) in terms of
the basic reproduction number R0.

By a similar discussion as Theorem 3.5 in [10], we have the uniform persistence result as following.

Theorem 4.1. Suppose the heroin spread is initially present, i.e., U10 > 0. If R0 > 1, then the semiflow
generated by system (1) is uniformly persistent, i.e., there exists ε > 0 which is independent of initial
values such that

lim inf
t→∞

S (t) ≥ ε, lim inf
t→∞

U1(t) ≥ ε, lim inf
t→∞

‖U2(·, t)‖L1
+
≥ ε

and lim inft→∞ ‖V(·, t)‖L1
+
≥ ε.
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For the sake of convenience, we let

K̂π(λ) :=
∫ ∞

0
π(a)e−λada, and K̂α(λ) =

∫ ∞

0
α(a)π(a)e−λada. (32)

It then follows that
K̂α(λ) = 1 − (λ + µ + σβU∗1)K̂π(λ). (33)

In the following, we try to study the stability of the drug spread steady state E∗ (S ∗, U∗1, U∗2(θ), V∗(a))
of system (1). We let

S (t) = S̃ (t) + S ∗, U1(t) = Ũ1(t) + U∗1, U2(θ, t) = Ũ2(θ, t) + U∗2(θ)

and V(a, t) = Ṽ(a, t) + V∗(a). By linearization of system (1) at the steady state E∗, we obtain the
following system

dS̃ (t)
dt

= −(µ + ψ)S̃ (t) − βU∗1S̃ (t) − βS ∗Ũ1(t) +

∫ ∞

0
α(a)Ṽ(a, t)da,

dŨ1(t)
dt

= βU∗1S̃ (t) + βS ∗Ũ1(t) + σβU∗1

∫ ∞

0
Ṽ(a, t)da + σβ

∫ ∞

0
V∗(a)daŨ1(t)

−(µ + δ1 + γ)Ũ1(t) +

∫ ∞

0
p(θ)Ũ2(θ, t)dθ,

∂Ũ2(θ, t)
∂θ

+
∂Ũ2(θ, t)

∂t
= −(µ + δ2 + p(θ))Ũ2(θ, t),

Ũ2(0, t) = γŨ1(t),

∂Ṽ(a, t)
∂a

+
∂Ṽ(a, t)
∂t

= −(µ + α(a) + σβU∗1)Ṽ(a, t) − σβV∗(a)Ũ1(t),

Ṽ(0, t) = ψS̃ (t).

(34)

To analyze the asymptotic behaviors around E∗, we let

S̃ (t) = xeλt, Ũ1(t) = yeλt, Ũ2(θ, t) = z(θ)eλt, and Ṽ(a, t) = w(a)eλt

where x, y, z(θ) and w(a) can be determined. Then, we consider the following eigenvalue problem

λx = −(µ + ψ)x − βU∗1 x − βS ∗y(t) +

∫ ∞

0
α(a)w(a)da,

λy = βU∗1 x + βS ∗y + σβU∗1

∫ ∞

0
w(a)da +

∫ ∞

0
p(θ)z(θ)dθ

+σβ

∫ ∞

0
V∗(a)day − (µ + δ1 + γ)y,

dz(θ)
dθ

= −(λ + µ + δ2 + p(θ))z(θ),

z(0) = γy,

dw(a)
da

= −(λ + µ + α(a) + σβU∗1)w(a) − σβV∗(a)y,

w(0) = ψx.

(35)
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Solving the third equation of (35), we have

z(θ) = z(0)e−λθΦ1(θ) = γye−λθΦ1(θ). (36)

Solving the fifth equation of (35), we have

w(a) = w(0)e−λaπ(a) − σβy
∫ a

0
e−λ(a−s)π(a)

π(s)
V∗(s)ds

= ψxe−λaπ(a) − σβy f (a, λ),
(37)

where

f (a, λ) =

∫ a

0
e−λ(a−s)π(a)

π(s)
V∗(s)ds = ψS ∗π(a)

∫ a

0
e−λ(a−s)ds

=ψS ∗π(a)
∫ a

0
e−λsds = ψS ∗π(a)

1
λ

(
1 − e−λa

)
.

Substituting (37) into the first equation of (35), we have

x = −
y

G11

(
βS ∗ + σβ

∫ ∞

0
α(a) f (a, λ)da

)
= −

y
G11

[
βS ∗ + σβψS ∗

1
λ

∫ ∞

0
α(a)π(a)

(
1 − e−λa

)
da

] (38)

where
G11 = λ + (ψ + µ + βU∗1) − ψK̂α(λ).

It follows from (33) we have that

G11 =(λ + µ)
(
1 + ψK̂π(λ)

)
+ βU∗1

(
1 + σψK̂π(λ)

)
.

Substituting (36) and (37) into the second equation of (35), by use of σβψS ∗Kπ = (µ+δ1 +γ)−βS ∗−φ
(i.e., the second equation of (13)), we have that(

λ + φ − Φ(λ) + σ2β2U∗1

∫ ∞

0
f (a, λ)da

)
y =

(
βU∗1 + σψβU∗1K̂π(λ)

)
x.

Substituting (38) into the above equation and dividing both sides by y leads to the characteristic
equation

λ+ φ − Φ(λ) + σ2β2ψS ∗U∗1
1
λ

∫ ∞

0
π(a)

(
1 − e−λa

)
da

= −
(
βU∗1 + σψβU∗1K̂π(λ)

) 1
G11

·

[
βS ∗ + σβψS ∗

1
λ

∫ ∞

0
α(a)π(a)

(
1 − e−λa

)
da

]
.

(39)
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It follows from Equation (39) we have that

G11

(
λ + φ − Φ̂(λ)

)
+β2S ∗U∗1

(
1 + σψK̂π(λ)

)2
+

1
λ
σ2β2ψS ∗U∗1G11

(
Kπ − K̂π(λ)

)
=

1
λ
σβ2ψS ∗U∗1

(
Kπ − K̂π(λ)

)
(µ + σβU∗1)

(
1 + σψK̂π(λ)

)
.

(40)

Due to the fact that the characteristic equation (39) is too complex, it is very difficult to determine
the distribution of the eigenvalues. In the following, we will study the stability of the drug spread
steady state E∗ in three special cases of system (1) respectively.

Case (i) We assume that α(a) = 0, that is, the vaccine does not wane once the host is vaccinated.
which is reasonable since the heroin does not change the toxic (pathogenic) substance. Mathematically,
letting

∫ ∞
0

V(a, t)da = V(t) in this case, we can rewrite system (1) as

dS
dt

= Λ − (µ + ψ)S (t) − βS (t)U1(t),

dU1

dt
= βS (t)U1(t) + σβU1(t)V(t) − (µ + δ1 + γ)U1(t) +

∫ ∞

0
p(θ)U2(θ, t)dθ,

∂U2(θ, t)
∂θ

+
∂U2(θ, t)

∂t
= −(µ + δ2 + p(θ))U2(θ, t),

dV(t)
dt

= ψS (t) − (µ + σβU1(t))V(t),

U2(0, t) = γU1(t),

S (0) = S 0, U1(0) = U10, U2(θ, 0) = U20(θ) ∈ L1
+(0,∞), V(0) = V0.

(41)

Then we have the following result.

Lemma 4.2. If α(a) ≡ 0, the drug spread steady state E∗ of system (41) is locally asymptotically stable
if it exists.

Proof. Linearizing system (41) at its positive steady state (S ∗,U∗1,U
∗
2(·),V∗), we have the following

characteristic equation ∣∣∣∣∣∣∣∣∣
λ + µ + ψ + βU∗1 βS ∗ 0

−βU∗1 λ + φ − Φ̂(λ) −σβU∗1
−ψ σβV∗ λ + µ + σβU∗1

∣∣∣∣∣∣∣∣∣ = 0. (42)

By simple calculations, we have the following

B1(λ)B2(λ)(λ + φ − Φ̂(λ)) + B1(λ)σ2β2U∗1V∗ + B2(λ)β2U∗1S ∗ + σψβ2U∗1S ∗ = 0, (43)

where
B1(λ) = λ + µ + ψ + βU∗1, B2(λ) = λ + µ + σβU∗1.

Obviously, if σ , 0, λ = −(µ + ψ + βU∗1) and λ = −(µ + σβU∗1) are not the roots of Equation (43).
Dividing both side of Equation (43) by B1(λ)B2(λ) leads to

λ + φ + Z = Φ̂(λ), (44)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 397–420.



411

where

Z =
σ2β2U∗1V∗

B2(λ)
+
β2U∗1S ∗

B1(λ)
+
σψβ2U∗1S ∗

B1(λ)B2(λ)
.

Now, assume that λ is a root of Equation (44) with <(λ) ≥ 0. If we can prove the real part of Z is
positive (see Appendix A for its detailed proof), then by using |Φ̂(λ)| ≤ φ, we have

φ ≤ |λ + φ| < |λ + φ + Z| = |Φ̂(λ)| ≤ φ

This contradiction implies that all roots of Equation (44) have negative real parts. Hence, the positive
steady state (S ∗,U∗1,U

∗
2(·),V∗) of system (41) is locally stable if it exists. �

Case (ii) We assume that σ = 0, i.e., the heroin vaccine can provide a prefect protection for the
vaccinated individuals to avoid the heroin drug addiction. It then follows that π(a) = k1(a).
Mathematically, in this case, system (1) can be rewritten as

dS
dt

= Λ − (µ + ψ)S (t) − βS (t)U1(t) +

∫ ∞

0
α(a)V(a, t)da,

dU1

dt
= βS (t)U1(t) − (µ + δ1 + γ)U1(t) +

∫ ∞

0
p(θ)U2(θ, t)dθ,

∂U2(θ, t)
∂θ

+
∂U2(θ, t)

∂t
= −(µ + δ2 + p(θ))U2(θ, t),

∂V(a, t)
∂a

+
∂V(a, t)
∂t

= −(µ + α(a))V(a, t),

U2(0, t) = γU1(t), V(0, t) = ψS (t),

S (0) = S 0, U1(0) = U10, U2(θ, 0) = U20(θ), V(a, 0) = V0(a).

(45)

Lemma 4.3. If σ = 0, the drug spread steady state E∗ of system (45) is globally asymptotically stable
if it exists.

Proof. It then follows from (18) and (19) we have that Equation (40) can be modified as(
λ + µ + ψ + βU∗1 − Ŝ α(λ)

) (
λ + φ − Φ̂(λ)

)
+ β2S ∗U∗1 = 0. (46)

Since λ = 0 is not the roots of Equation (46). Both sides of Equation (46) are divided by
(
λ + φ − Φ̂(λ)

)
,

we obtain
λ + µ + ψ + βU∗1 + Z1 = Ŝ α(λ) (47)

where

Z1 =
β2S ∗U∗1

λ + φ − Φ̂(λ)
.

Assuming λ is a root of Equation (47), we can prove that <(λ) (i.e., the real part of λ) is negative.
Supposed<(λ) is nonnegative, then the real part of Z is nonnegative (see Appendix B). It follows from
(10) and (47) we have that

ψ < |µ + ψ + βU∗1 | ≤ |λ + µ + ψ + βU∗1 + Z1| = |Ŝ α(λ)| < ψ, (48)
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which is a contradiction. So, all roots of Equation (47) have negative real part, and therefore all roots
of Equation (46) have negative real part and the drug spread steady state E∗ of system (45) is locally
asymptotically stable if it exists.

Based on the persistence results in Theorem 4.1 and the local stability results of E∗ of system (45),
we will use a suitable Lyapunov functional to prove the global stability of E∗.

Set g(x) = x − 1 − ln x, for x ∈ R+. The function g(x) has a global minimum at x = 1 with g(1) = 0.
For our presentation here, we define

ε1(θ) =

∫ ∞

θ

p(τ)e−
∫ τ
θ

(µ+δ2+p(s))dsdτ and ε2(a) =

∫ ∞

a
α(τ)V∗(τ)dτ. (49)

Note that ε1(θ), ε2(a) > for all θ > 0 and a > 0 respectively. We can easily check that ε1(0) = φ/γ,
ε2(0) =

∫ ∞
0
α(a)V∗(a)da and

dε1(θ)
dθ

= ε1(θ)(µ + δ2 + p(θ)) − p(θ) and
dε2(a)

da
= −α(a)V∗(a). (50)

Now, we define the following Lyapunov functional

W(t) = WS (t) + WU1(t) + WU2(t) + WV(t), (51)

where

WS (t) = S ∗g
(
S (t)
S ∗

)
,

WU1(t) = U∗1g
(
U1(t)
U∗1

)
,

WU2(t) =

∫ ∞

0
ε1(θ)U∗2(θ)g

(
U2(θ, t)
U∗2(θ)

)
dθ,

WV(t) =

∫ ∞

0
ε2(a)g

(
V(a, t)
V∗(a)

)
da,

(52)

Then W is bounded. Then we calculate the time derivative of W(t) along with the solutions of system
(45). Following the results in the proof of Theorem 2.2 in [10] and the proof of Theorem 3.11 in [30],
we have that

dWS (t)
dt

= − (µ + ψ)S ∗
(

S ∗

S (t)
+

S (t)
S ∗
− 2

)
+ βS ∗U∗1

(
1 −

S ∗

S (t)

) (
1 −

S (t)
S ∗

U1(t)
U∗1

)
+

∫ ∞

0
α(a)V∗(a)

(
V(a, t)
V∗(a)

−
V(a, t)
V∗(a)

S ∗

S (t)
− 1 +

S ∗

S (t)

)
da,

dWU1(t)
dt

=βS (t)U1(t) − βS ∗U1(t) − βS (t)U∗1 + βS ∗U∗1

+

∫ ∞

0
p(θ)U∗2(θ)

(
U2(θ, t)
U∗2(θ)

−
U1(t)
U∗1

−
U∗1

U1(t)
U2(θ, t)
U∗2(θ)

+ 1
)

dθ,

dWU2(t)
dt

= − ε1(θ)U∗2(θ)g
(
U2(θ, t)
U∗2(θ)

) ∣∣∣∣
θ=∞

+ φU∗1g
(
U1(t)
U∗1

)
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−

∫ ∞

0
p(θ)U∗2(θ)g

(
U2(θ, t)
U∗2(θ)

)
dθ,

dWV(t)
dt

= − ε2(a)g
(
V(a, t)
V∗(a)

) ∣∣∣∣
a=∞

+

∫ ∞

0
α(a)V∗(a)g

(
V(0, t)
V∗(0)

)
da

−

∫ ∞

0
α(a)V∗(a)g

(
V(a, t)
V∗(a)

)
da

= +

∫ ∞

0
α(a)V∗(a)

(
S (t)
S ∗
− ln

S ∗

S (t)
−

V(a, t)
V∗(a)

+ ln
V(a, t)
V∗(a)

)
da

− ε2(a)g
(
V(a, t)
V∗(a)

) ∣∣∣∣
a=∞

.

By adding dWS (t)
dt and dWV (t)

dt together, though some simple calculations, we have that

dWS (t)
dt

+
dWV(t)

dt

=βS ∗U∗1

(
1 −

S ∗

S (t)

) (
1 −

S (t)
S ∗

U1(t)
U∗1

)
− (µ + ψ)S ∗

(
S ∗

S (t)
+

S (t)
S ∗
− 2

)
+

∫ ∞

0
α(a)V∗(a)

(
S ∗

S (t)
+

S (t)
S ∗
− 2

)
da −

∫ ∞

0
α(a)V∗(a)g

(
V(a, t)
V∗(a)

S ∗

S (t)

)
da

− ε2(a)g
(
V(a, t)
V∗(a)

) ∣∣∣∣
a=∞

=βS ∗U∗1

(
1 −

S ∗

S (t)

) (
1 −

S (t)
S ∗

U1(t)
U∗1

)
−

∫ ∞

0
α(a)V∗(a)g

(
V(a, t)
V∗(a)

S ∗

S (t)

)
da

− ε2(a)g
(
V(a, t)
V∗(a)

) ∣∣∣∣
a=∞

+

(
S ∗

S (t)
+

S (t)
S ∗
− 2

) (∫ ∞

0
α(a)V∗(a)da − (µ + ψ)S ∗

)
.

Combining the above four compartments of the Lyapunov functionals, through some simple
calculations, we obtain

dW(t)
dt

= − Λ

(
S ∗

S (t)
+

S (t)
S ∗
− 2

)
− ε1(θ)U∗2(θ)g

(
U2(θ, t)
U∗2(θ)

) ∣∣∣∣
θ=∞

−

∫ ∞

0
p(θ)U∗2(θ)g

(
U∗1

U1(t)
U2(θ, t)
U∗2(θ)

)
dθ − ε2(a)g

(
V(a, t)
V∗(a)

) ∣∣∣∣
a=∞
≤ 0.

Notice that equality holds only if S (t) = S ∗, U1(t) = U∗1 and U2(θ, t) = U∗2(θ). Thus we conclude
that the largest positive invariant is the singleton {E∗}. By Lyapunov-LaSalle invariance principle, we
conclude that the drug spread steady state E∗ is globally asymptotically stable when it exists. �

Case (iii) We assume that σ = 1, i.e., the heroin vaccine is noneffective and cannot provide any
protection from heroin drug addicted, the vaccination makes no sense. In this case, mathematically,
the compartments S and V can be combined, system (1) can be rewritten as the system in [10] (see
Appendix C for more details) and the drug spread steady state E∗ is locally and globally stable.
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5. Numerical simulation and discussion

In this paper, we have studied an age structured heroin transmission model with treatment and
vaccination, in which the vaccination can only provide an imperfect protection and the vaccinated
wanes the protection as vaccination age goes.

The basic reproduction numberR0 of our system (1) has been found by the definition. WhenR0 < 1,
system (1) has only the drug free steady state E0 and it is globally asymptotically stable, which implies
that the heroin drug will die out eventually. Meanwhile, from the expression of R0, we find that the
vaccination, although it is imperfect, plays an important role in the control of heroin spread. When
R0 > 1, system (1) has only the drug spread steady state E∗ and it is uniformly persistent provided that
the heroin spread is initially present. Due to the fact that the characteristic equation of system (1) at
the drug spread steady state is very complex, it is difficult to discuss the distribution of its eigenvalues.
From the biology angle, we have recast system (1) into three special cases and obtained the local and
global stability of the drug spread steady state E∗ if it exists (see Lemmas 4.2-4.3).

Recalling that the expression of R0 in (7), it follows from 0 ≤ σ ≤ 1 we have that

βΛ

µ(µ + δ1 + γ(µ + δ2)φ1)
1 + σψK1

(1 + ψK1)
≤

βΛ

µ(µ + δ1 + γ(µ + δ2)φ1)
. (53)

It implies that R0(ψ) ≤ R0(0), i.e., the vaccination plays an important role in the basic reproduction
number which can reduce the reproduction number, although the vaccine provides an imperfect
protection. Thus, heroin vaccine will definitely benefit the people.

In the following, we will present some numerical simulations to study the dynamic behaviors of
system (1) under the condition that the basic reproduction number is lager than one, i.e., R0 > 1.
Before that, for simplicity, we take one month as the unit time. Note that the function θ → p(θ) and
a → α(a) are both almost everywhere bounded and belong to L∞+ ((0,+∞),R) \ {0L∞}. In this section
we assume that the vaccine waning rate of the vaccinated individuals is

α(a) =


0.10(a − 10)2e−0.35(a−10), 10 < a ≤ 40;

0.0025, 40 < a < a;
0, otherwise,

(54)

and the drug reuse rate of the individuals in treatment is

p(θ) = 0.8(θ + 2)e−0.2(θ+5), (55)

for θ ∈ [0, θ], where a, θ are the maximum value of vaccination age and treat-age respectively. For
simplify, we adopt that a = θ = 50 (months).

To study the stability of the drug spread steady state of system (1), we adopt the other parameters
in system (1) as follows

Λ = 103, β = 3.5 × 10−7, µ = 0.001, δ1 = 0.02, δ2 = 0.01, ψ = 0.1, σ = 0.85, γ = 4. (56)

It follows from the expression of the basic reproduction number R0 that R0 = 1.0117 > 1. By use
of the parameter values adopted in (54)-(56) and appropriate initial conditions, we will perform some
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numerical simulations with the help of Matlab. The numerical simulations show that the drug spread
steady state E∗ is asymptotically stable if it exists (see Figure 1).

Furthermore, we want to illustrate that the stability of the drug spread steady state is not dependent
on the initial conditions by numerical simulations. Let

Λ = 103, β = 7 × 10−7, µ = 0.001, δ1 = 0.02, δ2 = 0.01, ψ = 0.5, σ = 0.85, γ = 0.8. (57)

We obtain that R0 = 7.6102 > 1 and simulate the solutions of system (1) under four pairs of initial
values (see Figure 2). The numerical simulation results show that the stability of the drug spread steady
state is not dependent on the initial conditions. In this case, we may conjecture that the drug spread
steady state is globally asymptotically stable whenever it exists.
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(a) The solution of S (t)
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(b) The solution of U1(t)

(c) Age distribution U2(θ, t) (d) Age distribution V(a, t)

Figure 1. If R0 = 1.0117 > 1, the drug spread steady state E∗ of system (1) is asymptotically
stable with initial conditions S 0 = 15000, U10 = 100, U20(0) = 10, U20(θ) = 0 for θ ∈ (0, θ],
V0(0) = 3000, V0(a) = 0 for a ∈ [0, a].

Appendix A.

In the course of the proof of Lemma 4.2, we let<(λ) ≥ 0 and want to prove that<(Z) > 0, where

Z =
σ2β2U∗1V∗

B2(λ)
+
β2U∗1S ∗

B1(λ)
+
σψβ2U∗1S ∗

B1(λ)B2(λ)
(A.1).
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Figure 2. If R0 = 7.6102 > 1, the solutions of system (1) approach the drug spread steady
state E∗ of system (1) with four different initial conditions.

To study the sign of<(Z), we let λ = x + iy with x ≥ 0 which is assumed nonnegative in the proof of
Lemma 4.2. Substituting λ = x + iy into (A.1), by some calculations, we can have that

<

(
σ2β2U∗1V∗

B2(λ)

)
=

(x + B22)σ2β2U∗1V∗

(x + B22)2 + y2 ,

<

(
β2U∗1S ∗

B1(λ)

)
=

(x + B11)β2U∗1S ∗

(x + B11)2 + y2 ,

<

(
σψβ2U∗1S ∗

B1(λ)B2(λ)

)
=

[(x + B11)(x + B22) − y2]σψβ2U∗1S ∗

[(x + B11)2 + y2][(x + B22)2 + y2]
,

where
B11(λ) = µ + ψ + βU∗1, B22 = µ + σβU∗1.

Summing the above three terms, we have that

<(Z) =<

(
σ2β2U∗1V∗

B2(λ)

)
+<

(
β2U∗1S ∗

B1(λ)

)
+<

(
σψβ2U∗1S ∗

B1(λ)B2(λ)

)
=

1
C

{
(x + B22)σ2β2U∗1V∗[(x + B11)2 + y2]

+ (x + B11)β2U∗1S ∗[(x + B22)2 + y2]

+ [(x + B11)(x + B22) − y2]σψβ2U∗1S ∗
}
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=
1
C

{
D1 + D2y2

}
,

where

C =[(x + B11)2 + y2][(x + B22)2 + y2] > 0,
D1 =(x + B22)σ2β2U∗1V∗(x + B11)2 + (x + B11)β2U∗1S ∗(x + B22)2

+ (x + B11)(x + B22)σψβ2U∗1S ∗ > 0,
D2 =(x + B22)σ2β2U∗1V∗ + (x + B11)β2U∗1S ∗ − σψβ2U∗1S ∗

=(x + B22)σ2β2U∗1V∗ +
(
x + µ + βU∗1 + (1 − σ)ψ

)
β2U∗1S ∗ > 0.

It then follows that the real part of Z is positive, i.e.,<(Z) > 0.

Appendix B.

To consider the roots of Equation (47), we let<(λ) ≥ 0 and want to prove that<(Z1) > 0, where

Z1 =
β2S ∗U∗1

λ + φ − Φ̂(λ)
(B.1).

Let λ = x + iy with x > 0. By substituting λ = x + iy into (B.1), we have that

Z1 =
β2S ∗U∗1

x + φ −
∫ ∞

0
Φ(θ)e−(x+iy)θdθ + iy

=
β2S ∗U∗1
E1 + iE2

,

and
<(Z1) =

E1

E2
1 + E2

2

β2S ∗U∗1.

where E1 = x + φ −
∫ ∞

0
Φ(θ)e−xθ cos(yθ)dθ and E2 = y +

∫ ∞
0

Φ(θ)e−xθ sin(yθ)dθ. It follows from

E1 = x + φ −

∫ ∞

0
Φ(θ)e−xθ cos(yθ)dθ ≥ x + φ −

∫ ∞

0
Φ(θ)e−xθdθ ≥ x ≥ 0

we have that<(Z1) is nonnegative.

Appendix C.

If σ = 1. Set V(t) =
∫ ∞

0
V(a, t)da. It follows from the last equation of system (1) that we have

dV(t)
dt

=

∫ ∞

0

∂V(a, t)
∂t

da

=

∫ ∞

0

(
−
∂V(a, t)
∂a

− (µ + α(a) + βU1(t))V(a, t))
)

da

=V(a, t)
∣∣∣∣a=0

a=∞
− (µ + βU1(t))

∫ ∞

0
V(a, t)da −

∫ ∞

0
α(a)V(a, t)da
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=ψS (t) − (µ + βU1(t))V(t) −
∫ ∞

0
α(a)V(a, t)da.

Denote that Ŝ (t) := S (t) + V(t). By dropping the hat, we have that

dS (t)
dt

= Λ − µS (t) − βS (t)U1(t).

Then system (1) can be rewritten as the main system in [10] and the drug spread steady state E∗ is
locally stable.
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