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Abstract: The most aggressive tumor cells, which often reside in a hypoxic environment, can release
vast amounts of lactate and protons via monocarboxylate transporters (MCTs). This additional proton
efflux exacerbates extracellular acidification and supports the formation of a hostile environment. In
the present study we propose a novel, data-based model for this proton-coupled lactate transport in
cancer cells. The mathematical settings involve systems coupling nonlinear ordinary and stochastic
differential equations describing the dynamics of intra- and extracellular proton and lactate concen-
trations. The data involve time series of intracellular proton concentrations of normoxic and hypoxic
MCF-7 breast cancer cells. The good agreement of our final model with the data suggests the existence
of proton pools near the cell membrane, which can be controlled by intracellular and extracellular
carbonic anhydrases to drive proton-coupled lactate transport across the plasma membrane of hypoxic
cancer cells.
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1. Introduction

The most aggressive and invasive tumor cells usually rely on extensive glycolysis to meet their large
demand for energy and biosynthetic precursors [7,12,29,33]. The increase in glycolytic activity is often
triggered by hypoxia, which derives from high cell density and insufficient vascularization [8, 10, 28].
However, up-regulation of glycolysis can also be observed in cancer cells under aerobic conditions, a
phenomenon termed ’Warburg effect’ [41, 42]. The increase in glycolysis leads to vast production of
lactate and protons, which have to be removed from the cell to prevent acidosis, which, among other
effects, would result in inhibition of glycolysis and lead to cytostasis. Cancer cells are able to extrude
the excess acidic byproducts via various pH sensitive membrane transporters.

Efflux of lactate from cancer cells is primarily mediated by the monocarboxylate transporters MCT1
and MCT4 [28, 30, 31, 40]. The SLC16 gene family of MCTs comprises 14 isoforms, the first four of
which (MCT1-4) carry lactate, but also other high-energy metabolites like pyruvate and ketone bodies,
in cotransport with protons in a 1:1 stoichiometry across the cell membrane [11]. Lactate transport via
the MCTs has been described by different kinetic models. By measuring influx of 14C-labeled lactate
into red blood cells, de Bruijne and colleagues proposed a kinetic model that describes lactate transport
as a symport system with ordered binding of lactate and H�, where the proton binds first to the carrier,
creating the binding site for the negatively charged lactate, followed by binding of lactate [9]. After
translocation of lactate and H� across the membrane, lactate is released first from the transporter
followed by H�. As the rates of monocarboxylate exchange are substantially faster than those of net
transport, the return of the free carrier across the membrane was considered as the rate-limiting step for
net lactate flux [20]. However, based on single substrate inhibition experiments, it was also proposed
that association and dissociation of the proton could be the step that limits the turnover-rate of MCT [1].
Transport activity of MCT1 and MCT4 is enhanced by non-catalytic function of the enzyme carbonic
anhydrase II (CAII) [3–5]. CAII, which directly binds to the C-terminal tail of the transporter [26,36],
has been suggested to increase the effective rate constants of association and dissociation of protons
from the transporter pore, possibly by working as a proton antenna which dissipates local proton
microdomains to drive MCT-mediated lactate/proton co-transport [1, 6, 26]. Hypoxic cancer cells
overexpress the hypoxia-regulated, membrane-tethered, extracellular carbonic anhydrase CAIX, which
catalyzes the reversible hydration of CO2 to HCO�

3 and H�. CAIX, the expression of which is usually
linked to poor prognosis, has been shown to drive HCO�

3 import via Na�{HCO�
3 cotransporters

(NBCs) and Cl�{HCO�
3 exchangers (AEs) and facilitates CO2 diffusion, leading to exacerbated

intracellular alkalization and extracellular acidification [25, 34, 37–39]. Furthermore CAIX might
function as a pro-migratory factor which facilitates cell movement and invasion [23, 34, 35, 37]. We
could recently demonstrate that CAIX facilitates transport activity of MCT1 in hypoxic MCF-7 breast
cancer cells by a similar mechanism as observed for the interaction between MCT1/4 and CAII [2,19].
The CAIX-mediated increase in MCT1 activity was independent from the enzymes’ catalytic activity,
but required the intramolecular proton shuttle of CAIX, as well as the enzyme’s proteoglycane-like
domain, which was suggested to function as an intramolecular proton buffer [2,17,19]. Therefore it was
concluded that CAIX, the expression of which was highly upregulated under hypoxia, could function
as an extracellular proton antenna for MCT1 which facilitates the fast release of lactate and protons
under hypoxic conditions [2, 19]. In the present study we further evaluated the functional interaction
between MCT1 and extracellular CAIX in cancer cells. We introduce a mathematical model aiming at
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a more theoretical characterization of the mentioned processes. The mathematical setting involves a
system of stochastic differential equations for the dynamics of the intracellular and extracellular proton
and lactate concentrations. The model predictions are validated against time series for intracellular
proton concentration obtained experimentally in [19] and supplemented with data as described in
Section 2 below. Our results suggest the existence of proton pools in the immediate proximity of
the cell membrane, which seem to considerably influence the proton-coupled lactate transport across
the plasma membrane of cancer cells.

2. Material and Methods

2.1. pH imaging in cancer cells

Imaging experiments on human MCF-7 breast cancer cells have been described in detail previously
[19]. In brief MCF-7 cells, purchased from the German Collection of Microorganisms and Cell
Cultures DSMZ (DSMZ-No. ACC-115), were cultured in RPMI-1640 medium (Sigma Aldrich,
R1383), supplemented with 1.7 mM human insulin (Sigma Aldrich, 12643), 5 mM D-glucose (Sigma
Aldrich, 16325), 16 mM sodium bicarbonate (Sigma Aldrich, 31437), 1% penicillin/streptomycin
(Sigma Aldrich, P4333), 2% MEM amino acids (Sigma Aldrich, M5550), 10% fetal calf serum (Sigma
Aldrich, P4135), pH 7.2, at 37 °C in 5% CO2, 21% O2, 74% N2 (normoxia) or 5% CO2, 1% O2, 94%
N2 (hypoxia) in humidified cell culture incubators. Changes in intracellular proton concentration rH�si
were measured with a Zeiss LSM 700 confocal laser scanning microscope, with a scanning frequency
of 0.4 Hz. Cells were loaded with 10 µM of the acetoxymethyl ester of Seminaphthorhodafluor 5-
and 6-carboxylic acid 5F (InvitrogenTM SNARF 5F-AM, Life Technologies). SNARF was excited at
555 nm and the emitted light separated with a variable dichroic mirror at 590 nm in a   590 nm and
a ¡ 590 nm fraction. For ratiometric imaging the signals of the   590 nm fraction were divided by
the signals of the ¡ 590 nm fraction. The system was calibrated by the use of the K�

H� exchanging
ionophore nigericin and the fluorescence signals converted to rH�si. Image analysis was carried
out with the program ImageJ. To measure changes in rH�si in single cells, a region of interest was
drawn around individual cells and rH�si plotted against the time (Figure 1). Transport activity of the
monocarboxylate transporter was activated by application of 3, 10, and 30 mM of lactate (gray bars
in Figure 1) in a physiological salt solution (143 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgSO4,
1 mM Na2HPO4, 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), pH 7.2).
Application of lactate induced an intracellular acidification, indicating inward-directed co-transport of
lactate and protons via MCT1, while removal of lactate resulted in an intracellular alkalization, which
indicates outward-directed lactate and proton co-transport. Since lactate and protons are transported in
a 1:1 stoichiometry by MCTs, the rate of change in rH�si is a direct measure for MCT transport activity.
With these data we could previously show that MCT1 transport activity is almost doubled in MCF-7
cells under hypoxia [19]. As input for the models, developed in the present study, representative
recordings of 12 normoxic (Figure 1a) and 15 hypoxic cells (Figure 1b) were used. To describe
the intra- and extracellular proton and lactate dynamics we propose a mathematical model coupling
ordinary (ODEs) and stochastic differential equations (SDEs) and using as input the original recordings
presented in Figure 1. This setting includes pools of available/unavailable protons for the transport
across the cell membrane and is obtained upon starting from a more rudimentary model not accounting
for such supplementary compartments. The precise mathematical settings along with their respective
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performance are introduced and analyzed in the following section.

3. Data-based mathematical modeling and results

In this section we describe the mathematical model characterizing the dynamics of MCT1 as
observed in the experiment. Figure 1 depicts the experimentally observed values of intracellular proton
concentrations (Hi) after the application (removal) of 3 mM, 10 mM and 30 mM of lactate on (from)
the extracellular side, after the cells were acclimatized for normoxic (Figure 1a) and hypoxic (Figure
1b) conditions.
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(a) Normoxic MCF-7 cells, during application of 3 mM,
10 mM and 30 mM of lactate.
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(b) Hypoxic MCF-7 cells, during application of 3 mM,
10 mM and 30 mM of lactate.

Figure 1. Original recordings of intracellular proton concentration rH�si.

Since the dynamics of pHi and also the MCT1 are time dependent (and we actually have time-series
data for Hi), we develop a mathematical model relying on continuous time descriptions of the quantities
of interest via ordinary and stochastic differential equations. Stochasticity plays an important role in
pH dynamics; e.g., the distribution of pHi at any value of extracellular pH was found to be broader
than predictions by theoretical models based on machine noise and stochastic variation in the activity
of membrane-based mechanisms regulating pHi [22]. Our experimental data (see Figure 1) suggest
themselves the presence of an important stochastic component in the dynamics of MCT transport.
Recent multiscale mathematical models by the authors take into account stochastic fluctuations in the
intracellular proton dynamics and connect them to acid-mediated tumor invasion [13–16,21]. Here we
focus solely on the MCT-mediated transport of protons across the cell membrane. The variables of the
model are: intracellular proton concentration (Hi), extracellular proton concentration (He), intracellular
lactate concentration (Li), and extracellular lactate concentration (Le). The aim is to identify the key
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processes that affect the above quantities of interest. We investigate the following: (i) MCT1 transport
kinetics, (ii) intra/extracellular static buffers, (iii) transporter domain, and (iv) noncatalytic activity of
CAII and CAIX. Subsequently we address the modeling of these processes in more detail.

3.1. Modeling the MCT1 transporter

To model the transport activity of MCT1 we rely on the reaction kinetics model presented in [1],
where the dynamics of the MCT1 is described as the transition between six states corresponding to:

1. state S1- binding of protons on the intracellular (IC) side,

2. state S2- binding of lactate on the IC side,

3. state S3- translocation of the loaded carrier from IC side to the extracellular (EC) side,

4. state S4- release of lactate on the EC side,

5. state S5- release of protons on the EC side,

6. state S6- translocation of the empty carrier from EC side to the IC side.

Transitions between these states (S1-S6) are modeled via simple first order reaction kinetics. Due to
the difference in the relative speeds of each state transition, fast transitions are assumed to be in steady
state. Using such quasi-steady state constraints, in [1] an algebraic expression for the net efflux (Mol

sec )
of intracellular protons (Hi) and intracellular lactate (Li) has been obtained. This is represented by the
function T , which is explicitly given as

T pHi,He, Li, Leq � MT
pk12k56KiKlqHiLi � pk21k65KoKeqHeLe

P
Mol
sec

P � pAHi � BHe �CLi � DLeq
1

sec

A � k12pKiKlLi � KoLe � KiKopKl � 1qLiLeq
1

sec Mol

B � k65pKiKeKlLi � KoKeLe � KiKoKeLiLeq
1

sec Mol
,

where km j with m � j and m, j P t1, 2, 3, 4, 5, 6u represent the transition rates of the transporter from
state S m into state S j and Ko, Ke, Kl, and Ki denote constants obtained as fractions of such transition
rates. Concretely we make the following choice:

k12 � .8852 1
sec Mol k56 � 10.14 1

sec k21 � 1.045 1
sec

k65 � 0.5721 1
sec Mol Ko �

k54
k45

� 15 1
Mol Ke �

k16
k61

� 45
Ki �

k23
k32

� Ko Kl �
k34
k43

� Ke MT � 105Mol
D � k21KopKe � 1q 1

sec Mol C � k56KiKlpKe � 1q 1
sec Mol .
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Figure 2. Illustrations of the two models considered in this work.
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(a) Dynamics of intracellular H� concentration in a
normoxic cell, as simulated by the one-point model (1).
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(b) Dynamics of intracellular H� concentration in a
normoxic cell, as simulated by the two compartment
model (3).

Figure 3. Simulation results of the models (1) and (2)-(3) for the intracellular proton
concentration of a cell in the normoxic regime (shown as red trace). The green traces show
the experimental data.
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3.2. Modeling the stationary buffer

The buffer capacity β of a solution is defined as the number of moles of H� that needs to be applied
to 1L of the buffer solution in order to decrease the pH by 1 unit. Mathematically, β can be expressed
as (see [18, 32])

β � �
drHs�

dppHq
.

The minus sign is due to the fact that increase of proton concentration results in decrease of pH, while
conventionally the buffering power is a positive quantity. From this we deduce

β � �
drHs�

dppHq
� �

drHs�

dt
dppHq

dt

ùñ
dppHq

dt
β � �

drHs�

dt
.

The right hand side (RHS) in the last equation above represents the applied change in protons with
respect to time, while the left hand side (LHS) represents the observed change in pH. In our case the
applied change in protons is due to the MCT1 transporter, thus we get that

β
dppHq

dt
� �T ùñ

drHs�

dt
�

lnp10qrHs�

β
T ùñ

drHs�

dt
�

2.3rHs�

β
T.

3.3. A first approach to modeling the transporter domain (one-point model)

The experimental data in Figure 1 only feature time dependence without any spatial component.
Therefore, a naive modeling approach would be to formulate a system of ordinary stochastic differential
equations, thus not involving any partial derivatives, but accounting (by way of the noise terms) for
randomness. Considering the key biological processes described above, we formulate the following
SDE system (1) which we shall refer to as the one-point model. Figure 2a illustrates the corresponding
proton exchange.

dHi

dt
�
�2.3Hi

βi

	�
� T pHi,He, Li, Leq

	
� r1Li � σ1Hiξ

1
t (1a)

dHe

dt
�
�2.3He

βe

	�
T pHi,He, Li, Leq

	
� σ2Heξ

2
t (1b)

dLi

dt
� �T pHi,He, Li, Leq � r1Li � σ3Liξ

3
t (1c)

dLe

dt
� T pHi,He, Li, Leq � cptq (1d)

with initial conditions

Hip0q � 20 nM, Hep0q � 40 nM p� 7.4 pHq, Lip0q � 35 µM, Lep0q � 0. (1e)

Thereby, ξi
t (i � 1, 2, 3) represent Gaussian white noise. The corresponding processes are mutually

independent and cptq denotes the control function, i.e. the function modeling the input of lactate into
the system which is applied on the extracellular side during the course of the experiment. It will
coincide with the function C2ptq introduced in Subsection 3.4 below. The diffusion coefficients in
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the noise terms are of multiplicative type in order to ensure nonnegativity of the solution to the SDE
system.

The simulation results for the one-point model (1) are shown in Figure 3a for the normoxic regime.
The red curve depicts the mean value of the intracellular proton concentration averaged over 100
simulated cells (sample paths). It suggests that the time dynamics of Hi exhibits undersaturation.
The reason for this is that the initial concentrations of He, Hi, Li and Le are such that they facilitate the
efflux of intracellular protons. The latter is so high that it leads to saturation of Hi at a lower value in
comparison to the actually observed level of Hi saturation. This could be remedied by incorporating
the spatial proton dynamics in the cell and its immediate extracellular region. This would in particular
ensure that at any fixed time point MCT1 does not have access to the full Hi and He concentrations.
However, in order not to complicate the setting by considering partial space-time derivatives and thus
having to handle stochastic PDEs, we model instead some supplementary compartments. This can
be seen as another way of introducing a hypothetical region called the transporter domain situated in
the close intra- and extracellular neighbourhood of the cell membrane and representing the region of
the cell containing molecules that are effectively involved in the activity of the transporter. We shall
describe this in more detail below; here we only refer beforehand to Figure 3b to show the effect of
modeling such a transporter domain on getting rid of the mentioned undersaturation of Hi dynamics.

3.4. Modeling the transporter domain: A more careful approach

Since a cell is a 3D structure with non-zero volume, its constituents are subjected to spatial effects,
like e.g., diffusion, spatial distribution of the MCT1 on the cell membrane, etc. It is of particular
importance to note that no membrane transporter can have access to the full concentration of the
required constituents at any time point. Instead, only a fraction of the total concentration in the vicinity
of the transporters is actively involved. Following this line of argument, we consider the concentration
of intracellular protons to be divided into Hia and Hiu. Thereby, the former represents the concentration
of protons available for MCT-mediated extrusion, while the latter represents the intracellular proton
concentration beyond the shuttling range of MCT. Similarly, the concentration of extracellular protons
is divided into Hea and Heu, with the former denoting the concentration of those available for MCT
transport, while the latter represents the extracellular proton concentration not within the range of
MCT.
Spatial movement (presumably diffusion) enables the conversion from unavailable to available protons
and vice versa. This interconversion is modeled in this ODE-SDE setting via simple first order reaction
kinetics between the respective compartments (or components):

Hia
k4

k3
Hiu

Hea
k2

k1
Heu

The model constructed this way will be refered to as two-compartment model and its dynamics are
illustrated in Figure 2b. The concrete mathematical setting will be described below in the equations
(2)-(3) supplemented with the corresponding prescriptions of the coefficient functions on the right
hand sides and the initial conditions. The model involves the major unknowns Hiu, Hea, Hia, Li, and
Lea. Thereby, Li denotes the concentration of intracellular lactate and Lea that of extracellular lactate in
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the region available to the transporter. The dynamics of Hea, Hia, Li, and Lea is directly related to the
MCT1 shuttling activity, which makes up the main parts of the right hand sides in (3). The quantities
Heu and Leu in the unavailable extracellular compartments can be obtained from Heu being constant
(thus coinciding with its given initial value) and by directly integrating the decoupled equation (2b)
below. Moreover, we will also take into account the influence of carbonic anhydrases CAII and CAIX
on pH regulation, as explained in the following paragraph.

Modeling of CAII and CAIX

In the MCF-7 cell line used in this study, intracellular CAII is constantly expressed, both under
normoxic and hypoxic conditions, while the expression of extracellular CAIX is strongly upregulated
under hypoxia [19]. Both CAII and CAIX have been shown to facilitate transport activity of MCT1
via a non-catalytic mechanism, presumably by functioning as a proton collector and distributor for the
transporter [1, 2, 6, 19, 26]. For extracellular CAIX the implications of this ’proton antenna’ on the
proton dynamics are as follows:

1. During Hi efflux (i.e., when T is positive), the protons released on the EC side are distributed
away from the MCT1 site towards further away EC regions. This in turn facilitates faster cycles
of MCT1 state transitions and thus enhances the efflux of protons.

2. During Hi influx (i.e., when T is negative), the protons on the EC side near the membrane are
shuttled towards the MCT1 site, thus enhancing the influx of protons from the EC to the IC side.

Since CAIX is only expressed under hypoxic conditions, these enhancing effects are only applied for
hypoxic, but not for normoxic cells. CAII plays an analogous role at the IC side of the MCT1, both in
normoxic and hypoxic cells. Figure 4a illustrates these influences in the hypoxic case.

The roles of CAIX and CAII are modeled in the following way:

1. The values of the parameters k1 and k2 in the hypoxic case are taken to be larger than their values
in the normoxic case. This is in line with the observation that CAIX is activated during the
hypoxic regime.

2. Comparatively, the values of the parameters k3 and k4 in the hypoxic case are taken to be only
slightly larger than their values in the normoxic case.

Apart from this we make k1 and k2 time dependent. This time dependence characterizes the dynamic
adaptation of the exchange of extracellular protons between the free and the available pools. This
dynamic adaptation of protons represents the non-catalytic effect of CAIX. As hypothesised in [2,
19], CAIX acts as a proton shuttler which effectively speeds up the spatial movement of extracellular
protons and this in turn means that the exchange of extracellular protons between the free and available
pools is also appropriately affected.

To properly capture the dynamic behavior of CAIX we need to adequately incorporate the time
dependent behavior of the exchange coefficients k1 and k2. Since the accelerating effect of CAIX
increases with increasing extracellular lactate concentration, the time dependence of CAIX must
qualitatively mimick the dynamics of lactate application. Based on these considerations, the time
evolution of k1 is described as in (2c). Similarly, the time evolution of k2 is given by (2d). Since there
is no preference in the direction of proton movement, we have that k1ptq � k2ptq for all t ¡ 0.
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Figure 4. Illustration of the role of CAII and CAIX and least-squares fit for the titration
experiment used to determine the functional form of the extracellular buffer modulator k6.

We also introduce two buffer modulators k5 and k6, the latter being time dependent. The former
modulates the intracellular buffer βi as a dividing factor, while k6ptq modulates the extracellular buffer
βe in a multiplicative way. For 0   k5   1 the internal buffer is amplified and hence the effect of
the transporter is dampened, i.e., the protons released by MCT1 on the IC side are quickly absorbed.
On the other hand, for k5 ¡ 1 the internal buffer capacity is reduced and therefore the effect of the
transporter is enhanced. In contrast for a subunitary value of k6 the external buffer is weakened, thus
enhancing the effect of the transporter. On the other hand, for k6 values larger than 1 the external buffer
is enhanced, thus the effect of the transporter is reduced. Both k5 and k6ptq influence indirectly the
transport function T by dynamically altering the buffer system. The extracellular buffer capacity k6ptq
is modeled in (2e) as a quadratic function of Hea. The precise form of that function was obtained after
performing a least-squares fit of the titration experiment, as shown in Figure 4b. For the experimental
determination of extracellular buffer capacity (βe), the physiological salt solution used for the imaging
experiments was titrated from pH 7.4 to pH 6.4 by stepwise addition of 0.2 mM HCl. The buffer
capacity was then calculated for every single titration step, using the formula

βe �
∆pH

∆rHCls
pmMq,

with ∆pH denoting the change in pH after addition of 0.2 mM HCl, and ∆[HCl] being the amount of
added HCl (0.2 mM). The calculated buffer capacity was then plotted against the total amount of added
H�.
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The mathematical description: Equations for proton and lactate dynamics

dHiu

dt
�

Hia �¡Hiuhkkkkkkikkkkkkj
k4Hia � k3Hiu �

production by gylcolysishkkikkj
r1Hiu �

noisehkkikkj
σ4Hiuξt (2a)

dLeu

dt
�

applied Lehkkikkj
C1ptq �

Le used by MCT1hkkikkj
C2ptq (2b)

dk1

dt
�

rate of change of flow from Hea to Heuhkkikkj
kkC3ptq (2c)

dk2

dt
�

rate of change of flow from Heu to Heahkkikkj
kkC3ptq (2d)

k6ptq � �0.056
�

Heaptq � Heap0q
	2
� 20 (2e)

dLi

dt
� �

MCT1 transport activityhkkkkkkkkkkikkkkkkkkkkj
T pHia,Hea, Li, Leaq�

glycolytic lactate productionhkkikkj
r1Li �

noisehkkikkj
σ3Liξt (3a)

dLea

dt
�

MCT1 transport activityhkkkkkkkkkkikkkkkkkkkkj
T pHia,Hea, Li, Leaq�

effectively applied Lehkkikkj
C2ptq (3b)

dHia

dt
�
�

bufferhkkikkj
k52.3Hi

βi

	�
�

MCT1 transport activityhkkkkkkkkkikkkkkkkkkj
T pHia,Hea, Li, Leaq

	
�

Hia �¡Hiuhkkkkkkikkkkkkj
k3Hiu � k4Hia �

noisehkkikkj
σ1Hiaξt (3c)

dHea

dt
�
�

bufferhkkikkj
2.3He

βek6

	� MCT1 transport activityhkkkkkkkkkkikkkkkkkkkkj
T pHia,Hea, Li, Leaq

	
�

Hea �¡Heuhkkkkkkkkkkikkkkkkkkkkj
k1ptqHeu � k2ptqHea �

noisehkkikkj
σ2Heaξt (3d)

where Heu is constant and k1 and k2 coincide,

C1ptq � m1S 40
1 ptq � m2S 40

2 ptq � m3S 40
3 ptq

C2ptq � m1S 6
1ptq � m2S 6

2ptq � m3S 6
3ptq

C3ptq � m4S 6
1ptq � m5S 6

2ptq � m6S 6
3ptq

with

S p
1ptq :� expp�s1p.004t � t1q

pqp�s1ppp.004t � t1q
p�1q.004q

S p
2ptq :� expp�s2p.004t � t2q

pqp�s2ppp.004t � t2q
p�1q.004q

S p
3ptq :� expp�s3p.004t � t3q

pqp�s3ppp.004t � t3q
p�1q.004q.

Thereby C2ptq corresponds to the lactate control function in (1), and Hi � Hia � Hiu and
He � Hea � Heu in (3c) and (3d), respectively. They denote total available intra- and extracellular
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proton concentrations.

Initial conditions:

Hiup0q � 1.998 � 10�8, Heup0q � .65 � 10�7.4, Leup0q � 0, k1p0q � k10 , k2p0q � k20

Hiap0q � 2 � 10�11, Heap0q � .35 � 10�7.4, Leap0q � 0, Lip0q � 5 � 10�6.

Observe that C1 represents the lactate applied in the extracellular solution. There is no observable
delay between its application and its actual availability in the solution. The high value of the exponent
p (i.e. p � 40) in the above expression of C1ptq is needed to mimic this instantaneous availability
of extracellular lactate. Mathematically such high value of p ensures very fast saturation of the
extracellular lactate concentration. However, although the full amount of applied lactate is available on
the extracellular side, the actual amount used by the transporter is less; the much smaller value p � 4
in the expressions of C2ptq and C3ptq represents the slow saturation of applied extracellular lactate as
’seen’ by MCT1.

Numerical simulations

In order to validate the model (2) - (3) we perform numerical simulations and show that the model
prediction fits the experimentally observed data in an appropriate manner. The choice of model
parameters such as buffer capacity, pool exchange rates, MCT1 transporter rates etc. is crucial for
reducing the error between the simulated result and the experimental data. Statistical methods should
be used in order to estimate the involved parameters, however, of the 20 model parameters only at
most 10 can be assigned fixed values directly based on experimental information. The rest are free
variables that need to be statistically estimated. This is, however, a nontrivial problem, mainly due to
the following challenges:

1. the model (3) is a coupled system of nonlinear stochastic differential equations involving several
major unknowns: Hia, Hea, Li, Lea. The data necessary for the model validation is only available
for one variable, namely Hi, which involves both Hia and Hiu.

2. since the parameters are present on the RHS of the equations and since there is no quantitative
data for the derivatives, even if (3) consisted of only one equation (say for Hia), the estimation
task would still be challenging, as the unknown parameters appear as factors of the integrands
and one has to minimize the error for every time integral.

3. finally, the nonlinear terms may render the error minimization task non-convex.

Taking these facts into consideration we tried the following error minimization approaches:

1. We first tried a maximum log-likelihood method. As Hi is our only observable, we decided to
maximize its log-likelihood. In order to compute the latter, we first needed to determine the
probability density of Hi, for which we used the Gaussian kernel density estimator. Once the log-
likelihood function was computed we applied the optimization algorithm to determine the best
parameter. The optimization terminated only for very sparse time points, for relatively denser
time points none of the optimization algorithm terminated. As mentioned above this could be due
to the non-convexity and ill-posedness of the problem.
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2. This led us to use Monte-Carlo based local search techniques. Since we already had a resonably
good hand-picked guess of the parameters, we decided to randomly search, with .5�106 iterations,
for a parameter set in the neighborhood of this initial guess such that the L2-norm based error is
minimized. Based on this we acquired the following parameter values:

σ1 � .0052 1
sec , σ2 � .0052 1

sec , σ3 � .0028 1
sec , σ4 � .0044 1

sec ,

m1 :� .003Mol
sec , m2 :� .01Mol

sec , m3 :� .03Mol
sec , m4 :� .0002Mol

sec ,

m5 :� .00075Mol
sec , m6 :� .0009Mol

sec , t1 :� 1.75, r1 :� 10�5 1
sec ,

s1 :� 15, s2 :� 5, s3 :� 5,
βi � .04Mol, βe � .006Mol.

Apart from the above, the parameter values for the environment type (i.e. normoxic and hypoxic) are
given below.

1. Parameters for the simulation in the case of normoxic cells:

k10 � .0002 1
sec , k20 � .0002 1

sec , k3 � .00015 1
sec , k4 � .00015 1

sec ,

k5 � .25 1
sec , kk � 2.6, t2 :� 4.4, t3 :� 7.25.

2. Parameters for the simulation in the case of hypoxic cells.

k10 � .00032 1
sec , k20 � .00032 1

sec , k3 � .000175 1
sec , k4 � .000175 1

sec ,

k5 � .5 1
sec , kk � 1.8, t2 :� 4.2, t3 :� 7.35.

Using the above parameters we numerically simulated the model (2) - (3) by a finite difference
scheme combined with an Euler-Maruyama time discretization. The 500 Monte-Carlo iterations
were done in order to estimate the averages. Based on this we obtained the results in Figure 5 for
intra- and extracellular proton concentrations in both the normoxic and the hypoxic regimes. Figure
6 shows the computed transport dynamics of MCT1. The numerical simulations indicate that the
model is able to correctly predict the MCT1-induced dynamics of intracellular protons. In particular,
the undersaturation of Hi dynamics obtained with the simple one-point model is now eluded in both
normoxic and hypoxic regimes.

4. Discussion

Our model suggests that extracellular and intracellular carbonic anhydrases can facilitate MCT1-
mediated proton/lactate cotransport by accelerating the exchange of protons between the immediate
surrounding of the transporter and the bulk solution. It has been shown that H� cotransporters
such as MCTs, whose substrate is available only at very low concentrations, extract H� from the
cytosol at rates well above the capacity for simple diffusion to replenish their immediate vicinity.
Therefore the transporter must exchange H� with protonatable sites at the plasma membrane, which
could function as a ”proton-harvesting antenna” for the transporter [24]. Both intracellular CAII and
extracellular CAIX are equipped with an intramolecular H� shuttle, which has been proposed to also
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Figure 5. Simulation results of the two-compartment model (2)–(3). Shown are the average
concentrations of intra- (red) and extracellular (blue) H�. The light green and light blue
traces depict the original data.

mediate rapid shuttling of H� between MCTs and surrounding protonatable residues [2, 6, 19, 26].
Thereby the CAs would stabilize the H� concentration in the immediate vicinity of the transporter
pore, which in turn would facilitate proton-driven lactate flux via the transporter. In analogy to
that, our model shows that increasing the rate constants for the exchange of protons between the
free pool and the available pool enhances proton-coupled lactate transport across the membrane.
Interestingly, the model could only fit the experimental data when the exchange of protons was
enhanced on both sites of the membrane. Intracellular CAII is constantly expressed in MCF-7 cells,
both under normoxic and hypoxic conditions, while extracellular CAIX is strongly upregulated under
hypoxia [19]. According to the model, the rate of proton/lactate cotransport would therefore be limited
by the slow exchange of H� between the free pool and the available pool on the extracellular site under
normoxic conditions. However, cancer cells also produce only low amounts of lactate under normoxia,
making the necessity for rapid proton/lactate transport obsolete. Under hypoxic conditions, when
proton and lactate production is increased, CAIX would now enhance the exchange of H� between the
free pool and the available pool on the extracellular site, while CAII would still facilitate intracellular
H� movement. Thereby both carbonic anhydrases could stabilize the available proton pool for the
MCT1 to drive proton-coupled lactate transport in hypoxic cancer cells. In line with this, we could
recently show, that knockdown of CAII and CAIX, respectively, results in a significant reduction of
MCT1 transport activity in MCF-7 breast cancer cells [2, 19, 27]. Performing mathematical modeling

Mathematical Biosciences and Engineering Volume 16, Issue 1, 320–337.



334

Normoxia

1.5

-1.5

0

1.0

0.5

-0.5

-1.0

time (min)
0 15105

3 mM 10 mM 30 mM

Lactate

2520 3530 40

200

0

100

[H
]

(n
M

)
+

i

180

160

140

120

80

60

40

20

Hypoxia
T

(n
M

/s
e

c
)

Figure 6. Transport dynamics of MCT1, as expressed by the right-hand-side of (3c), during
application and removal of lactate in a normoxic (green trace), respectively hypoxic (blue
trace) cancer cell.

of this problem not only led to the above findings, but also allowed to assess the dynamics of the
transport activity, which is hardly possible to do directly from data. The model is able to capture
random effects which are inherent to such biological processes and the model development outlined
the importance of compartmentalization of the protons closer and further away from the cell membrane
and its transporters. Considering such ”intermediate spatial stages” kept the mathematical setting in the
ODE-SDE framework, as the handling of stochastic PDEs would be much more challenging, not only
from the viewpoint of parameter estimation, but also merely concerning the numerical simulations.
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