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Abstract: Fear can influence the overall population size of an ecosystem and an important drive for
change in nature. It evokes a vast array of responses spanning the physiology, morphology, ontogeny
and the behavior of scared organisms. To explore the effect of fear and its dynamic consequences,
we have formulated a predator-prey model with the cost of fear in prey reproduction term. Spatial
movement of species in one and two dimensions have been considered for the better understanding of
the model system dynamics. Stability analysis, Hopf-bifurcation, direction and stability of bifurcat-
ing periodic solutions have been studied. Conditions for Turing pattern formation have been estab-
lished through diffusion-driven instability. The existence of both supercritical and subcritical Hopf-
bifurcations have been investigated by numerical simulations. Various Turing patterns are presented
and found that the change in the level of fear and diffusion coefficients alter these structures signif-
icantly. Holes and holes-stripes mixed type of ecologically realistic patterns are observed for small
values of fear and relative increase in the level of fear may reduce the overall population size.

Keywords: predator-prey interactions; fear effect; anti-predator response; stability; Hopf-bifurcation;
pattern formation

1. Introduction

Ecologists have not paid much attention to the predator-induced fear effects until recently, as they
have assumed that predator-induced stresses are acute and transitory [28] and positively related to
direct effects. In the presence of a predator, prey shows various behavioural and morphological re-
sponses, including changes in habitat use [1, 9, 13], foraging [20, 41], vigilance [5], aggregation [4, 2],
sensitivity to initial conditions [40] and movement patterns [10, 29], so that they become difficult to
detect, encounter and capture. Due to these flexible responses of prey to a changing risk of predation,
the predator may impact the prey demography more than just by direct killing [18, 19, 8]. Other demo-
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graphic processes like reproduction, malnutrition and disease occur in large time scale. Traditionally,
it has been mistaken that these processes are the result of food scarcity or parasitic infection [7, 17].
Therefore, until some experimental studies [42, 32], there was no reason for considering the predator-
induced stresses in ecology.

Empirical studies have shown that indirect effects of predators can be comparable or even larger than
the direct effects. In their experiment on spiny water fleas Bythotrephes longimanus with three species
of zooplankton in Lake Michigan and Lake Erie, Pangle et al. [24] found that over six combinations
of location and depth, indirect or risk effects on population growth rates were more than seven times
larger than that of direct effects. In their seminal experiments, Peckarsky et al. [26], Schmitz et al.
[29] and Nelson et al. [23] recognized the influence of fear by comparing the impacts of predatory and
risk-only predators on prey demography [26], density [29] and population dynamics [23] respectively.
They have demonstrated that risk effects can account for a large proportion of total impact of predators
on prey [27]. In the presence of predators, snowshoe hare shifts to relatively safe but less profitable mi-
crohabitats which may hasten the decline and lengthen the recovery phase of the snowshoe hare cycle
[14]. This habitat shift lowered the overall body condition of female hare, which ultimately cost their
reproductive output. Zanette et al. [42] have done a field experiment on song sparrows during an entire
breeding season by actively preventing the direct predation using the electric fences and seines and the
predation risk was managed using the predator call playbacks. They measure the impact of fear on
the demography and observed the 40% reduction in the offspring produced per year in the population
of free-living song sparrows. Travers et al. [32] by their experiment demonstrated that female birds
experiencing the frequent nest predation laid fewer eggs in their next nest. Thus, an emerging view is
that mere presence of a predator may impact the prey demography more powerful than that of direct
predation.

To incorporate these risk effects in predator-prey interactions, Wang et al. [37] have proposed a
predator-prey model with the cost of fear. They have shown that the high levels of fear can stabilize
the system and avoid the paradox of enrichment in ecosystems. Hopf-bifurcation with fear can be both
supercritical and subcritical, whereas the model system without fear can have only supercritical Hopf-
bifurcation. Wang and Zou [38] have discussed the fear effect in predator-prey interactions with adap-
tive avoidance of predators. Wang and Zou [39] investigated the reaction-diffusion predator-prey model
with the cost of anti-predator behaviours. They have obtained the necessary and sufficient conditions of
spatial pattern formation for various predator-prey functional responses. Complex dynamics of diffu-
sive Leslie-Gower model with Holling type IV functional response and nonlinear harvesting have been
studied by Upadhyay et al. [35]. They have discussed the Turing pattern formation, Hopf-bifurcation
and stability of bifurcating periodic solutions. Upadhyay et al. [33] have analyzed the propagation
of Turing patterns and periodic Travelling wave in spatial plankton model. Spatial Leslie-Gower type
predator-prey model with time delay has been studied by Wang et al. [36]. Diffusion-driven instability,
delay induced instability and various interesting patterns are also explored. Sun et al. [30] have inves-
tigated the spatial patterns through diffusion-driven instability in modified Leslie-Gower predator-prey
model with Holling type II functional response.

In the present work, we have proposed and analyzed a Leslie-Gower type predator-prey model incor-
porating the cost of fear. Study of several pairs of the interacting species, ranging from house sparrows
and European sparrow hawk to mule deer and mountain lion [31] shows that the theoretical results
obtained from Leslie-Gower predator-prey model system with Holling type II functional response,
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closely approximate the practical reality [15] and appropriate for modeling the broad range of species.
Spatial extension of the model has been considered here to investigate the influence of cost of fear on
the spatial distribution of species, which was not considered in the previous studies made by Wang
et al. [37] and Wang and Zou [38]. Extensive numerical simulations are performed to validate the
theoretical findings and to explore different types of spatial patterns. Biological implication of results
has also been discussed. In Section 2, we have presented the model system incorporating the cost of
fear due to anti-predator behaviours. Boundedness, equilibria and stability analysis of the temporal
model system are given in Section 3. In Section 4, spatially explicit model system has been presented.
Stability analysis, Turing instability, the existence of Hopf-bifurcation, direction of Hopf-bifurcation
and stability of bifurcating periodic solutions have also been discussed. Numerical simulation results
are carried out in Section 5. In last Section, we have concluded the work by briefly summarizing the
analytical and numerical findings.

2. Model formulation

Consider a Leslie-Gower type predator-prey model with Holling type II functional response, where
population density of prey is denoted by x(t) and predator, y(t) at time t. The model system is given by
the following system of ordinary differential equations

dx
dt

= ax − dx − bx2 −
pxy

x + D
,

dy
dt

= ry
(
1 −

sy
x

)
,

(2.1)

subjected to the positive initial conditions

x(0) > 0, y(0) > 0.

The underlying assumptions of the model system (2.1) are as follows:

(i) Prey population is growing logistically in the absence of predation. The logistic growth of prey
is composed of three parts: growth term ax, natural death term −dx and density-dependent death
term −bx2 (due to intraspecific competition between the prey species).

(ii) Predator y is of generalist type whose most favorite food is prey x. Predator is consuming prey
with Holling type II functional response and growing logistically with prey dependent carrying
capacity x

s .
(iii) The factor − sy

x tells that the rate of growth of predator population is limited and causes a decrease
in the rate of increase of the predator population as y increases.

All parameters a, d, b, p, D, r, s are positive and their definitions are given in Table 1.

Field experiments [42] have suggested that fear may influence the prey reproduction. To incorporate
the impact of fear effects, we modify the model system (2.1) by multiplying the growth term of prey
by a factor f (l, y), which accounts for the cost of anti-predator response due to fear. The parameter l
reflects the level of fear which derives the anti-predator behaviours in prey. It is assumed that scared
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Table 1. List of parameters used in the model system (2.1).

Parameters Meaning
a Birth rate of prey population
d Natural death rate of prey
b Death rate of prey due to intra-specific competition
p The maximum value of per capita reduction of prey x due to predator y
D Extent to which environment provide protection to prey x
r Intrinsic growth rate of predator y
s Number of prey necessary to support one predator at equilibrium

prey forage less and left their newborn less protected, which in turn reduces the growth rate of prey.
Therefore, it is reasonable to assume that

f (0, y) = 1, f (l, 0) = 1, lim
l→∞

f (l, y) = 0, lim
y→∞

f (l, y) = 0,

∂ f (l, y)
∂l

< 0,
∂ f (l, y)
∂y

< 0.
(2.2)

For convenience, we have taken the following particular form of term f (l, y):

f (l, y) =
1

1 + ly
, (2.3)

leading to the following system:

dx
dt

=
ax

1 + ly
− dx − bx2 −

pxy
D + x

= xF1(x, y),

dy
dt

= ry
(
1 −

sy
x

)
= yF2(x, y).

(2.4)

3. Analysis of the temporal model system

3.1. Boundedness and positivity

Boundedness and positivity of the solutions of the model system (2.4) have been presented in this
subsection.

Lemma 3.1. The solutions of the model system (2.4) are positive and eventually bounded i.e. there
exist T ≥ 0 such that x(t) < M1 and y(t) < M2, ∀t ≥ T.

Proof. The phase portrait of the model system (2.4) is shown in Figure 1. The nullclines of the system

are C1 : y =
−(p+Al)+

√
(p+Al)2+4pl(B−A)

2pl , A = (d + bx)(D + x), B = a(D + x) on which dx
dt = 0; and

C2 : y = x
s , on which dy

dt = 0. C1 and C2 partition the first quadrant into four parts D1, D2, D3, and
D4. The intersection of C1 and C2 is the unique positive equilibrium point of the model system. Set
L1 = {(x, y) | x = M1, 0 ≤ y ≤ M2} and L2 = {(x, y) | 0 ≤ x ≤ M1, y = M2}. The rectangular region
consisting of L1, L2, x − axis and y − axis as boundaries is denoted by DR (= D1 ∪ D2 ∪ D3 ∪ D4).
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Clearly, DR attracts all the trajectories starting in the first quardrant. Thus, solutions of the model
system (2.4) are eventually bounded.

Next, we have discussed the positivity of solutions of the model system (2.4). For this, we have
shown that any trajectory starting in first quadrant cannot reach the y-axis. To this end, we only need
to prove that trajectory cannot arrive the y-axis in D2. From a given point (x0, y0) ∈ D2 the time of a
trajectory running from (x0, y0) to C1 is denoted by T1 and T2(N) is the time of trajectory running from
(x0, y0) to x0

N , N ∈ N, N ≥ 2. We estimate the times T1 and T2.
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Figure 1. Phase portrait of the model system (2.4) in x − y plane with parameter set a =

1.2, l = 0.01, d = 0.1, b = 0.1, p = 1.1, D = 2, r = 0.16, s = 0.9.

T1 ≤

∫ 2

y0

dy
ry(1 − sy

x )
≤

∫ y0

2

dy
ry( sy

x0
− 1)

=
1
r

ln
(s − x0

y0
)

(s − x0
2 )
. (3.1)

Hence T1 is finite. Now,

T2(N) =

∫ x0/N

x0

dx
ax

1+ly − dx − bx2 −
pxy
D+x

=

∫ x0

x0/N

dx(
− ax

1+ly + dx + bx2 +
pxy
D+x

)
≥

∫ x0

x0/N

dx
x(− a

1+ly + d + bx + py)

=
1(

− a
1+ly0

+ d + py0

) ln

bx0 + N
(
− a

1+ly0
+ d + py0

)
− a

1+ly0
+ d + py0 + bx0

 .
(3.2)

Since

lim
N→∞

1(
− a

1+ly0
+ d + py0

) ln

bx0 + N
(
− a

1+ly0
+ d + py0

)
− a

1+ly0
+ d + py0 + bx0

 = ∞, (3.3)

therefore ∃ some N0 ∈ N such that

1(
− a

1+ly0
+ d + py0

) ln

bx0 + N0

(
− a

1+ly0
+ d + py0

)
− a

1+ly0
+ d + py0 + bx0

 > 1
r

ln
(s − x0

y0
)

(s − x0
2 )
. (3.4)
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Hence T2(N0) > T1. This shows that the time of trajectory running to the y-axis is far longer than that
to C1, i.e. trajectory runs into D3 before it reaches the y-axis. From the properties of vector field shown
in Figure 1, the trajectory cannot reach the y-axis in D3. Therefore, any trajectory starting in the first
quadrant cannot reach the y-axis.

From the above discussion, we know that there is no homoclinic or heteroclinic orbit in the domain
DR. Hence, it is proved. �

3.2. Equilibria analysis

Equilibrium points of the model system (2.4) are the intersection of zero growth rate isoclines (the
prey zero growth rate isocline and the predator zero growth rate isocline) given by xF1(x, y) = 0 and
yF2(x, y) = 0. It is easy to verify that the system (2.4) possesses two nonnegative equilibrium points:

(i) The predator free axial equilibrium point E1 =
(

a−d
b , 0

)
, provided a > d.

(ii) The positive interior equilibrium point E∗(x∗, y∗), where (x∗, y∗) is the positive solution of the
following system of equations

a
1 + ly∗

− d − bx∗ −
py∗

D + x∗
= 0,

r
(
1 −

sy∗

x∗

)
= 0.

(3.5)

By solving the system (3.5), we obtain that x∗ = sy∗ and y∗ is the root of the cubic equation

y∗3 + ξ1y∗2 + ξ2y∗ + ξ3 = 0, (3.6)

where
ξ1 =

(bs+ld+blD)s+pl
bs2l > 0, ξ2 =

p+(bs+ld)D−(a−d)s
bs2l , ξ3 =

−(a−d)D
bs2l .

Now, the existence and uniqueness of the interior equilibrium point E∗(x∗, y∗) can be proved with the
help of simple algebraic manipulations. It is clear that the model system (2.4) has a unique positive
equilibrium point if the equation (3.6) has unique positive root. The constant term ξ3 =

−(a−d)D
bs2l is

negative provided a > d. Therefore, if a > d is satisfied then by Descartes rule of sign cubic equation
(3.6) has only one positive root y∗. Further, for this value of y∗, the corresponding value of x∗ is given
by x∗ = sy∗. From above discussion, it is clear that model system (2.4) posses only one positive
interior equilibrium point E∗(x∗, y∗).

Now, we have numerically illustrated the existence of the interior equilibrium point E∗(x∗, y∗)
(with the help of zero growth rate isoclines) and its dependence on the condition a > d (cf. Figure 2).
Parameter values are taken as l = 0.01, b = 0.1, p = 1.1, D = 2.0, r = 0.16, s = 0.9.

Remark 1. From the above discussion on equilibria analysis, it is clear that the model system (2.4)
does not have any equilibrium point when a < d (growth rate is less than the death rate of prey species).
For a > d, both axial and the interior equilibrium point exist.
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Figure 2. Prey and predator zero growth rate isoclines at different values of a and d, (a)
a > d, shows the existence of interior equilibria E∗(x∗, y∗), (b) a < d, interior equilibrium
point E∗(x∗, y∗) is not existing.

3.3. Local stability analysis

Local stability of a model system indicates that the system is stable for short living perturbations.

Theorem 3.2. (i) The axial equilibrium point E1

(
a−d

b , 0
)

is a saddle point having stable manifold along
the x-axis and unstable manifold along the y-axis.
(ii) The positive interior equilibrium point E∗(x∗, y∗) is locally asymptotically stable if the conditions
bx∗ + r > px∗y∗

(D+x∗)2 and px∗y∗

(D+x∗)2 <
alx∗

s(1+ly∗)2 + bx∗ hold.

Proof. For proof see the Appendix. �

Example 3.1. For the set of biologically realistic parameter values (used in numerical simulations)
a = 1.2, l = 0.1, d = 0.1, b = 0.1, p = 1.1, D = 2, r = 0.16, s = 0.9, the positive equilibrium
point is obtained as E∗(x∗, y∗) = (2.21257, 2.45841). We obtain that the conditions of Theorem 3.2,
bx∗ + r = 0.381257 > px∗y∗

(D+x∗)2 = 0.337171 and px∗y∗

(D+x∗)2 = 0.337171 < alx∗
s(1+ly∗)2 + bx∗ = 0.411326 are

satisfied. Also, A1 = 0.0440864 > 0, A2 = 0.114577 > 0, therefore, from Routh-Hurwitz criterion the
positive equilibrium point E∗(x∗, y∗) is locally asymptotically stable.

3.4. Global stability of the interior equilibrium point

In this subsection, we have shown the global asymptotic stability of E∗(x∗, y∗) by using the suitable
Lyapunov function.

Theorem 3.3. Suppose the positive interior equilibrium point E∗(x∗, y∗) is locally asymptotically stable
then it is globally asymptotically stable.

Proof. Define a Lyapunov function

V(x, y) =

∫ x

x∗

ξ − x∗

ξ
dξ + c

∫ y

y∗

η − y∗

η
dη, (3.7)

where c > 0 has to be determined. Calculating the time derivative of V along the solution of the model
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system (2.4) we have

dV
dt

=
x − x∗

x

(
ax

1 + ly
− dx − bx2 −

pxy
D + x

)
+ c

(
y − y∗

y

)
ry

(
1 −

sy
x

)
= (x − x∗)

(
a

1 + ly
− d − bx −

py
D + x

)
+ rc(y − y∗)

(
1 −

sy
x

)
= −

al
(1 + ly)(1 + ly∗)

(x − x∗)(y − y∗) − b(x − x∗)2 −
py∗

(D + x)(D + x∗)
(x − x∗)2

−
p

D + x
(x − x∗)(y − y∗) −

rsc
x

(y − y∗)2 +
rscy∗

xx∗
(x − x∗)(y − y∗).

As m1 < x < M1 and m2 < y < M2, thus we have

dV
dt
≤ −

(
b +

py∗

(D + M1)(D + x∗)

)
(x − x∗)2 −

rsc
M1

(y − y∗)2

+

(
rscy∗

m1x∗
−

al
(1 + lM2)(1 + ly∗)

−
p

D + M1

)
(x − x∗)(y − y∗).

(3.8)

Therefore

dV
dt
≤ −

(
b +

py∗

(D + M1)(D + x∗)

)
(x − x∗)2 −

rsc
M1

(y − y∗)2, (3.9)

where

c =
m1x∗

rsy∗

(
al

(1 + lM2)(1 + ly∗)
+

p
D + M1

)
.

From (3.9), it is obvious that dV
dt < 0. Consequently, except at E∗, V is decreasing along all trajectories

in the first quadrant. Thus, the model system (2.4) is globally asymptotically stable about E∗(x∗, y∗).
�

4. Spatially explicit model system

Species disperse in the space in search of food, shelter, mates and to evade predation. Therefore,
the spatial element of ecological interactions is of main focus to understand how the ecological com-
munities took shape. Ecological interactions involving the role of space are modeled with the help of
reaction-diffusion systems. These systems of reaction-diffusion equations explain how the density of
species distributed in the space affected by the local interactions of species and diffusion that causes
the spread of species. It is assumed that the species are randomly spread in the domain Ω ⊆ R2 so that
Fick’s law holds. Let x(t, u, v) and y(t, u, v) be the population densities of prey and predator respectively
at time t and position (u, v) ∈ Ω. The spatiotemporal model corresponding to the temporal model (2.4)
is given by the following reaction-diffusion system:

∂x
∂t

=
ax

1 + ly
− dx − bx2 −

pxy
D + x

+ d1∆x,

∂y
∂t

= r
(
1 −

sy
x

)
y + d2∆y,

(4.1)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 338–372



346

with the initial conditions

x(0, u, v) > 0, y(0, u, v) > 0, (u, v) ∈ Ω, (4.2)

and the no-flux boundary conditions

∂x
∂ν

=
∂y
∂ν

= 0, (u, v) ∈ ∂Ω, t > 0, (4.3)

where d1 and d2 are diffusion coefficients for prey and predator respectively, ν is the outward normal to
∂Ω. The Laplace operator ∆ = ∂2

∂u2 in one-dimensional diffusion and ∆ = ∂2

∂u2 + ∂2

∂v2 in two-dimensional
diffusion.

4.1. Stability analysis of the spatial model system

In order to discuss the linear stability analysis of the model system (4.1) about the spatially homo-
geneous steady state E∗(x∗, y∗), we linearize this system using the transformations

x(t, u, v) = x∗ + x̂(t, u, v),
y(t, u, v) = y∗ + ŷ(t, u, v),

(4.4)

where x̂(t, u, v) and ŷ(t, u, v) are small time and space perturbations. Conventionally, x̂ and ŷ are taken
as

x̂(t, u, v) = ε1exp (λkt + i(kuu + kvv)) ,
ŷ(t, u, v) = ε2exp (λkt + i(kuu + kvv)) ,

(4.5)

where 0 < ε1, ε2 � 1 and λk is the wavelength. Also, k = (ku, kv) is the wave number vector and k = |k|

is the wave number.
Substituting (4.4) and (4.5) in the spatial system (4.1) we have

∂x̂
∂t

= a11 x̂ + a12ŷ − k2d1 x̂,

∂ŷ
∂t

= a21 x̂ + a22ŷ − k2d2ŷ,
(4.6)

where a11 = −bx∗ +
px∗y∗

(D+x∗)2 , a12 = −
px∗

D+x∗ −
alx∗

(1+ly∗)2 , a21 = r
s , a22 = −r. The characteristic equation of

the linearized system (4.6) is given by

det(Vk − λI) = 0, k = 0, 1, 2, · · · , (4.7)

where I is the identity matrix of order 2 and

Vk =

(
a11 − k2d1 a12

a21 a22 − k2d2

)
.

In simplified form, the characteristic equation (4.7) can be rewritten as

λ2 − tr(Vk) λ + det(Vk) = 0, (4.8)
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where
tr(Vk) = −A1 − k2(d1 + d2),
det(Vk) = k4d1d2 + k2

(
d1r + d2

(
bx∗ − px∗y∗

(D+x∗)2

))
+ A2.

Then, the solutions of the characteristic equation (4.8) yield the following dispersion relation

λ±k =
1
2

{
tr(Vk) ±

√
(tr(Vk))2 − 4det(Vk)

}
. (4.9)

According to Routh-Hurwitz criterion for stability Re(λ) < 0 if and only if

tr(Vk) < 0 and det(Vk) > 0. (4.10)

Theorem 4.1. Suppose that the interior equilibrium point E∗(x∗, y∗) is locally asymptotically stable
for the nonspatial model system (2.4). Then E∗(x∗, y∗) is locally asymptotically stable for the spatial
system (4.1) if the condition (4.10) holds.

Proof. The proof of the theorem directly follows from Routh-Hurwitz criterion, hence omitted. �

4.2. The existence of Hopf-bifurcation around the interior equilibrium point E∗(x∗, y∗)

Hopf-bifurcation is an instability induced due to the transformation of stability of focus [34]. In
temporal systems, Hopf-bifurcation breaks the symmetry of the system and gives rise to the oscilla-
tions, which are periodic in time and uniform in space. Local Hopf-bifurcation for the spatial predator-
prey model system has been studied by [35, 43, 34]. In this subsection, we have shown the existence
of Hopf-bifurcation in the spatial predator-prey model system with fear effect. We have divided the
whole analysis into the following points:
(i) Reduction of the model system to the origin (0, 0)
First, we translate the interior equilibrium point E∗(x∗, y∗) to the trivial point using the transformation
x̄ = x − x∗, ȳ = y − y∗. Then the model system (4.1) in the neighbourhood of origin can be rewritten
as (bar signs are dropped out for simplicity of notations)

∂x
∂t

=
a(x + x∗)

1 + l(y + y∗)
− d(x + x∗) − b(x + x∗)2 −

p(x + x∗)(y + y∗)
D + (x + x∗)

+ d1∆x,

∂y
∂t

= r(y + y∗)
(
1 −

s(y + y∗)
x + x∗

)
+ d2∆y.

(4.11)

Using the Taylor series expansion about the (x, y) = (0, 0), system (4.11) can be rewritten as

∂x
∂t

= d1∆x(t, u) + (−d − 2bx∗ − e1) x + e2y + f (x, y, h),

∂y
∂t

= d2∆y(t, u) + q1x + (r − q2)y + g(x, y, h),
(4.12)

where

f (x, y, h) = (e3 − b)x2 + e4xy + e5y2 + e6x3 + e7x2y + e8xy2 + · · · ,

g(x, y, h) = q3x2 + q4xy + q5y2 + q6x3 + q7x2y + q8xy2 + · · · ,
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and

e1 = −
a

1 + ly∗
+ Dh, e2 = −

alx∗

(1 + ly∗)2 −
px∗

D + x∗
, e3 =

Dh
(D + x∗)

,

e4 = −
al

(1 + ly∗)2 −
Dh
y∗
, e5 =

al2x∗

(1 + ly∗)3 , e6 = −
Dh

(D + x∗)2 , e7 =
Dh

y∗(D + x∗)
,

e8 =
al2

(1 + ly∗)3 , h =
py∗

(D + x∗)2 , q1 =
r
s
, q2 = 2r, q3 = −

rsy∗2

x∗3
, q4 =

2rsy∗

x∗2
,

q5 = −
rs
x∗
, q6 =

rsy∗2

x∗4
, q7 = −

2rsy∗

x∗3
, q8 =

rs
x∗2

.

In the following, we use h as the bifurcation parameter (in fact, D is the bifurcation parameter, rep-
resenting the extent of environmental protection to the prey). Therefore, in case of determining the
stability of positive equilibrium solution E∗(x∗, y∗) and existence of Hopf-bifurcation, variation in the
value of h plays an important role.
(ii) Linearization of the reduced system about the origin (0, 0)
Now, we introduce new variables X1(t), X2(t) and X(t) by

X1(t) = x(t, ·), X2(t) = y(t, ·), X(t) = (X1(t), X2(t))T

then the system (4.12) can be transformed into an abstract differential equation

Ẋ(t) = LX + G(X), (4.13)

where

L =

(
−d − 2bx∗ − e1 + d1∆ e2

q1 r − q2 + d2∆

)
,

and
G(X) = ( f , g)T .

Let

K =

(
−d − 2bx∗ − e1 e2

q1 r − q2

)
, DM =

(
d1 0
0 d2

)
,

then

L = K + DM

(
∆ 0
0 ∆

)
,

and

detK = r
(
bx∗ −

px∗y∗

(D + x∗)2

)
+

r
s

(
alx∗

(1 + ly∗)2 +
px∗

(D + x∗)

)
> 0 (4.14)

if
(
bx∗ +

px∗

s(D + x∗)
+

alx∗

s(1 + ly∗)2

)
>

px∗y∗

(D + x∗)2 . (4.15)

Now, linearizing the system (4.13) about the origin (0, 0), one can obtain that

Ẋ(t) = LX. (4.16)
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(iii) The characteristic equation of the linearized system
The characteristic equation of the system (4.16) is given by

λw − Kw − DM

(
∆ 0
0 ∆

)
w = 0, (4.17)

where

w ∈ dom
(
DM

(
∆ 0
0 ∆

)) ∖
{0}.

As we know that the stability of the trivial solution of (4.13) depends on the locations of roots of Eq.
(4.17). When all roots of (4.17) have negative real parts, then the trivial solution of (4.13) is stable
otherwise it is unstable.
Clearly, the eigenvalue problem

−∆φ = λφ, u ∈ Ω,

∂φν = 0, u ∈ ∂Ω,

has eigenvalues 0 = λ0 < λ1 < λ2 < · · · < λk < · · · , and the corresponding eigenfunctions are

γk = φk(u), k ∈ N0 = {0, 1, 2, · · · }.

Let β1
k =

(
γk

0

)
and β2

k =

(
0
γk

)
. Then Bk = {

(
β1

k , β
2
k

)
}∞k=0 construct a basis of the phase space of system

(4.13). Therefore

w ∈ dom
(
DM

(
∆ 0
0 ∆

)) ∖
{0}

can be decomposed as

w =

∞∑
k=0

(
〈w, β1

k〉β
1
k + 〈w, β2

k〉β
2
k

)
=

∞∑
k=0

(
β1

k , β
2
k

) (〈w, β1
k〉

〈w, β2
k〉

)
. (4.18)

Thus, the characteristic Eq. (4.17) is equivalent to

det
[(
λ + d1λk 0

0 λ + d2λk

)
−

(
−d − 2bx∗ − e1 e2

q1 r − q2

)]
= 0, for some k ∈ N0,

i.e.,

λ2 + λ {(d1 + d2)λk + d + e1 + q2 − r + 2bx∗} +
{
d1d2λ

2
k + (q2 − r)d1λk

+(d + e1 + 2bx∗)d2λk + (q2 − r)(d + e1 + 2bx∗) − e2q1} = 0.
(4.19)

(iv) Stability analysis and critical value of bifurcation parameter h
Let Jk = K − λkDM then

trJk = trK − (d1 + d2)λk = −(d1 + d2)λk + h∗ − h,
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and

detJk = d1d2λk
2 +

(
d1r + d2

(
d + 2bx∗ −

a
1 + ly∗

+
Dpy∗

(D + x∗)2

))
λk + detK,

where
h∗ = −(bx∗ + r) +

py∗(1 + x∗)
(D + x∗)2 .

Thus, the characteristic equation (4.19) can be simply denoted as

λ2 − λ trJk + detJk = 0. (4.20)

According to (4.20) and detK > 0, it is easy to know that under the condition (4.15), if
−(d1 + d2)λk + h∗ − h < 0 i.e. h > h∗ − (d1 + d2)λk for every k ∈ N0, then the positive constant steady
state solution E∗(x∗, y∗) is stable; if there exist certain k ∈ N0 such that h < h∗ − (d1 + d2)λk then the
positive constant steady state solution E∗(x∗, y∗) is unstable.

(v) Transversality condition
Suppose iω is the pure imaginary root of equation (4.20), substituting iω into the equation (4.20), we
have

− ω2 − trJk ωi + detJk = 0. (4.21)

Separating real and imaginary parts of above equation, one can obtain that

− ω2 + detJk = 0 and trJk = trK − λk(d1 + d2) = 0.

Let
h j = h∗ − λ j(d1 + d2), j ∈ N0.

Then, the only h at which the homogeneous Hopf-bifurcation occurs is h = h0. Near h0, substituting
λ = θ1 + iθ2 into (4.20) and separating real and imaginary parts, one can obtain that

θ2
1 − θ

2
2 − θ1trJk + detJk = 0,

2θ1θ2 − θ2trJk = 0. (4.22)

Differentiating the Eq. (4.22) with respect to h, we get[
dθ1

dh

]
h=h0

= −
1
2
, 0. (4.23)

Therefore, the transversality condition holds. According to the Hopf-bifurcation theorem for differen-
tial equations [6], we have the following results.

Theorem 4.2. Suppose
(
bx∗ +

px∗

s(D+x∗) + alx∗
s(1+ly∗)2

)
> px∗y∗

(D+x∗)2 .
Then
(i) If h > h0, then the positive constant steady state solution E∗ of system (4.1) is locally asymptotically
stable and unstable when h < h0.
(ii) System (4.1) can undergoes a Hopf-bifurcation at the positive constant steady state solution
E∗(x∗, y∗) when h = h j, j ∈ N0.
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Example 4.1. To illustrate the results obtained in Theorem 4.2, we have numerically simulated the
model system (4.1) using the pdepe Matlab tool. Parameter values are taken as a = 1.2, l = 0.1, d =

0.1, b = 0.1, p = 1.1, r = 0.16, s = 0.90, d1 = 0.001, d2 = 0.001. At D = 2.0, steady state solution
is E∗(x∗, y∗) = (2.21257, 2.45841), A1 = 0.04407 > 0, A2 = 0.11458 > 0 and bx∗ +

px∗

s(D+x∗) + alx∗
s(1+ly∗)2 =

1.05327 > px∗y∗

(D+x∗)2 = 0.33717. We find h = 0.15239 > h0 = 0.10830. Thus, from Theorem 4.2, model
system (4.1) is locally asymptotically stable. Again, at D = 1.7, A1 = −0.00103 < 0, A2 = 0.11056 > 0
and bx∗ +

px∗

s(D+x∗) + alx∗
s(1+ly∗)2 = 1.05828 > px∗y∗

(D+x∗)2 = 0.36729. Also, h = 0.17807 < h0 = 0.17910,
therefore from Theorem 4.2, model system (4.1) is unstable about E∗ and a limit cycle appears in the
small neighbourhood of the equilibrium point E∗. These facts are numerically illustrated in Figures 3
and 4.
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Figure 3. Surface plots for prey and predator populations of the model system (4.1) with
D = 2.0, showing that the positive constant steady state E∗ is locally asymptotically stable
for h = 0.15239 > h0 = 0.10830.

4.3. Direction and stability of the spatially homogeneous period orbits

In this subsection, we have derived the formulae for determining the direction and stability of bi-
furcated periodic solutions arising through Hopf-bifurcation using the center manifold theorem and
normal form theory [12].

To determine the stability of bifurcated periodic solutions, we need to know the restriction of system
to its center manifold at h0. Denote by L∗ the conjugate operator(

x
y

)
→ L∗

(
x
y

)
,

with domain {
(x, y) ∈ H2(Ω) × H2(Ω) | ∂xν = ∂yν = 0, u ∈ ∂Ω

}
, (4.24)

where the H2(Ω) is the standard Sobolev space and

L∗ =

(
−d − 2bx∗ − e1 + d1∆ e2

q1 r − q2 + d2∆

)
.
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Figure 4. Surface plots for prey and predator populations of the model system (4.1) with
D = 1.7, showing that the positive constant steady state E∗ is unstable for h = 0.17807 <

h0 = 0.17910.

In fact, we choose

q =

(
1
iω+(d+2bx∗+e1)

e2

)
, q∗ = D∗

( ω+(d+2bx∗+e1)i
e2

−i

)
, D∗ =

e2

2ω
.

For all α ∈ DL∗ , β ∈ DL, it is easy to verify that

〈L∗α, β〉 = 〈α, Lβ〉, Lq = iωq,

L∗q∗ = −iωq∗, 〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0,

where 〈α, β〉 =
∫

Ω
ᾱTβdx denotes the inner product in L2(Ω) × L2(Ω).

Following Hassard et al. [12], we decomposed X = XC ⊕ XS with XC := {zq + z̄q̄ : z ∈ C} , XS :=
{W ∈ X : 〈q∗,W〉 = 0} . Then, for any (x, y)T ∈ X, there exist a z ∈ C and W = (W1,W2)T ∈ XS such
that

(x, y)T = zq + z̄q̄ + (W1,W2)T , z = 〈q∗, (x, y)T 〉,

which implies

x = z + z̄ + W1,

y = z
(
iω
e2

+
(d + 2bx∗ + e1)

e2

)
+ z̄

(
−

iω
e2

+
(d + 2bx∗ + e1)

e2

)
+ W2.

Thus, the system in (z,W) coordinates becomes

dz
dt

= iωz + 〈q∗, f̃ 〉,

dW
dt

= LW +
[
f̃ − 〈q∗, f̃ 〉q − 〈q̄∗, f̃ 〉q̄

]
,

(4.25)
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where f̃ = ( f , g)T and f , g are defined by Eq. (4.12).
Now, the straightforward calculations show that

〈q∗, f̃ 〉 = D∗
{
ω

e2
f +

(d + 2bx∗ + e1)
e2

f i − gi
}
,

〈q̄∗, f̃ 〉 = D∗
{
ω

e2
f −

(d + 2bx∗ + e1)
e2

f i + gi
}
,

〈q∗, f̃ 〉q = D∗


ω
e2

f +
(d+2bx∗+e1)

e2
f i − gi

ω2

e2
2

f i +
(d+2bx∗+e1)2

e22 f i +
gω
e2
−

(d+2bx∗+e1)
e2

gi

 ,

〈q̄∗, f̃ 〉q̄ = D∗


ω
e2

f − (d+2bx∗+e1)
e2

f i + gi

−ω
2

e2
2

f i − (d+2bx∗+e1)2

e2
2

f i +
gω
e2

+
(d+2bx∗+e1)

e2
gi

 .
Notice that

H =
H20

2
z2 + H11zz̄ +

H02

2
z̄2 + O(|z|3),

W =
W20

2
z2 + W11zz̄ +

W02

2
z̄2 + O(|z|3).

On the center manifold, we have
(2iω − L)W20 = H20, (−L)W11 = H11, W02 = W̄20,

and

〈q∗, f̃ 〉q + 〈q̄∗, f̃ 〉q̄ = D∗
2ω

e2
f

2ω
e2

g

 = ( f , g)T ,

H(z, z̄,W) = f̃ − 〈q∗, f̃ 〉q − 〈q̄∗, f̃ 〉q̄ = (0, 0)T .

This implies that
W20 = W11 = W02 = 0.

Therefore
dz
dt

= iωz +
1
2

g20z2 + g11zz̄ +
1
2

g02z̄2 +
1
2

g21z2z̄ + O(|z|4),

where

g20 =
1
2

[
2e3 − 2b +

2e4(d + e1 + iω + 2bx∗)
e2

+
2e5(d + e1 + iw + 2bx∗)2

e2
2

]
,

g11 =
1
2

2e3 − 2b +
2e4(d + e1 + 2bx∗)

e2
+

2e5

(
(d + e1 + 2bx∗)2 + ω2

)
e2

2

 ,
g02 =

1
2

[
2e3 − 2b +

2e4(d + e1 − iω + 2bx∗)
e2

+
2e5(d + e1 − iw + 2bx∗)2

e2
2

]
,

g21 =
1
2

[
6e6 +

2e7(3(d + e1 + 2bx∗) + iω)
e2

]
.
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According to Hassard et al. [12], we can obtain

C1(0) =
i

2ω

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{C1(0)}
Re{λ′(h)}

,

β2 = 2Re{C1(0)}.

With the help of above derived parameters, we can determine the direction of Hopf-bifurcation and
stability of bifurcated periodic solutions. If µ2 > 0(< 0), then the Hopf-bifurcation is supercritical
(subcritical); β2 < 0(> 0), the bifurcated periodic solutions are stable (unstable).

4.4. Turing instability

Turing instability breaks the spatial symmetry and leads to the formation of spatial patterns, which
are stationary in time and oscillatory in space. Turing instability is also known as diffusion-driven
instability as it arises due to the introduction of diffusion in the model system. For this instability to
occurs in the spatial model system it is necessary that prey x diffuses more slowly as compared to the
predator y so d1 << d2 is assumed.

Turing instability occurs about the homogeneous steady state E∗(x∗, y∗), when the model system
without diffusion (2.4) is stable and the model system with diffusion (4.1) is unstable for small pertur-
bations around E∗

i.e.
Re(λ(k2 , 0)) > 0 for some k and Re(λ(k2 = 0)) < 0. (4.26)

Therefore, for diffusive instability to occurs in the spatial model system (4.1), it is necessary that the
condition (4.10) fails to exist. However, it is evident that tr(Vk) < 0, if the condition A1 > 0 holds.
Thus, we can not depend on the sign of tr(Vk) for Turing instability. Therefore, diffusive instability
occurs only when det(Vk) < 0. Equivalently,

H(k2) = k4d1d2 + k2
(
rd1 + d2

(
bx∗ −

px∗y∗

(D + x∗)2

))
+ A2 < 0. (4.27)

As H(k2) is a quadratic function of k2, the minimum value of H(k2) is reached at k2 = k2
cr, where

k2
cr =

1
2d1d2

(
px∗y∗d2

(D + x∗)2 − (rd1 + bx∗d2)
)
. (4.28)

Consequently, the condition for diffusion-driven instability is H(k2
cr) < 0 i.e.

2
√

(d1d2A2) <
px∗y∗d2

(D + x∗)2 − (rd1 + bx∗d2). (4.29)

Theorem 4.3. The condition of Turing instability for system (4.1) is given by the conditions (4.28) and
(4.29) leading to the condition

2
√

(d1d2A2)(D + x∗)2 < px∗y∗d2 − (rd1 + bx∗d2)(D + x∗)2, (4.30)

provided E∗(x∗, y∗) is stable in the absence of diffusion.
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Example 4.2. To illustrate the phenomenon of Turing instability numerically, we have taken the fol-
lowing set of parameter values

a = 1.2, d = 0.1, b = 0.1, p = 1.1, D = 2.0,
r = 0.16, s = 0.9, d1 = 0.001, d2 = 0.5.

(4.31)

Plot of H(k2) as a function of k is shown in Figure 5(a) for different values of level of fear (l). It is
observed that interval of negativity decreases as the value of l increases. Dispersion relation (Re(λ)
vs. k) for different values of level of fear (l) is shown in the Figure 5(b). It is observed that interval
of positivity for Re(λ) is decreases as level of fear increases. Thus, occurrence of Turing instability is
significantly affected by the value of level of fear (l).

l = 0.1

l = 1.09

l = 0.5

l = 2

2 4 6 8 10 12
k

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

HHk2L

(a)

l = 2

l = 0.5

l = 0.1

l = 1.09

5 10 15 20
k

-0.3

-0.2

-0.1

0.0

0.1

ReHΛL

(b)

Figure 5. (a) Graph of H(k2) vs. k. (b) Re(λ) vs. k plot. Blue, red, black and purple lines
corresponds to l = 0.1, l = 0.5, l = 1.09, and l = 2 respectively.

Example 4.3. Space series of model system (4.1) at Turing parameter set (4.31) with l = 0.1 is given
by Figure 6. It is observed that spatial distribution of species is irregular.
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Figure 6. Spatial distribution of species x and y after long time.
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5. Numerical simulations

5.1. Numerical simulation results for the temporal model system

In this subsection, we have presented a series of numerical simulations to better understand the
dynamics of the model system (2.4) and to support the analytical findings. Simulation experiments are
carried out in Matlab (R2013a) using the fourth-order Runge-Kutta method. Base parameter values are
chosen as

a = 1.2, l = 0.1, d = 0.1, b = 0.1, p = 1.1, D = 2.0, r = 0.16, s = 0.90, (5.1)

at which the model system (2.4) exhibits stable dynamics (cf. Figures 7(a) and 7(b)). This hypothetical
set of parameter values is based on the values reported in Wang et al. [37] and Upadhyay et al. [35].

An emerging concept is that fear can significantly affect the prey dynamics. In Figures 8(a) and
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Figure 7. (a) Time series plot for prey and predator populations, (b) phase portrait in xy-plane
for the system (2.4).
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Figure 8. Prey and predator biomasses as a function of the level of fear (l) with parameter
set given in Eq. (5.1).
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8(b), we have plotted the population densities of prey and predator as a function of the level of fear (l).
These figures indicate that prey and predator populations decrease with increase in the level of fear (l)
and converge towards the minimum density as the level of fear (l) increases. Biologically, this implies
that as the level of fear (l) increases, the anti-predator behaviors of prey cost the overall population
size of prey. As the predator carrying capacity depends on prey density so corresponding predator
population density also decreases. Furthermore, Figure 8 confirmed the theoretical argument that the
higher values of prey anti-predator responses decrease the prey density as a result of the cost of fear.

In Figures 9(a) and 9(b), we have presented the time series plots of prey and predator with and
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Figure 9. (a) Time series plot of prey at l = 0 and l = 0.5, (b) time series plot of predator at
l = 0 and l = 0.5. At l = 0, oscillatory dynamics is observed which settled down to stable by
increasing the fear level l to 0.5.
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Figure 10. (a) Bifurcation diagram for prey and predator as a function of the level of fear (l),
(b) Equilibrium curve of the model system (2.4) with Hopf point H.

without fear effects. The parameter set used here is given in Eq. (5.1) except D = 1.8. It is observed
that, in the absence of fear the model system is showing the periodic behaviour and increasing the
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Figure 11. (a) and (b) Equilibrium curves of the prey (x) and predator (y) taking predation
rate (p) as control parameter, (c) Family of limit cycles bifurcating from Hopf points H(x =

1.811434, y = 2.012705, p = 1.359285) and H(x = 0.580594, y = 0.645104, p =

3.877143), LPC is a fold bifurcation of the cycle, (d) period of cycle versus p plot for the
parameters given in (5.1).

value of the level of fear (l) to 0.5, dynamics becomes locally asymptotically stable. Biologically, this
implies that risk effects have a stabilising impact on population dynamics of both prey and predator.

Bifurcation diagram taking the level of fear (l) as a bifurcation parameter is given in Figure 10(a).
In this plot, we have taken D = 1.0 and other parameter values are same as given in Eq. (5.1). The
supercritical Hopf-bifurcation is observed, as first Lyapunov coefficient is negative (cf. Figure 10(b)).
Thus, there exists a stable limit cycle bifurcating from the equilibrium point E∗(2.21257, 2.45841).

In Figures 11(a) and 11(b), we have presented the one parameter bifurcation diagrams of model
system (2.4) taking predation rate (p) as the bifurcation parameter and other parameter values are same
as given in Eq. (5.1). It has been observed that the model system is stable for p < 1.359287 (both
the eigenvalues of the system having the negative real parts). As we increase the values of p, a Hopf-
bifurcation point H(x = 1.811434, y = 2.012705, p = 1.359285) is obtained. At this point, first
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Lyapunov coefficient is −2.689880e − 02 < 0 indicates a supercritical Hopf-bifurcation. Indeed, there
are two eigenvalues of the equilibrium with Re(λ)1,2 ≈ 0 and Im(λ)1,2 , 0 and first Lyapunov coefficient
is negative. Thus, there exists a stable limit cycle at p = 1.359285 bifurcating from the equilibrium
point (cf. Figure 11(c)). Further, increasing the value of p, we have observed that the model system
is unstable for 1.359285 < p < 3.877143 (both the eigenvalues of the system having the positive
real parts) and we obtained another Hopf-bifurcation point as H(x = 0.580594, y = 0.645104, p =

3.877143). At this point, first Lyapunov coefficient = 5.517181e− 02 > 0 indicates a subcritical Hopf-
bifurcation. Indeed, there are two eigenvalues with Re(λ)1,2 ≈ 0 and Im(λ)1,2 , 0 and first Lyapunov
coefficient is positive. Thus, there exists an unstable limit cycle at p = 3.877143 bifurcating from the
equilibrium point (cf. Figure 11(c)). In Figure 11(d), we have shown the period of cycle versus p plot
which is indicating the presence of two limit cycles with different periods for p < 4.475979 near LPC
(fold bifurcation of the cycle).

Figure 12(a) shows that prey are more willing to show anti-predator behaviors with increase in
predation rate. Biologically, when predators more often attack prey (which cause more fear on prey
species) and as a response to these fear effects, prey increases their vigilance and other anti-predator
behaviors. Figure 12(b) shows that for higher values of environmental protection, prey species show
less anti-predator responses, which support the theoretical argument that in relatively safer habitat and
foraging sites prey species show fewer efforts towards fear.
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Figure 12. Two dimensional projection of Hopf-bifurcation curve when l , 0 into p− l plane
and D − l plane respectively with parameter set a = 1.2, l = 0.1, d = 0.1, b = 0.1, p =

1.1, D = 1.0, r = 0.16, s = 0.90, (a) l, p along Hopf-bifurcation curve, (b) l,D along
Hopf-bifurcation curve.

5.2. Simulation experiments for the spatial system

5.2.1. 1-D simulations

In this subsection, we have presented the simulation results for the model system (4.1) with one-
dimensional diffusion. To exhibit the spatial dynamics, the system is solved numerically using the
finite difference scheme. Forward difference scheme is used for the reaction part and central difference
scheme is used for one-dimensional diffusion part. All the simulation experiments are performed in
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Matlab (R2013a). Simulations are carried out for different time and space steps until the obtained
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Figure 13. Spatial distribution of prey and predator populations. Showing the effect of the
time on the dynamics of model system (4.1) with one-dimensional diffusion at (a) t = 200,
(b) t = 500, (c) t = 580, (d) t = 650, (e) Chaotic attractor for the spatial model system (4.1)
with one-dimensional diffusion.
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Figure 14. Contour plots showing the population density of prey and predator in u − t plane
with (a) and (b) l = 0.1, (c) and (d) l = 0.5, (e) and (f) l = 1.09.

results become invariant. For simulation study, we assume spatial domain of the size 7000, space step
as ∆h = 1 and time step as ∆t = 0.001. Parameter values and values of diffusion coefficient are chosen
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as

a = 1.2, l = 0.1, d = 0.1, b = 0.1, p = 1.1, D = 2.0,
r = 0.16, s = 0.90, d1 = 0.001, d2 = 0.5.

(5.2)

For realistic biological point of view, nonmonotonic form of initial conditions are assumed to describe
the initial distributions of species x and y as

x(u, 0) = x∗ + ε(u − u1)(u − u2),
y(u, 0) = y∗,

where x∗ = 2.21257 and y∗ = 2.45841 are prey and predator population densities at nontrivial steady
state. ε = 10−8, u1 = 1200 and u2 = 2800 are parameters affecting the system dynamics.

Here, we have plotted the space vs. population density to understand the effect of movement of
species in one-dimensional diffusion. Dynamics of prey and predator are observed at different time
levels t = 200, t = 500, t = 580 and t = 650, as shown in Figure 13. Initially, at t = 200 system
is showing stable dynamics (cf. Figure 13(a)). As we increase time t to 580, jagged patterns of small
amplitude representing the irregular dynamics of the model system are obtained (cf. Figure 13(c)).
These patterns grow slowly with time and their amplitude increases. At time t = 650, size of the whole
domain is occupied by these irregular patterns (cf. Figure 13(d)). Chaotic attractor for the spatial sys-
tem (4.1) with one-dimensional diffusion is presented in Figure 13(e). Thus, we can conclude that the
spatial movement of species can introduce the irregular patterns in the otherwise stable system.

To investigate the spatiotemporal dynamics of the model system (4.1) with one-dimensional dif-
fusion, we have presented Turing patterns as contour plots in Figure 14. In our simulations, initial
conditions are specified as small random perturbations about the homogeneous steady state E∗(x∗, y∗)
with no-flux boundary conditions. Parameter values used in simulations are presented in Table 2. We
have investigated the effect of the level of fear (l) on Turing patterns. At a relatively small value of the
level of fear l = 0.1, prey and predator populations are distributed in the form of low and high-density
patches as shown in Figures 14(a) and 14(b). Increasing the level of fear to l = 0.5, population density
of prey and predator decreases, however nature of patterns remains unaltered (cf. Figures 14(c) and
14(d)). Again, increasing the level of fear to l = 1.09, prey and predator populations evenly distributed
in the whole domain with low density as shown in Figures 14(e) and 14(f). Thus, biologically we can
conclude that at a high value of fear, prey shows greater effort towards anti-predator responses which
ultimately affect the predator-prey biomass and their distributions.

Table 2. Parameter values used in numerical simulations shown in Figure 14

Figure No. l (x∗, y∗) rest of the parameters
14(a) and (b) 0.1 (2.21257, 2.45841) a = 1.2, d = 0.1, b = 0.1, p = 1.1
14(c) and (d) 0.5 (1.2734, 1.41489) D = 2.0, r = 0.16, s = 0.9
14(e) and (f) 1.09 (0.906726, 1.00747) d1 = 0.001, d2 = 0.5

5.2.2. 2-D simulations

In this subsection, we have performed numerical simulations of the spatial model system (4.1) with
two-dimensional diffusion. Reaction-diffusion system is solved by using the explicit Euler method for
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Figure 15. Snapshots of Turing pattern formation at 200 days (a) and (b) l = 0.1, (c) and (d)
l = 0.5, (e) and (f) l = 0.9.

time integration and standard five-point approximation for the 2D Laplacian with no-flux boundary
conditions. The model system is discretize in both space and time using the space step ∆h and time
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Figure 16. Snapshots of pattern formation at 200 days (a) and (b) d2 = 0.1, (c) and (d)
d2 = 0.09, (e) and (f) d2 = 0.05.

step as ∆t. These step sizes are assumed sufficiently small to avoid numerical errors. This method
leads to a sparse, banded linear algebraic system. The obtained linear system is solved using the
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Figure 17. Snapshots of Turing pattern formation at 1500 days (a) and (b) l = 0.1, (c) and
(d) l = 0.5.

GMRES algorithm [11].
Numerical simulations are carried out in Matlab (R2013a) with Turing parameter set given in

Example 4.2. Size of the domain is assumed as 200 × 200, time step ∆t = 0.001, space step
∆h = 0.15 and all numerical simulations employ Neumann boundary conditions. From Example
4.2 it follows that Turing instability occurs for those values of the fear level, which are less than
l = 1.09. Now, we vary the value of the level of fear in Turing instability range and see the impact
of it on the observed Turing patterns. At l = 0.1, random perturbation of the homogeneous steady
state E∗(2.21257, 2.45841) leads to the formation of holes pattern for both prey and predator (cf.
Figures 15(a) and 15(b)). Increasing the value of fear level to l = 0.5, random perturbation of the
homogeneous steady state E∗(1.27340, 1.41489) leads to the formation of holes-small stripes mixture
type of pattern for both prey and predator (cf. Figures 15(c) and 15(d)). Further, increasing the value
of fear level to l = 0.9, random perturbation of E∗(0.989014, 1.09890) leads to a significant decrease
in the both prey and predator biomass (cf. Figures 15(e) and 15(f)).

Next, we have studied the impact of diffusion coefficient d2 on Turing patterns with l = 0.1,

Mathematical Biosciences and Engineering Volume 16, Issue 1, 338–372



366

u

v

Prey

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.5

1

1.5

2

2.5

3

3.5

4

(a)

u

v

Predator

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

2.35

2.4

2.45

2.5

(b)

u

v

Prey

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.5

1

1.5

2

2.5

3

3.5

(c)

u

v

Predator

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

2.3

2.35

2.4

2.45

2.5

2.55

(d)

u

v

Prey

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

0.5

1

1.5

2

2.5

3

3.5

(e)

u

v

Predator

 

 

50 100 150 200

20

40

60

80

100

120

140

160

180

200

2.3

2.35

2.4

2.45

2.5

(f)

Figure 18. Snapshots of Turing pattern formation at 1500 days (a) and (b) d1 = 0.001, (c)
and (d) d1 = 0.003, (e) and (f) d1 = 0.006.

∆h = 0.05, E∗ = (2.21257, 2.45841) and other parameters are taken from Turing space (see Example
4.2). When d2 = 0.1, random perturbation of the homogeneous steady state E∗ leads to formation
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of holes pattern (cf. Figures 16(a) and 16(b)). Decreasing the value of d2 to 0.09, observed Turing
patterns remain unaltered (cf. Figures 16(c) and 16(d)). Further decreasing the value of d2 to 0.05,
prey and predator biomass decreases (cf. Figures 16(e) and 16(f)).

To obtain the nontrivial spatial patterns, initial distributions of species are considered as

x(0, u, v) = x∗ + ε1 sin
(
2π(u − u0)

S

)
+ ε1 sin

(
2π(v − v0)

S

)
,

y(0, u, v) = y∗ + ε1 sin
(
2π(u − u0)

S

)
+ ε1 sin

(
2π(v − v0)

S

)
,

where, ε1 = 5 × 10−4, u0 = v0 = 0.1, S = 0.2.
We have observed the evolution of Turing patterns for different values of level of fear at 1500 days.
At l = 0.1, small random perturbation of the homogeneous steady state E∗(2.21257, 2.45841) leads
to the formation of holes-stripes mixture pattern for both prey and predator (cf. Figures 17(a) and
17(b)). Increasing the level of fear to l = 0.5, random perturbation of the homogeneous steady state
E∗(1.27340, 1.41489) tends to the formation of holes-small stripes mixed type pattern for both prey
and predator (cf. Figures 17(c) and 17(d)).

In Figure 18, we have observed that holes-stripes mixture type pattern leads to the formation of holes
pattern over the whole spatial domain by increasing the diffusion coefficient d1 for prey.

6. Discussions and conclusions

Belgrad and Griffen [3] investigated the predator-prey interactions in structural ecological commu-
nities mediated by prey personality and predator hunting mode. It has been found that the behaviour
and survival of prey are affected by these factors which have a large potential to control trophic cascades
and act as a mechanism for maintaining intraspecific trait variation. They may also guide predictions
on the strength of predator-prey interactions as well as the response of ecosystems to such pervasive is-
sues like species invasions, habitat destruction and overfishing. Various experimental studies on a wide
range of species have suggested that the impact of fear on prey demography, density and dynamics can
be large and sometimes can exceed the direct predation effects [7]. Zanette et al. [42] have reported
the 40% reduction in the number of offspring of song sparrows due to fear of predator alone. Recently,
some studies have been done to discover the impact of the cost of fear in predator-prey interactions
involving the specialist predators [37, 38, 39].

In this work, we have tried to investigate the effect of fear on the more general scenario of predator-
prey interactions involving generalist predators. We have formulated a Leslie-Gower type predator-
prey model introducing the cost of fear on prey demography. The main focus of this study is to
investigate the influence of anti-predator behaviours due to fear of predators in both space and time.
Analytical results show that the positive coexistence equilibrium point E∗(x∗, y∗) is locally as well as
globally asymptotically stable, when certain conditions are satisfied. Turing instability, the existence
of Hopf-bifurcation, direction and stability of bifurcating periodic solutions have been derived for the
spatially explicit model system. Extensive numerical simulations are performed for both temporal and
spatiotemporal model system. Variation in anti-predator responses with the change in other system pa-
rameters is demonstrated with the help of codimension two bifurcation diagrams. It has been observed
that the increase in fear level can decrease both the prey and predator population densities (cf. Figure
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8). Thus, a higher value of fear costs the overall population size. Bifurcation diagram with respect
to the level of fear (l) is plotted (cf. Figure 10(a)). The supercritical Hopf-bifurcation phenomenon is
observed. Bifurcation diagrams taking the predation rate p as bifurcation parameter have also plotted,
both the supercritical and subcritical Hopf-bifurcations have been observed (cf. Figure 11). It has been
found that prey shows larger anti-predator behaviours for higher values of attack rate of predators (cf.
Figure 12(a)). For environmentally protected shelters and foraging sites, prey are less willing to show
anti-predator activities (cf. Figure 12(b)).

Diffusion has a destabilizing effect depending on the system parameters and nonlinearity [25]. By
varying the level of fear, we have obtained the various Turing patterns for one and two-dimensional
diffusive system. For instance, when l = 0.1, holes-stripes mixture type of patterns are observed (cf.
Figures 17(a) and 17(b)). The significant decrease in prey and predator densities has been found for a
further increase in the level of fear to l = 0.5 (cf. Figures 17(c) and 17(d)). We have also performed the
numerical simulations with the fixed value of d2 and by taking d1 = 0.001, 0.003 and 0.006. Holes-
stripes mixed type of patterns appeared which change to holes pattern by increasing the value of d1 (cf.
Figure 18).

In our study, we have considered the effect of fear in prey species and reported a significant change
in population dynamics of both prey and predator with changing risk effects. Exposure to predation
threat has been reported to incur significant impact on the fitness and phenotypes of animals across
taxa [22, 16]. McCauley et al. [21] showed the mere presence of a piscine predator, without access
to prey, reduced dragonflies survivorship. Our study can add to increasing evidence of ecology of fear
and have theoretical and experimental utility in the study and the regulation of crop pest in the ecoagri-
cultural setting. To further our understanding of the nature of such a phenomenon we will investigate
the differential suppression of prey reproduction and emergence of anti-predator defences in different
model agroecosystems.

Appendix

The variational matrix of the model system (2.4) about an equilibrium point E(x, y) is given by

VE =

 −d − 2bx − Dpy
(D+x)2 + a

1+ly −
px

D+x −
alx

(1+ly)2

rsy2

x2 r − 2rsy
x

 ,
let VE1 and VE∗ denote the variational matrices of equilibrium points E1 and E∗ respectively.

(i) At E1 = ( a−d
b , 0)

VE1 =

 −a + d (a − d)
(
−al

b −
p

a−d+bD

)
0 r

 .
Eigenvalues about E1 are −a + d < 0 and r > 0. As one eigenvalue is negative and other is
positive, therefore axial equilibrium point E1 is a saddle point having stable manifold along the
x-axis and unstable manifold along the y-axis.

(ii) At E∗(x∗, y∗)

VE∗ =

(
−bx∗ +

px∗y∗

(D+x∗)2 −
px∗

D+x∗ −
alx∗

(1+ly∗)2

r
s −r

)
=

(
a11 a12

a21 a22

)
.
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The characteristic equation of above matrix is given by

λ2 − (a11 + a22)λ + (a11a22 − a12a21) = 0, (6.1)

let, A1 = −(a11 + a22), A2 = a11a22 − a12a21.

According to Routh-Hurwitz criteria E∗(x∗, y∗) is locally asymptotically stable if

A1 > 0, A2 > 0.

A2 =a11a22 − a12a21

=rbx∗ −
rpx∗y∗

(D + x∗)2 +
rpx∗

s(D + x∗)
+

alrx∗

s(1 + ly∗)2 ,

A2 > 0 if
px∗y∗

(D + x∗)2 <
alx∗

s(1 + ly∗)2 + bx∗. (6.2)

A1 = − (a11 + a22) =

(
bx∗ −

px∗y∗

(D + x∗)2

)
+ r,

A1 > 0 if bx∗ + r >
px∗y∗

(D + x∗)2 . (6.3)

Thus, from Routh-Hurwitz criterion it is directly follows that E∗(x∗, y∗) is locally asymptotically
stable if the conditions

px∗y∗

(D + x∗)2 <
alx∗

s(1 + ly∗)2 + bx∗ and bx∗ + r >
px∗y∗

(D + x∗)2

hold.
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