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Abstract: Apart from the traditional role of preventing progression from HIV to AIDS, antiretroviral
drug therapy (ART) has been shown to have the additional benefit of substantially reducing infec-
tiousness in infected people, making ART potentially an important strategy in the fight against HIV.
We developed a mathematical model based on the WHO’s 5-stage classification of HIV/AIDS disease
progression. Our model stratifies the population by disease stage, diagnosis and treatment. We used
optimal control methods and data from South Africa to determine the best time-dependent treatment
allocation required to minimize new infections, infection-years, deaths and cost. Our results indicated
that the treatment strategy to minimize infection-years and new infections is to place emphasis on
early treatment (i.e., treatment in Stage II & III), while to minimize cost and death, the emphasis
should be on late treatment (i.e., Stage III & IV). Applying the optimal treatment strategy also leads
to a substantial reduction in disease incidence and prevalence. The results of this study will hopefully
provide some guidance for policymakers in determining how to best allocate antiretroviral drugs in
order to maximize the benefits of treatment.
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1. Introduction

After three decades, HIV/AIDS still remains a public health threat, especially in developing
countries. The World Health Organization (WHO) estimates that globally about 35 million people
have already lost their lives due to AIDS, and in 2015, there were 36.7 million people living with HIV,
with 2.3 million new infections and 1.1 million AIDS-related deaths [32].

Once a person becomes infected, the WHO defines five clinical stages as the infection progresses
[39]. The acute stage is in the first few months following the initial introduction of the virus
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into the body. This stage is asymptomatic with no significant immunosuppression (CD4 count >

500 cells mm−3) and a spike in virus titre. Stage I is also asymptomatic with no significant
immunosuppression but unlike the acute stage, it is characterized by a low viral load. Stage II is
symptomatic: the infected person exhibits moderate weight loss amongst other symptoms and mild
immunosuppression (350 < CD4 count < 499 cells mm−3). Stage III is also symptomatic and is
characterized by advanced immunosuppression (200 < CD4 count < 349 cells mm−3). Stage IV is
the AIDS phase, where the infected person exhibits HIV wasting syndrome, amongst other symptoms,
and severe immunosuppression (CD4 <200 cells

mm3 ). This classification based on clinical symptoms is
advantageous because it allows for areas with limited laboratory facilities to estimate HIV disease
progression and aid in the management of HIV/AIDS patients (e.g., when to start treatment).

In terms of transmissibility, due to the high viral loads, the acute stage is characterized by high rates
of transmission. The infected person then goes through a phase (Stages I & II) where the viral load is
lower leading to lower transmission. Without treatment this person moves to Stages III & IV, which
is characterized by high transmission rates due to high viral loads [4, 23, 24]. A study of transmission
involving a cohort of stable partnerships between heterosexuals in Rakai, Uganda quantified the relative
transmissibility of HIV by stage of infection [36] . The probability of transmission per coital act in the
acute stage was estimated to be 8–10 times higher than during asymptomatic (Stages I & II). In the last
2 years before death (Stages III & IV), the probability of transmission per coital act was estimated to
be 4–8 times higher than during asymptomatic infection.

Antiretroviral therapy (ART) are drugs that target the HIV life cycle with the aim of halting HIV
replication and restoring immune function, thus slowing the progression to AIDS [7, 34]. Apart from
traditional role of preventing progression to AIDS, ART has an additional benefit of substantially
reducing the infectiousness of infected people leading to reduced transmission [3, 5]. In 2011, the
HIV Prevention Trials Network (HPTN) reported in their HPTN 052 trial that early ART reduces
HIV transmission amongst serodiscordant couples by 96% [11]. Thanks to the HPTN 052 trial and
other studies on the benefits of treatment, the WHO in June 2013 released new guidelines on the use
of ART for treating and preventing HIV infection, recommending treatment to infected people with
CD4 count > 500 cells mm−3, i.e. from Stage II, thus broadening the spectrum of people eligible for
initiation of ART [40].

Health authorities worldwide are faced with limited resources and must find economical ways to
administer ART. In this study, we used optimal control theory to determine time-dependent treatment
strategies that maximize the effectiveness of population-scale interventions.The strategies are the level
of ART allocation to people in the different disease stages. We measured the effectiveness by total
infection-years, new infections, AIDS-related deaths and cost, and separately found the strategies that
optimize each of them.

Optimal control theory, which was developed by Pontryagin and his co-workers in the late
1950s [29], has been applied to many areas including economics, management, engineering, biology,
physiology and medicine [1, 19, 21, 22, 41]. Indeed, optimal control theory has been used to study
HIV treatment both at the cellular level [8, 18, 20] and at the level of individual patients [16, 28]. All
these optimal control models include an assumption for a quadratic cost of the controls in the objective
function to simplify the solution process. Akin to a few other studies [6, 12, 27], our model does not
make such an assumption and we also impose a constraint on the total drugs available each year.

In this paper, we first introduce our transmission model that captures the 5 stages of HIV/AIDS
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infection and incorporates three controls for treatment in Stages II, III & IV. We then define the
objective functions and the optimal control problem and follow that by an analysis of the optimal
controls. Finally, we present some numerical solutions for the South African HIV epidemic and discuss
the results.

2. Methods

We adopted an HIV model originally developed to study the importance of promoting HIV testing
for preventing secondary transmission (Figure 1) [38]. The model is for an adult heterosexual
population and stratifies the population by HIV status, diagnosis and treatment. People are either
susceptible or infected, and then the infected population is divided into 5 classes based on the WHO
HIV/AIDS staging system: acute and Stages I–IV. Each of the 5 stages is further divided in 3 levels:
those who are infected but unaware of their HIV status (Undiagnosed), those who have been diagnosed
but are not yet on treatment (Diagnosed) and those on treatment (Treated). To reflect current WHO
guidelines on treatment, a fraction of diagnosed people are on treatment in Stages II, III & IV.
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Figure 1. Diagram of 5-stage HIV/AIDS infection model. HIV-infected people are in red
and susceptible people (S ) people in blue. The first subscript on the state variables I denotes
diagnosis or treatment status (Undiagnosed, Diagnosed or Treated) and the second denotes
stage of infection (Acute Stage, Stage I, Stage II, Stage III or Stage IV).

People enter the model as susceptible (S ) with a recruitment rate b and leave either through natural
death (µ) or death due to AIDS or HIV-related symptoms (γ4). Once infected, people move from the
susceptible class to the undiagnosed acute infection class (IUa). From here, people get tested at rate d
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Table 1. Model parameters.

Parameter Description Value Source
b Birth rate 0.0309 y−1 [31]
µ Natural death rate 0.0244 y−1 [31]
γ4 Disease induced death rate 0.9091 y−1 [33]
α Efficacy of treatment at reducing transmission 0.960 [11]
α Efficacy of treatment at reducing transmission 0.960 [11]
ξ Reduction in transmission from individuals that

know their HIV status
68% [25]

βa HIV Acquisition Risk in Acute Stage 0.6560 y−1 [36]
β1 HIV Acquisition Risk in Stage I 0.0960 y−1 [36]
β2 HIV Acquisition Risk in Stage II 0.6540 y−1 [36]
β3 HIV Acquisition Risk in Stage III 0.2480 y−1 [36]
CI Cost of an infection $1,000 y−1 [10]
CD Cost of a death $100,000 —
CT Cost of treatment $120 y−1 [26]
r Discount rate for costs 3% y−1 [15]
ra Rate of Progression from Acute Stage to Stage

I
4.8 y−1 [36]

r1 Rate of Progression from Stage I to Stage II 0.3235 y−1 [36]
r2 Rate of Progression from Stage II to Stage III 0.6667 y−1 [36]
r3 Rate of Progression from Stage III to Stage IV 0.1538 y−1 [36]
y3 Regression Rate from Stage III Stage II 1 y−1 —
y4 Regression Rate from Stage IV Stage III 1 y−1 —
da Testing Rates in Acute Stage 0 y−1 —
d Testing Rates in Stages I–III 0.3333 y−1 [17]
d4 Testing Rates in Stage IV 0.9 y−1 —
τ Treatment Failure Rates in Stages II–IV 0.2 y−1 [30]
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and move into the diagnosed acute infection class (IDa). Likewise, in Stages I, II & III, undiagnosed
people are tested at the same rate d. Undiagnosed people in Stage IV are generally very sick and
will already have shown signs of AIDS so, their testing rate d4 is considerably higher than d. People
in the untreated (IUi) and diagnosed (IDi) classes progress at rate ri into the next infection stage, for
i = {a, 1, 2, 3}. It is difficult to diagnose someone in the acute State of infection, however, being that
the unit of testing rate is per year, the number of diagnoses in the acute stage will be mitigated by the
brief period infected people spend in the acute stage. We assumed that the the testing rate d, for the
acute Stage and Stages I–III is equal to the national testing rate and is not symptom dependent.

A proportion of the diagnosed people in Stages II, III & IV begin treatment at rates u2(t), u3(t) and
u4(t), moving into IT2, IT3 and IT4, respectively. The treatment rates ui(t) are functions of the controls
Ui(t), which will be described below. Treated people in Stage II (IT2) stay in that class because their
immune system does not deteriorate. Treated people in Stage III (IT3) transition back to Stage II (IT2)
at rate y3 due to improvement of their immune system. Likewise, treated people in Stage IV (IT4)
transition back to Stage III (IT3) at rate y4. Treatment failure rates τ might be stage dependent, however
due to a lack of data on this we assumed it to be the same in all of the stages.

New infections occur from unprotected sexual contact between susceptible people and infected
people. People in Stage IV (IU4, ID4 and IT4) have full-blown AIDS, thus we assumed that they are too
ill to engage in sexual activity. Treatment reduces the probability of transmission by α, which we take
to be 96% [11]. There is also evidence to suggest that individuals who know their HIV status change
their sexual behavior (i.e. adopt safer-sex practices), leading to lower transmission [25]. The reduction
in transmission from individuals that know their infection status is ξ. The force of infection, λ, is the
sum over the force of infection by stage:

λ = λa + λ1 + λ2 + λ3, (1)

with

λa =
βa

N
[
IUa + ξIDa

]
,

λ1 =
β1

N
[
IU1 + ξID1

]
,

λ2 =
β2

N
[
IU2 + ξID2 + ξ(1 − α)IT2

]
,

λ3 =
β3

N
[
IU3 + ξID3 + ξ(1 − α)IT3

]
,

(2)

and

N = S +
∑

i∈{a,1,2,3,4}

IUi +
∑

i∈{a,1,2,3,4}

IDi +
∑

i∈{2,3,4}

ITi. (3)
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The HIV model is given by the system of differential equations

dS
dt

= bN − µS − λS ,

dIUa

dt
= λS − (d + ra + µ)IUa,

dIU1

dt
= raIUa − (d + r1 + µ)IU1,

dIU2

dt
= r1IU1 − (d + r2 + µ)IU2,

dIU3

dt
= r2IU2 − (d + r3 + µ + γ3)IU3,

dIU4

dt
= r3IU3 − (d4 + µ + γ4)IU4,

dIDa

dt
= dIUa − (ra + µ)IDa,

dID1

dt
= raIDa + dIU1 − (r1 + µ)ID1,

dID2

dt
= r1ID1 + dIU2 + τIT2 − (u2(t) + r2 + µ) ID2,

dID3

dt
= r2ID2 + dIU3 + τIT3 − (u3(t) + r3 + µ + γ3) ID3,

dID4

dt
= r3ID3 + d4IU4 + τIT4 − (u4(t) + µ + γ4)ID4,

dIT2

dt
= u2(t)ID2 + y3IT3 − (τ + µ)IT2,

dIT3

dt
= u3(t)ID3 + y4IT4 − (τ + y3 + µ)IT3,

dIT4

dt
= u4(t)ID4 − (τ + y4 + µ + γ4)IT4.

(4)

2.1. Optimal control problem formulation

The control variables U2(t), U3(t), U4(t) are the total number of people targeted to be on treatment in
each of the designated Stages II, III & IV at each time. The controls (Ui(t)) are assumed to be bounded
and Lebesgue integrable. From these treatment targets, the flows of people into treatment per unit time
were taken to be

ui(t) = rmaxmax (Ui(t) − ITi, 0) for i = {2, 3, 4}, (5)

where ITi is the total number of people currently on treatment in Stage i, i ∈ {II, III, IV}. rmax is the rate
of enrolling people on treatment per drug available per untreated person with units [time]−1[drugs]−1

[2]. The total treatment is constraint by ν, where is the total number of drugs available,

U2(t) + U3(t) + U4(t) ≤ ν, (6)

We seek to minimize four different objectives: total infection-year, new infections, deaths due to
AIDS, and total cost.
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Total infection-years : Total infection-years is the sum of the number of all the infected people
(undiagnosed, diagnosed, or treated) in all stages at each time, integrated over the time period,

JI(X, u) =

∫ T

0
NI dt, (7)

where (NI) is the sum:

NI = IUa + IU1 + IU2 + IU3 + IU4 + IDa + ID1 + ID2 + ID3 + ID4 + IT2 + IT3 + IT4. (8)

New infections : The total number of new infections is the sum of the rates of new infections arising
from contact of susceptible people with infected people integrated over the time period,

JNI(X, u) =

∫ T

0
NNI dt, (9)

where (NNI) is the rate of new infection,

NNI = λS . (10)

Deaths due to AIDS : The total AIDS-related deaths (ND) is the sum of infected people dying from
AIDS-related diseases. Our assumption that AIDS-related deaths only occur in Stage IV means
that this is the sum of infected people in Stage IV dying from AIDS,

JD(X, u) =

∫ T

0
ND dt. (11)

ND is simply the number of people infected in Stage IV at each time multiplied by the disease
induced deaths rate γ4,

ND = γ4(IU4 + ID4 + IT4). (12)

Total cost The total cost (NC) consists of cost of infections, cost of deaths, and cost of treatment. The
disease cost per year, which includes monetary equivalent loss of the infected people, such as lost
productivity etc., is average cost of disease per person per year multiplied by the total number of
people infected,

CI(t) = cINI(t). (13)

The cost per year of deaths is the the cost per death multiplied by the number of deaths per year,

CD(t) = cDγND(t). (14)

The treatment cost per year is the cost per person per year multiplied by the number of people
treated,

CT(t) = cTNT (t), (15)

where the number of people treated (NT ) is the sum of all people in the treatment class,

NT = IT2 + IT3 + IT4. (16)
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The cost objective is discounted sum of these costs, integrated over the time period:

JC(X, u) =

∫ T

0

[
CI(t) + CD(t) + CT(t)

]
e−rtdt. (17)

The total cost is discounted at rate r, representing the rate a policymaker is willing to pay as
trade-off for the cost today versus future cost [13].

For ease of analysis, we can define system 4 compactly as

Ẋ = g (t, X,U) , (18)

with X = (S , IUa, IU1, IU2, IU3, IU4, IDa, ID1, ID2, ID3, ID4, IT2, IT3, IT4).
The optimal control problem is

Minimize Jk(X,U) for one of k ∈ {I,NI,D,C},
subject to Ẋ = g(t, X,U),

X(0) = X0,

U j ≥ 0 for every j ∈ {2, 3, 4},
U2(t) + U3(t) + U4(t) ≤ ν.

(19)

2.2. Analysis of optimal controls

If we define the integrand of our objective function by fk(t, X) and g(t, X,U) is the right-hand side
of the system of differential equations, then the Hamiltonian is

H(t, X,U, θ) = fk(t, X) + θT g(t, X,U). (20)

Pontryagin’s Maximum Principle [29] converts the optimal control problem into a problem of
minimizing the Hamiltonian point-wise with respect to U2, U3 and U4. See 4 for a detailed
characterization of the optimal control problem.

We can characterize the optimal controls as

∂H

∂U2
= rmaxID2(θ12 − θ9)H(U2 − IT2) = 0,

∂H

∂U3
= rmaxID3(θ13 − θ10)H(U3 − IT3) = 0,

∂H

∂U4
= rmaxID4(θ14 − θ11)H(U4 − IT4) = 0,

(21)

where H(x) is the Heaviside function,

H(x) =

0 if x < 0,
1 if x > 0.

(22)
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The optimal controls are bounded by the number of total drugs available (i.e. 0 ≤ Ui ≤ νi) where ν2, ν3

and ν4 are the total number of drugs allocated to U2, U3 and U4 respectively at each time point. From
(6),

ν2 + ν3 + ν4 ≤ ν (23)

Applying these bounds to the controls we obtain

U∗2(t) =

0 if rmaxID2(θ12 − θ9)H (U2 − IT2) < 0,
ν2 if rmaxID2(θ12 − θ9)H (U2 − IT2) > 0,

(24)

U∗3(t) =

0 if rmaxID3(θ13 − θ10)H (U3 − IT3) < 0,
ν3 if rmaxID3(θ13 − θ10)H (U3 − IT3) > 0,

(25)

and

U∗4(t) =

0 if rmaxID4(θ14 − θ11)H (U4 − IT4) < 0,
ν4 if rmaxID4(θ14 − θ11)H (U4 − IT4) > 0.

(26)

Note that in the numerical results, the singular case (when ∂H
∂Ui

= 0 on a set of positive measure)
does not occur and we can restrict our attention to the bang-bang controls above. We also expect that
at all time points [0,T ] either U∗2(t) + U∗3(t) + U∗4(t) = 0 or U∗2(t) + U∗3(t) + U∗4(t) = ν.

Due to the convexity of the integrand of J with respect to U2, U3 and U4; the priori boundedness
and the Lipschitz property with respect to the state variables, the existence of optimal controls with
the constraint U2 + U3 + U4 ≤ ν follows as a result of minimizing sequences which converge weakly
in L2(0,T ) to an optimal triple (which is an extension of the results of Clayton et al. [9] and Fleming
et al. [14]).

2.3. Numerical simulations

With an initial guess for the control variables U2, U3 and U4, we solve the state equations (4) forward
in time. Using the solutions of the state equations together with the transversality conditions (30), we
solve the adjoint equations (43) backward in time. The control is updated after each iteration using
the new values of state and adjoint variables put into the optimality conditions (21), and the process is
repeated. Iteration is stopped when the difference between successive iteration meet a predetermined
tolerance.

We implemented a numerical algorithm originally developed in Wang [35]. The steps of algorithm
are as follows:

1. Divide the time [0,T ] into W subintervals.
2. We start with an initial guess of the controls U0

2 , U0
3 and U0

4 .
3. Obtain the state variables Xi by integrating the state equation (4) from 0 to T using the controls

U i
2, U i

3 and U i
4 and initial condition Xi(t0) = Xi

0.
4. Integrate the adjoint equations (43) backward in time (from T to 0) to obtain the adjoint variables
θi, using Xi, U i

2, U i
3 and U i

4.
5. Stop the algorithm if εrel‖Pi‖ + ‖Pi+1 − Pi‖ ≤ εabs for P ∈ {X,U, θ}, where εabs and εrel are

predetermined absolute and relative errors, respectively.
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6. If step 5 is not satisfied, adjust the control functions, by replacing U i with U i+1. U i+1 is calculated
by the Newton–Raphson method: U i+1(tk) = U i(tk)−∆∂H i

∂U (tk), k ∈ {0, 1, 2, . . .,W −1} and ∆ being
the step size (∂H

∂U is from 21). We developed a line-search method to find the step size ∆ that
minimizes J for each iteration.

7. Return to step 3.

2.4. Parameterization

Our model is initialized for the beginning of the year 2014 (t = 0), although we used demographic
data from 2012, the date of the last South African National HIV Prevalence, Incidence and Behavior
Survey [30]. We parameterized our model with demographic data from South Africa because of the
availability of excellent demographic statistics. If N0 is initial total adult (ages 15+) population size,
then using prevalence (φ) we determined the infected and the susceptible populations, i.e.

NI(0) = φN0, S (0) = N0 − NI(0). (27)

The initial total infected population in each stage was determined by proportion of time a person spends
in that Stage. If NIa, NI1, NI2, NI3 and NI4 represent the total population in the acute, I, II, II and IV
stages respectively, then

NI j(0) =

1
r j

1
ra

+ 1
r1

+ 1
r2

+ 1
r3

NI(0) for j ∈ {a, 1, ..., 3}. (28)

The acute stage is very short which means generally it is not enough time for an infected person
to be diagnosed, so we assumed that the initial diagnosed population in the acute stage is zero. For
the remaining stages, 76.3% of the infected population were considered diagnosed [17] and of the
diagnosed, 42% are on treatment [33]. The initial conditions are summarized in Table 2.

2.5. Sensitivity

To evaluate the sensitivity of our results to parameter uncertainty, we computed the infection-years,
new infections deaths and cost arising from a 50% increase and 50% decrease in the default parameters:
Regression rates (y3, y4), Testing rates (d, d4), Rate of progression between disease stages (ra, r1, r2,
r3), Rate of treatment failure (τ), Rate of enrolling people on treatment (rmax), Cost of Death (CD) and
Percentage reduction in transmission from individuals that know their HIV status (ξ).

3. Results

he initial drug availability was assumed to be that which is needed to treat 6.4 million people at
any given time, which is enough drugs to treat all of the initial infected population. We simulated our
model to determine the levels of treatment that minimize each of the four objectives over a 10-year
period. The optimal strategies that minimize infection-years and new infections are similar to each
other, and the optimal strategies that minimize death and cost are similar to one another.

To minimize infection-years, the optimal strategy emphasizes early treatment, starting off in the
first few months with a sharp decrease in the number of people being treated in Stage III from about
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Table 2. Initial conditions.

Variable Value
Variable Initial Value

S 30700000
IUa 27283
IU1 94590
IU2 704976
IU3 588584
IU4 53968
IDa 0
ID1 310284
ID2 950229
ID3 793345
ID4 72743
IT2 1362315
IT3 1137396
IT4 104289

5 million to 3.7 million. The decrease in treatment in Stage III corresponds with a sharp increases in
treatment in Stages II & IV. After this initial dynamics, treatment in Stage III stabilizes and a steady
decline in treatment of people in Stage IV with a corresponding increase of treatment in Stage II is
observed (Figure 2A). The optimal strategy prescribes an initial scale-up of treatment in Stage II, III
and IV from 42% to about 56%, 69% and 75% respectively. After the initial scale-up, a decrease in the
proportion of people treated in Stage IV and an increase in treatment of Stage III is observed (Figure
2B). Treatment of people in Stage II increases steadily from 42% and stabilizes at 75% after the second
year. Total treatment coverage also increases rapidly from the current coverage of 42% to about 70%
and is maintained at about 70% throughout the period.

The optimal strategy to minimize new infections also emphasizes early treatment, beginning with
a increase in the number of people being treated in Stage II within the first year and a steady increase
afterwards. The steady increase in treatment in Stage II correspond with decreases in Stage IV. Very
few (20,000) people in Stages IV are being treated. In terms of proportions, the optimal strategy to
minimize new infections is similar to that which minimizes infection-years. The initial decrease in the
proportion of treatment in Stage IV when minimizing both infection-years and new infections is not
observed here (Figure 3B).

The optimal treatment strategies to minimize deaths and cost are to administer late treatment (i.e.,
treatment to Stages III & IV) with treatment in Stage III being the most favorable (Figures 4A and 5A).
An initial scale-up in proportions of people on treatment in all three stages is observed, followed by a
decrease in Stage IV (Figures 4B and 5B). The initial decrease in the proportion of treatment in Stage
IV when minimizing both infection-years and new infections is not observed here.

Over the 10-year period, all four optimal strategies resulted in lower prevalence and incidence than
the current treatment strategy. Under the current treatment strategy which is a fixed 42% treatment
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Figure 2. Optimal strategy to minimize infection-years: (A) number of drugs allocated to
each stage vs time and (B) proportion of people treated in each stage vs time.

across all three stages at all times, prevalence decreases from from 16.8% to 15.4% and annual
incidence from 300,000 to 266,500 in 10 years. The optimal treatment strategies that minimize all four
outcomes reduces prevalence from 16.8% to 13.9% (Figure 7A) and annual incidence from 300,000 to
about 4,000 (Figure 7B).

As expected, each of the optimal treatment strategies minimizes its own objective (Figure 8). Deaths
are most impacted by the interventions: 85% of the deaths that would occur using the current treatment
strategy can be averted by the optimal strategy. Infection-years are the least impacted: only 15% of the
infection-years can be averted.

The reduction in transmission from individuals that know their HIV status parameter (ξ) is the most
sensitive parameter for all four objectives. A 50% increase/decrease in the default value of ξ leads to
an increase/decrease of 147–400% in the new infection, deaths and cost and 2.8–3% increase/decrease
infection-years (Figure 6). New infection, deaths and cost are sensitive to perturbations in rate of
Progression from Stage III to Stage IV (r3) and Regression rate from Stage IV to Stage III (y4): A 50 %
increase/decrease in the value of r3 corresponds to an increase/decrease of 69–237% in new infection,
deaths and cost while the same perturbation in y4 leads to an increase/decrease of 52–140% in deaths
and cost (Figure 6). All the other parameters were not very sensitive to perturbation (Figure 6).

Finally, in the absence of optimal controls, our assumed initial conditions indicate that the dynamics
of infected population will reach an equilibrium in about 350 years (Figure 9). For reference, we
provide a graph of the population dynamics of each disease stages under the various optimal control
strategy (Figure 10).
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Figure 3. Optimal strategy to minimize new infections: (A) number of drugs allocated to
each stage vs time and (B) proportion of people treated in each stage vs time.

4. Discussion

In this paper, we considered the of optimal use of drugs by disease stage to minimize the impact
of HIV on the population. Time-dependent optimal control strategies that minimize four objectives,
new infection, infection-years, deaths and cost, were presented. Treatment in Stages II, III and IV,
consistent with the WHO recommendations, were considered.

Our simulations indicated that to minimize infection-years and new infections, emphasis should be
placed on treatment in the earlier stages, while to minimize cost and death, the emphasis should be on
treating people in Stages III & IV. Our numerical simulations illustrate the effectiveness of adopting
each treatment strategy to allow policy makers to learn how much savings they will gain.

The optimal treatment strategy to minimize new infections allocates very little treatment in Stage
IV, driven by our assumption that people in Stage IV are too weak to engage in sexual activity. The
optimal treatment strategies to minimize deaths and cost also place emphasis on treatment in Stage III
to prevent infected people from progressing to Stage IV where they die from AIDS. The similarity of
treatment for death and cost is because the cost associated with deaths is very high relative to the other
costs, thus minimizing deaths is also minimizing cost.

Our results indicated modest reduction of HIV prevalence from the use of the optimal treatment
strategies. The modest reduction of HIV prevalence should be expected because a drastic reduction of
HIV-related deaths will lead to relatively large numbers of people living with HIV in the population.
The use of the optimal treatment strategies however, leads to a substantial reduction in HIV annual
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Figure 4. Optimal strategy to minimize AIDS-related deaths: (A) number of drugs allocated
to each stage vs time and (B) proportion of people treated in each stage vs time.

incidence, from 300,000 to about 4,000. For comparison, the annual HIV incidence of the adult
population (15–49) in South Africa in 2016 was 270,000 [32].

The reduction in transmission from individuals that know their HIV status (ξ), Rate of progression
from Stage III to Stage IV (r3) and Regression rate from Stage IV to Stage III (y4) are the most sensitive
to perturbations. This has implication for HIV control, e.g., HIV prevention programs could lead to
increase in ξ from safer sexual habits, thus substantially reducing infections, deaths and cost. r3 and y4

are related to treatment: promoting treatment of infected population will lead to a reduction in r3 and
adherence to treatment will lead to an increase in y4 leading to substantial gains.

The choice of the best time horizon for our problem was a challenge. A longer time horizon better
represents the scale of changes on several generations of HIV infections e.g. reducing transmission.
Policymakers however, often prefer a shorter time horizon to answer questions of what can be done
immediately to control the epidemic. We therefore believe a 10-year horizon problem is a good
compromise. It is important to give more weight in the objective function to earlier rather than later
control, so we therefore discounted cost by a rate of 3% [37].

We ran our model to equilibrium to determine if the population dynamics observed in our results
are dominated by the dynamics of the model towards its equilibrium, by the optimal controls or a mix
of these two effects. In the absence of controls, it takes more than three centuries for the infected
population dynamics to attain an equilibrium. This is far greater than the 10-year time horizon for our
analysis: it is therefore safe to assume that dynamics observed in our results are most likely due to the
optimal controls.
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Figure 5. Optimal strategy to minimize cost: (A) number of drugs allocated to each stage vs
time and (B) proportion of people treated in each stage vs time.

In addition to improving their health directly, treatment of infected people is known to reduce their
ability to transmit the virus to uninfected people. Policy makers, especially in limited-resource settings,
continually seek better ways of harnessing the benefits of treatment. We hope that the results of this
modeling study, despite its necessary simplification, can help guide policy decisions.
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Infection-Years New Infections Deaths Cost
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

P
ro

po
rt

io
n 

A
ve

rt
ed

Minimizing Infection-Years
Minimizing New Infections
Minimizing Deaths
Minimizing Cost

Figure 8. Relative benefits from applying the optimal strategies of each outcome for 6.4
million annual drug doses.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 373–396.



390

0 100 200 300 400 500 600 700 800 900 1000
Time (in Years)

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

P
re

va
le

nc
e 

(in
 1

00
,0

00
,0

00
)

Figure 9. Stable infected equilibrium of model in the absence of optimal control strategies.
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Appendix: Analysis of optimal control

Given optimal controls (U∗2,U
∗
3,U

∗
4) and the corresponding state solutions

X∗ = (I∗Ua, I∗U1, I
∗
U2, I∗U3, I∗U4, I∗Da, I∗D1, I∗D2, I∗D3, I∗D4, I∗T2, I∗T3, I∗T4) from solving the state system (4), there

exist adjoint variables θ that satisfy the adjoint equations

θ̇i =

(
−
∂H

∂Xi

)
, i = 1, 2, . . ., 14, (29)

with the transversality condition

θi(T ) = 0, i = 1, 2, ..., 14. (30)

The optimal control characterization holds,(
∂H

∂Ui

)∣∣∣∣∣∣
Ui=U∗i

= 0, (31)

and

H(t, X∗,U∗, θ∗) ≤ H(t, X,U, θ). (32)

To analyze all four objective functions at once, we can rewrite (29) as

θ̇i =

(
−
∂H

∂Xi

)
= −

(
∂ fk

∂Xi
(t, X) + θT ∂`

∂Xi
(t, X) + θT ∂ψ

∂Xi
(t,U)

)
(33)

for i = 1, 2, 3, . . ., 14 and k ∈ {I,NI,D,C}. The partial derivative of the objective functions ∂ f j

∂Xi
(t, S , I,U)

are

∂ fI

∂X
= [0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] , (34)

∂ fNI

∂X
=

[∂ fNI

∂X1
,
β4S
N
,
β1S
N
,
β2S
N
,
β3S
N
, 0,

ξβ4S
N

,
ξβ1S

N
,
ξβ2S

N
,
ξβ3S

N
, 0,

ξαβ2S
N

,
ξαβ3S

N
, 0

]
,

(35)

∂ fD

∂X
=

[
0, 0, 0, 0, γ4, 0, 0, 0, 0, γ4, 0, 0, γ4

]
, (36)

∂ fC

∂X
=

[
0,CI,CI,CI,CI,CI + γ4CD,CI,CI,CI,CI,

CI + γ4CD,CI + CT,CI + CT,CI + CT

]
,

(37)

where

∂ fNI

∂X1
=

1
N

[
(IUa + ξIDa)βa + (IU1 + ξID1)β1

+ (IU2 + ξID2 + ξαIT2)β2 + (IU3 + ξID3 + ξαIT3)β3

]
. (38)
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ψ(t,U) collects all the terms with the control variables Ui in the Hamiltonian,

ψ(t,U) = rmax max (U2(t) − IT2, 0) ID2(θ12 − θ9)
+ rmax max (U3(t) − IT3, 0) ID3(θ13 − θ10)
+ rmax max (U4(t) − IT4, 0) ID4(θ14 − θ11).

(39)

This has derivatives

Ψ9 =
∂ψ

∂X9
(t,U) = rmaxmax (U2 − IT2, 0) (θ12 − θ9),

Ψ10 =
∂ψ

∂X10
(t,U) = rmaxmax (U3 − IT3, 0) (θ13 − θ10),

Ψ11 =
∂ψ

∂X11
(t,U) = rmaxmax (U4 − IT4, 0) (θ14 − θ11),

Ψ12 =
∂ψ

∂X12
(t,U) = −rmax(θ12 − θ9)ID2H(U2 − IT2),

Ψ13 =
∂ψ

∂X13
(t,U) = −rmax(θ13 − θ10)ID3H(U3 − IT3),

Ψ14 =
∂ψ

∂X14
(t,U) = −rmax(θ14 − θ11)ID4H(U4 − IT4),

(40)

so that

∂ψ

∂X
= [0, 0, 0, 0, 0, 0, 0, 0,Ψ9,Ψ10,Ψ11,Ψ12,Ψ13,Ψ14] . (41)

The parts of the partial derivative of the terms in the adjoint equation arising from the right hand
side of the system of differential equations minus all the controls terms θT ∂`

∂Ii
(t, X) is

θT ∂`

∂Xi
(t, X) = hi i = 1, 2, 3, . . ., 14, (42)

where
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h1 =
(Nµθ1 + [(IUa + ξIDa)βa + (IU1 + ξID1)β1 + (IU2 + ξID2 + ξαIT2)β2

N

+
(IU3 + ξID3 + ξαIT3]β3(θ1 − θ2)

N
,

h2 =
β4S (θ1 − θ2)

N
+ (µ + d + ra)θ2 − raθ3 − dθ7,

h3 =
β1S (θ1 − θ2)

N
+ (µ + d + r1)θ3 − r1θ4 − dθ8,

h4 =
β2S (θ1 − θ2)

N
+ (µ + d + r2)θ4 − r2θ5 − dθ9,

h5 =
β3S (θ1 − θ2)

N
+ (µ + r3 + d)θ5 − r3θ6 − dθ10,

h6 = (µ + d4 + γ4)θ6 − d4θ11,

h7 =
β4S (θ1 − θ2)

N
+ (µ + ra)θ7 − raθ8,

h8 =
β1S (θ1 − θ2)

N
+ (µ + r1)θ8 − r1θ9,

h9 =
ξβ2S (θ1 − θ2)

N
+ (µ + r2)θ9 − r2θ10,

h10 =
ξβ3S (θ1 − θ2)

N
+ (µ + r3)θ10 − r3θ11,

h11 = (µ + γ4)θ11,

h12 =
ξαβ2S (θ1 − θ2)

N
− τθ9 + (µ + τ)θ12,

h13 =
ξαβ3S (θ1 − θ2)

N
− τθ10 − y3θ12 + (µ + y3 + τ)θ13,

h14 = −τθ11 − y4θ13 + (µ + y4 + τ + γ4)θ14.

(43)
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26. Médecins Sans Frontières. Untangling the web of antiretroviral price reductions: 14th edition July
2011. 2011. Available from: http://d2pd3b5abq75bb.cloudfront.net/2012/07/16/14/
42/23/52/UTW_14_ENG_July2011.pdf.

27. R. M. Neilan and S. Lenhart, An introduction to optimal control with an application in
disease modeling. In A. B. Gumel and S. Lenhart, eds., Modeling Paradigms and Analysis
of Disease Transmission Models, vol. 75 of DIMACS Series in Discrete Mathematics, pp.
67–81. American Mathematical Society, Providence, Rhode Island, 2010. ISBN 978-0-8218-
4384-0. Available from: https://www.researchgate.net/profile/Rachael_Miller_

Neilan/publication/265363622_An_Introduction_to_Optimal_Control_with_an_

Application_in_Disease_Modeling/links/5597d5e908ae21086d22b532.pdf.

28. K. Okosun, O. Makinde, and I. Takaidza, Impact of optimal control on the treatment of HIV/AIDS
and screening of unaware infectives, Appl. Math. Model., 37 (2013), 3802–3820.

29. L. S. Pontryagin. Mathematical Theory of Optimal Processes. CRC Press, Boca Raton, Florida,
1987. ISBN 9782881240775.

30. L. Simbayi, O. Shisana, T. Rehle, D. Onoya, S. Jooste, N. Zungu, and K. Zuma. South African
National HIV Prevalence, Incidence and Behaviour Survey, 2012. HSRC Press, Cape Town,
South Africa, 2014. ISBN 978-0-7969-2483-4. Available from: http://www.hsrc.ac.za/
en/research-data/ktree-doc/15031.

31. Statistics South Africa. Mid-year population estimates 2014, 2014. Available from: http://
www.statssa.gov.za/publications/P0302/P03022014.pdf.

32. UNAIDS. Global aids update. Accessed 11 Jun. 2017. Available from: http://www.who.int/
hiv/pub/arv/global-AIDS-update-2016_en.pdf.

33. UNAIDS. AIDSinfo | UNAIDS. Accessed 25 Sept 2015. Available from: http://www.unAIDS.
org/en/dataanalysis/datatools/AIDSinfo.

34. A. I. van Sighem, M. A. van de Wiel, A. C. Ghani, M. Jambroes, P. Reiss, I. C. Gyssens,
K. Brinkman, J. M. Lange, and F. de Wolf, Mortality and progression to AIDS after starting
highly active antiretroviral therapy, AIDS, 17 (2003), 2227–2236.

35. X. Wang. Solving optimal control problems with MATLAB—indirect methods. 2009. Available
from: http://www4.ncsu.edu/˜xwang10/document/Solving%20optimal%20control%

20problems%20with%20MATLAB.pdf.

36. M. J. Wawer, R. H. Gray, N. K. Sewankambo, D. Serwadda, X. Li, O. Laeyendecker, N. Kiwanuka,
G. Kigozi, M. Kiddugavu, T. Lutalo, F. Nalugoda, F. Wabwire-Mangen, M. P. Meehan, and T. C.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 373–396.

http://d2pd3b5abq75bb.cloudfront.net/2012/07/16/14/42/23/52/UTW_14_ENG_July2011.pdf
http://d2pd3b5abq75bb.cloudfront.net/2012/07/16/14/42/23/52/UTW_14_ENG_July2011.pdf
https://www.researchgate.net/profile/Rachael_Miller_Neilan/publication/265363622_An_Introduction_to_Optimal_Control_with_an_Application_in_Disease_Modeling/links/5597d5e908ae21086d22b532.pdf
https://www.researchgate.net/profile/Rachael_Miller_Neilan/publication/265363622_An_Introduction_to_Optimal_Control_with_an_Application_in_Disease_Modeling/links/5597d5e908ae21086d22b532.pdf
https://www.researchgate.net/profile/Rachael_Miller_Neilan/publication/265363622_An_Introduction_to_Optimal_Control_with_an_Application_in_Disease_Modeling/links/5597d5e908ae21086d22b532.pdf
http://www.hsrc.ac.za/en/research-data/ktree-doc/15031
http://www.hsrc.ac.za/en/research-data/ktree-doc/15031
http://www.statssa.gov.za/publications/P0302/P03022014.pdf
http://www.statssa.gov.za/publications/P0302/P03022014.pdf
http://www.who.int/hiv/pub/arv/global-AIDS-update-2016_en.pdf
http://www.who.int/hiv/pub/arv/global-AIDS-update-2016_en.pdf
http://www.unAIDS.org/en/dataanalysis/datatools/AIDSinfo
http://www.unAIDS.org/en/dataanalysis/datatools/AIDSinfo
http://www4.ncsu.edu/~xwang10/document/Solving%20optimal%20control%20problems%20with%20MATLAB.pdf
http://www4.ncsu.edu/~xwang10/document/Solving%20optimal%20control%20problems%20with%20MATLAB.pdf


396

Quinn, Rates of HIV-1 transmission per coital act by stage of HIV-1 infection, in Rakai, Uganda,
J. Infect. Dis., 191 (2005), 1403–1409.

37. M. C. Weinstein, J. E. Siegel, M. R. Gold, M. S. Kamlet and L. B. Russell, Recommendations of
the panel on cost-effectiveness in health and medicine, Jama, 276 (1996), 1253–1258.

38. D. P. Wilson, A. Hoare, D. G. Regan and M. G. Law, Importance of promoting HIV testing for
preventing secondary transmissions: modelling the Australian HIV epidemic among men who
have sex with men, Sexual Health, 6 (2009), 19.

39. World Health Organization, Interim WHO Clinical Staging of HIV/AIDS and HIV/AIDS Case
Definitions For Surveillance: African Region, 2005. Available from: http://www.who.int/
hiv/pub/guidelines/clinicalstaging.pdf.

40. World Health Organization, March 2014 Supplement to the 2013 Consolidated Guidelines on
the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: Recommendations for
a Public Health Approach, 2014. Available from: http://apps.who.int/iris/bitstream/
10665/104264/1/9789241506830_eng.pdf.

41. T. T. Yusuf and F. Benyah, Optimal strategy for controlling the spread of HIV/AIDS disease: a
case study of South Africa, J. Biol. Dyn., 6 (2012), 475–494.

c© 2018 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 373–396.

http://www.who.int/hiv/pub/guidelines/clinicalstaging.pdf
http://www.who.int/hiv/pub/guidelines/clinicalstaging.pdf
http://apps.who.int/iris/bitstream/10665/104264/1/9789241506830_eng.pdf
http://apps.who.int/iris/bitstream/10665/104264/1/9789241506830_eng.pdf
http://creativecommons.org/licenses/by/4.0

	Introduction
	Methods
	Optimal control problem formulation
	Analysis of optimal controls
	Numerical simulations
	Parameterization
	Sensitivity

	Results
	Discussion

