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Abstract: Human specific immunity consists of two branches: humoral immunity and cellular
immunity. To protect us from pathogens, cell-mediated and humoral immune responses work together
to provide the strongest degree of efficacy. In this paper, we propose an HIV-1 model with cell-mediated
and humoral immune responses, in which both virus-to-cell infection and cell-to-cell transmission
are considered. Five reproduction ratios, namely, immunity-inactivated reproduction ratio, cell-
mediated immunity-activated reproduction ratio, humoral immunity-activated reproduction ratio, cell-
mediated immunity-competed reproduction ratio and humoral immunity-competed reproduction ratio,
are calculated and verified to be sharp thresholds determining the local and global properties of the
virus model. Numerical simulations are carried out to illustrate the corresponding theoretical results
and reveal the effects of some key parameters on viral dynamics.
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1. Introduction

The human immunodeficiency virus (HIV) is a lentivirus that causes HIV infection and over time
acquired immunodeficiency syndrome (AIDS). AIDS leads to progressive failure of the immune
system, which allows life-threatening opportunistic infections and cancers to thrive. In the past
decades, within host virus models have been investigated in some literatures, which helps us
understand the biological interactions between viruses and host cells. Nowak et al. [20] designed a
mathematical model including uninfected cells x(t), infected cells y(t) and free virus v(t) to describe
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the viral dynamics in HIV-1 infection:

ẋ(t) = s − dx(t) − β1x(t)v(t),
ẏ(t) = β1x(t)v(t) − ay(t),
v̇(t) = ky(t) − uv(t),

(1.1)

where uninfected cells x(t) are produced at rate s and die at rate d; β1 is the infection rate of virus-to-cell
infection; a is the death rate of infected cells; k denotes the number of free virus particles produced by
per infected cell; u is the remove rate of virus. System (1.1) has been further investigated by Perelson
and Nelson [21] and Cangelosi et al. [1].

Faced with different virus infections, immunity system protects us against pathogens. Human
specific immunity can be classified into cell-mediated immunity, for which the protective function is
associated with cells and humoral immunity, where the protective function exists in the humor [2]. As
for cell-mediated immunity, activated effector T cells can detect peptide antigens originating from
various types of pathogens and remove virus-infected cells. Some HIV-1 infection models have been
proposed to describe the virus dynamics with cell-mediated immune response (see, for
example, [15, 19, 24, 26, 34]). While, in humoral immunity, matured B cells migrate from bone
marrow to lymph nodes or other lymphatic organs, where they begin to eliminate pathogens [23].
There have been several works on virus models with humoral immune response (see, for
example, [4, 14, 28–30]). In [6], Fouts et al. pointed out that a guiding principle for HIV vaccine
design has been that cellular and humoral immunities work together to provide the strongest degree of
efficacy. In [33], Yan and Wang considered both cell-mediated and humoral immune responses and
put forward an HIV-1 infection model including both T cells and B cells, which only involves
virus-to-cell infection mechanism.

It is mentioned in [17] that cell-to-cell transmission is a more potent and efficient means of virus
propagation than the virus-to-cell infection mechanism. Cell-to-cell spread not only facilitates rapid
viral dissemination but also reduce the effectiveness of neutralizing antibodies and viral inhibitors by
immune evasion. In [25], Sigal et al. proved that cell-to-cell spread of HIV-1 does reduce the efficacy
of antiretroviral therapy, since cell-to-cell transmission can cause multiple infections of target cells,
which can in turn reduce the sensitivity to the antiretroviral drugs. In view of this, some mathematical
analysis of virus models with cell-to-cell transmission has been performed. For instance, Li and Wang
[13] dealt with the global dynamics of an HIV infection model which incorporated direct cell-to-cell
transmission. Meanwhile, Lai and Zou [11, 12] studied the effect of cell-to-cell transfer of HIV-1 on
the virus dynamics.

It was assumed in system (1.1) that the infection process is governed by the mass-action principle,
namely, the infection rate per host or per virus is a constant. In [22], Regoes et al. illustrated that
the infection rate is often found to be a sigmoidal rather than a linear function of the parasite dose to
which it is exposed, and presented a dose-dependent infection rate (v/ID50)κ/[1 + (v/ID50)κ], where
ID50 denotes the infectious dose at which 50% of the hosts are infected and κ measures the slope of the
sigmoidal curve at ID50. In [10], Huang et al. indicated that the bilinear incidence rate is insufficient to
describe the infection process in detail and proposed a class of nonlinear incidence. Besides, to place
the model on more sound biological grounds, Xu [31] and Elaiw et al. [5] incorporated a saturation
incidence β1v(t)/(1 + αv(t)) to replace the mass-action infection rate.

Motivated by the works of Fouts et al. [6], Yan and Wang [33], Sigal et al. [25] and Regoes et al. [22],
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in the present paper, we are concerned with the effects of cell-to-cell transmission, saturation incidence,
both cell-mediated and humoral immune responses on the global dynamics of HIV-1 infection model.
To this end, we consider the following delay differential equations:

ẋ(t) =s − dx(t) −
β1x(t)v(t)
1 + αv(t)

− β2x(t)y(t),

ẏ(t) =
β1e−mτx(t − τ)v(t − τ)

1 + αv(t − τ)
+ β2e−mτx(t − τ)y(t − τ) − ay(t) − p1y(t)z(t),

v̇(t) =ky(t) − uv(t) − p2v(t)w(t),
ż(t) =c1y(t)z(t) − b1z(t),

ẇ(t) =c2v(t)w(t) − b2w(t),

(1.2)

where x(t), y(t), v(t), z(t), w(t) denote the concentration of uninfected cells, infected cells, virus, T cells
and B cells at time t, respectively, and other parameters are described in Table 1. A simple schematic
diagram for the virus infection corresponding to system (1.2) is shown in Figure 1.

The initial condition for system (1.2) takes the form

x(θ) = φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ), z(θ) = φ4(θ), w(θ) = φ5(θ), (1.3)

where it satisfies that φi(θ) ≥ 0, θ ∈ [−τ, 0), φi(0) > 0, where φi ∈ C([−τ, 0],R5
+0), i = 1, 2, 3, 4, 5, the

Banach space of continuous functions mapping the interval [−τ, 0] into R5
+0, where

R5
+0 = {(x1, x2, x3, x4, x5) : xi ≥ 0, i = 1, 2, 3, 4, 5}.

It can be proved by the fundamental theory of functional differential equations [7] that system (1.2)
has a unique solution (x(t), y(t), v(t), z(t),w(t)) satisfying the initial condition (1.3). It is easy to show
that all solutions of system (1.2) with initial condition (1.3) are defined on [0,+∞) and remain positive
for all t ≥ 0.

Figure 1. Simple schematic diagram of the HIV-1 infection model. (a), (b), (c) and (d)
depict the process of cell-mediated immunity, humoral immunity, cell-to-cell infection and
virus-to-cell transmission, respectively.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 292–319.



295

Table 1. Definitions of frequently used symbols

Symbols Description
s recruitment rate of uninfected cells
d death rate of uninfected cells
β1 infection rate of virus-to-cell infection
β2 transmission rate of cell-to-cell transmission
α saturation infection rate coefficient
τ the time between viral entry into a cell and the production of new

free virus or the time between infected cells spreading virus into
uninfected cells and the production of new free virus [8]

e−mτ the probability of surviving the time period from t − τ to t
a death rate of infected cells
u removal rate of virus
k average number of free virus particles produced by per infected cell
p1 kill ratio of infected cells by T cells
p2 kill ratio of virus by B cells
b1 death rate of T cells
b2 death rate of B cells
c1 maturing rate of new T cells from thymocytes in the thymus
c2 production rate of new B cells by antigenic stimulation

This paper is organized as follows. In Section 2, we calculate the reproduction ratios to system
(1.2) and establish the existence of feasible equilibria. In Section 3, the local asymptotic stability of
each of feasible equilibria is studied. In Section 4, we investigate the global asymptotic stability of
each of feasible equilibria. In Section 5, we present numerical simulations to illustrate the theoretical
results and study the effects of cell-to-cell transmission, viral production rate, death rate of infected
cells and viral removal rate on viral dynamics, respectively. Besides, we perform a sensitivity analysis
of reproduction ratios. The paper ends with a conclusion in Section 6.

2. Reproduction ratios and feasible equilibria

Clearly, system (1.2) always has an infection-free equilibrium E0(s/d, 0, 0, 0, 0). Denote

R0 =
(β1k + β2u) se−mτ

aud
,

where R0 is called immunity-inactivated reproduction ratio of system (1.2), which represents the
number of newly infected cells produced by one infected cell during its lifespan [3]. It is easy to show
that if R0 > 1, system (1.2) has an immunity-inactivated equilibrium E1(x1, y1, v1, 0, 0), where

x1 =
s (u + αky1)

(d + β2y1) (u + αky1) + β1ky1
, v1 =

ky1

u
,

and

y1 =
− (β1ak + β2au + αadk − αβ2kse−mτ) +

√
∆

2αβ2ak
,
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in which,

∆ =
(
β1ak + β2au + αadk − αβ2kse−mτ)2

− 4αβ2ak
(
adu − β1kse−mτ − β2sue−mτ) .

Denote

R1 =
c1se−mτ [β2 (c1u + αb1k) + β1c1k

]
a
[
(c1d + β2b1) (c1u + αb1k) + β1b1c1k

] =
R0

1 + X1R0
,

where

X1=
ab1 (β1k + β2u)

[
c1 (β1k + β2u) + αβ2b1k

]
+ αβ1ab1c1dk2

c1se−mτ (β1k + β2u)
[
c1 (β1k + β2u) + αβ2b1k

] > 0.

R1 is called cell-mediated immunity-activated reproduction ratio, which denotes the average number
of T cells activated by infectious cells when virus infection is successful and humoral immune
response has not been established. If R1 > 1, in addition to E0 and E1, system (1.2) has a
cell-mediated immunity-activated equilibrium E2(x2, y2, v2, z2, 0), where

x2 =
c1s (c1u + αb1k)

(c1d + β2b1) (c1u + αb1k) + β1b1c1k
, y2 =

b1

c1
, v2 =

b1k
c1u

,

and

z2 =
c1se−mτ [β2b1 (c1u + αb1k) + β1b1c1k

]
b1 p1

[
(c1d + β2b1) (c1u + αb1k) + β1b1c1k

] − ab1

b1 p1
.

We further denote

R2 =
c2kse−mτ [β2u (c2 + αb2) + β1c2k

]
au (c2 + αb2) (β2b2u + c2dk) + β1ab2c2ku

=
R0

1 + X2R0
,

in which

X2 =
ab2u (β1k + β2u)

[
β2u (c2 + αb2) + β1c2k

]
+ αβ1ab2c2dk2u

c2kse−mτ (β1k + β2u)
[
β2u (c2 + αb2) + β1c2k

] .

R2 is called humoral immunity-activated reproduction ratio, which denotes the average number of B
cells activated by viruses when virus infection is successful and cell-mediated response has not been
established. When R2 > 1, system (1.2) has a humoral immunity-activated equilibrium
E3(x3, y3, v3, 0,w3), where

x3 =
c2ks (c2 + αb2)

(c2 + αb2) (β2b2 p2w3 + β2b2u + c2kd) + β1b2c2k
, y3 =

b2 p2

c2k
w3 +

b2u
c2k

, v3 =
b2

c2
,

where w3 is the positive real root of the following quadratic equation:

w2
3 +

(c2 + αb2) (2β2ab2u + ac2dk − β2c2kse−mτ) + β1ab2c2k
β2ab2 p2 (c2 + αb2)

w3

+
au (c2 + αb2) (β2b2u + c2dk) + β1ab2c2ku

β2ab2 p2
2 (c2 + αb2)

(1 − R2) = 0.

Denote

R3 =
b1c2k
b2c1u

, R4 =
c1se−mτ [β2b1 (c2 + αb2) + β1b2c1

]
ab1

[
(c1d + β2b1) (c2 + αb2) + β1b2c1

] ,
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where R3 is called humoral immunity-competed reproduction ratio and represents the average number
of B cells activated by viruses under the condition that cell-mediated immune response has been
established, while, R4 is called cell-mediated immunity-competed reproduction ratio and represents
the average number of T cells activated by infectious cells under the condition that humoral immune
response has been established. If R3 > 1 and R4 > 1, system (1.2) has an immunity-activated
equilibrium E∗(x∗, y∗, v∗, z∗,w∗), where

x∗ =
c1s (c2 + αb2)

(c1d + β2b1) (c2 + αb2) + β1b2c1
, y∗ =

b1

c1
, v∗ =

b2

c2
, w∗ =

b1c2k − b2c1u
b2c1 p2

,

and

z∗ =
c1se−mτ [β2b1 (c2 + αb2) + β1b2c1

]
− ab1

[
(c1d + β2b1) (c2 + αb2) + β1b2c1

]
b1 p1

[
(c1d + β2b1) (c2 + αb2) + β1b2c1

] ,

in which cell-mediated and humoral immune responses take effect simultaneously.

3. Local asymptotic stability

In this section, we are concerned with the local asymptotic stability of each of feasible equilibria to
system (1.2) by analyzing the distribution of roots of corresponding characteristic equations .

Theorem 3.1. If R0 < 1, the infection-free equilibrium E0(s/d, 0, 0, 0, 0) of system (1.2) is locally
asymptotically stable; if R0 > 1, E0 is unstable.

Proof. The characteristic equation of system (1.2) at E0 is

(λ + b1) (λ + b2) (λ + d) (λ + a) (λ + u) −
s
d

e−(λ+m)τ (λ + b1) (λ + b2) (λ + d) (β2λ + β1k + β2u) = 0.
(3.1)

It is clear that (3.1) has negative real roots λ = −b1, λ = −b2, λ = −d and other roots are determined
by the following equation:

(λ + a) (λ + u) −
s
d

(β2λ + β1k + β2u) e−(λ+m)τ = 0. (3.2)

Denote R0 = R01 + R02, where

R01 =
β1kse−mτ

aud
and R02 =

β2se−mτ

ad
.

Substituting R0 and R02 into (3.2) yields(
λ

a
+ 1

) (
λ

u
+ 1

)
= e−λτ

(
λ

u
R02 + R0

)
. (3.3)

Now, we claim that all roots of (3.3) have negative real parts. Otherwise, there exists a root λ1 =

Reλ1 + iImλ1 with Reλ1 ≥ 0. In this case, if R0 < 1, it is easy to see that∣∣∣∣∣λ1

a
+ 1

∣∣∣∣∣ ≥ ∣∣∣e−λ1τ
∣∣∣ , ∣∣∣∣∣λ1

u
+ 1

∣∣∣∣∣ > ∣∣∣∣∣λ1

u
R02 + R0

∣∣∣∣∣ .
It follows that ∣∣∣∣∣(λ1

a
+ 1

) (
λ1

u
+ 1

)∣∣∣∣∣ > ∣∣∣∣∣e−λ1τ
(
λ1

u
R02 + R0

)∣∣∣∣∣ ,
Mathematical Biosciences and Engineering Volume 16, Issue 1, 292–319.
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which contradicts to (3.3). Therefore, if R0 < 1, all roots of (3.1) have negative real parts and E0 is
locally asymptotically stable. If R0 > 1, we denote the left side of (3.2) by G(λ):

G(λ) = (λ + a) (λ + u) − e−(λ+m)τ s
d

(β2λ + β1k + β2u), (3.4)

where G(0) = au(1 − R0) < 0 and G(λ) → ∞ as λ → ∞. Noting that G(λ) is a continuous function in
respect to λ, if R0 > 1, Eq. (3.1) has a positive real root, then E0 is unstable. �

Theorem 3.2. If R0 > 1, R1 < 1 and R2 < 1, the immunity-inactivated equilibrium E1(x1, y1, v1, 0, 0)
of system (1.2) is locally asymptotically stable.

Proof. The characteristic equation of system (1.2) at E1 is

(λ + a) (λ + u)
[
λ − (c1y1 − b1)

]
[λ − (c2v1 − b2)]

(
λ + d +

β1v1

1 + αv1
+ β2y1

)
= e−(λ+m)τβ2x1 (λ + u) (λ + d)

[
λ − (c1y1 − b1)

]
[λ − (c2v1 − b2)]

+ e−(λ+m)τ (λ + d)
[
λ − (c1y1 − b1)

]
[λ − (c2v1 − b2)]

β1kx1

(1 + αv1)2 .

(3.5)

Note that
R1 = H1 (c1y1 − b1) + 1 < 1, (3.6)

in which

H1 =
y1 (1 + αv1)

[
β2a (c1u + αb1k) + β1ac1k

]
+ αβ1c1dkx1v1e−mτ

ay1 (1 + αv1)
[
(c1d + β2b1) (c1u + αb1k) + β1b1c1k

] ,

and
R2 = H2 (c2v1 − b2) + 1 < 1, (3.7)

where

H2 =
y1 (1 + αv1)

[
β2au2 (c2 + αb2) + β1ac2ku

]
+ αβ1c2dkux1v1e−mτ

y1 (1 + αv1)
[
au (c2 + αb2) (β2b2u + c2dk) + β1ab2c2ku

] .

It is clear that (3.5) has negative real roots λ = c1y1 − b1 and λ = c2v1 − b2, and other roots are
determined by the following equation:

(λ + a) (λ + u)
(
λ + d +

β1v1

1 + αv1
+ β2y1

)
− e−(λ+m)τ (λ + d)

[
β2x1 (λ + u) +

β1kx1

(1 + αv1)2

]
= 0. (3.8)

For the sake of contradiction, let λ2 = Reλ2 + iImλ2 with Reλ2 ≥ 0. In this case, it is easy to see that∣∣∣∣∣λ2 + d +
β1v1

1 + αv1
+ β2y1

∣∣∣∣∣ > ∣∣∣e−λ2τ (λ2 + d)
∣∣∣ .

Direct calculation shows that∣∣∣∣(λ2 + a) (λ2 + u)
∣∣∣∣ − ∣∣∣∣∣β2e−mτx1 (λ2 + u) +

β1e−mτkx1

(1 + αv1)2

∣∣∣∣∣
= λ2

[
λ2 + u +

β1e−mτkx1

u (1 + αv1)

]
+
β1e−mτkx1

1 + αv1
−
β1e−mτkx1

(1 + αv1)2
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> λ2

[
λ2 + u +

β1e−mτkx1

u (1 + αv1)

]
> 0,

which contradicts to (3.8). Thus, if R0 > 1, R1 < 1 and R2 < 1, all roots of Eq. (3.5) have negative real
parts, and E1 is locally asymptotically stable. �

Theorem 3.3. If R1 > 1 and R3 < 1, the cell-mediated immunity-activated equilibrium E2(x2, y2, v2,
z2, 0) of system (1.2) is locally asymptotically stable.

Proof. The characteristic equation of system (1.2) at E2 is

(λ + u) [λ − (c2v2 − b2)]
[
λ (λ + a + p1z2) + c1 p1y2z2

] (
λ + d +

β1v2

1 + αv2
+ β2y2

)
= e−(λ+m)τ (λ + d) [λ − (c2v2 − b2)]

[
β2x2λ (λ + u) +

β1kx2

(1 + αv2)2λ

]
.

(3.9)

Note that R3 = (c2v2 − b2) /b2 + 1 < 1. It is clear that (3.9) has negative real root λ = c2v2 − b2, and
other roots are determined by the following equation:

(λ + u)
[
λ (λ + a + p1z2) + c1 p1y2z2

] (
λ + d +

β1v2

1 + αv2
+ β2y2

)
= e−(λ+m)τ (λ + d)

[
β2x2λ (λ + u) +

β1kx2

(1 + αv2)2λ

]
.

(3.10)

Similarly, we claim that all roots of (3.10) have negative real parts. Otherwise, there exists a root
λ3 = Reλ3 + iImλ3 with Reλ3 ≥ 0. In this case, it is obvious that∣∣∣∣∣λ3 + d +

β1v2

1 + αv2
+ β2y2

∣∣∣∣∣ > ∣∣∣e−λ3τ (λ3 + d)
∣∣∣ .

It follows that∣∣∣(λ3 + u)
[
λ3 (λ3 + a + p1z2) + c1 p1y2z2

]∣∣∣ − ∣∣∣∣∣∣β2e−mτx2λ3 (λ3 + u) +
β1e−mτkx2

(1 + αv2)2λ3

∣∣∣∣∣∣
= λ2

3

[
λ3 + u +

β1e−mτx2v2

y2 (1 + αv2)

]
+ p1c1y2z2 (λ3 + u) +

β1e−mτkx2

1 + αv2
λ3 −

β1e−mτkx2

(1 + αv2)2λ3

> λ2
3

[
λ3 + u +

β1e−mτx2v2

y2 (1 + αv2)

]
+ p1c1y2z2 (λ3 + u) > 0,

which contradicts to (3.10). Hence, if R1 > 1 and R3 < 1, all roots of Eq. (3.9) have negative real
parts, and E2 is locally asymptotically stable. �

Theorem 3.4. If R2 > 1 and R4 < 1, the humoral immunity-activated equilibrium E3(x3, y3, v3, 0,w3)
of system (1.2) is locally asymptotically stable.

Proof. The characteristic equation of system (1.2) at E3 is

(λ + a)
[
λ − (c1y3 − b1)

] [
λ (λ + u + p2w3) + c2 p2v3w3

] (
λ + d +

β1v3

1 + αv3
+ β2y3

)
= e−(λ+m)τx3 (λ + d)

[
λ − (c1y3 − b1)

] [
β2λ (λ + u + p2w3) + β2c2 p2v3w3 +

β1kλ
(1 + αv3)2

]
.

(3.11)
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Note that

R4 = (c1y3 − b1)
y3

[
β2ab1 (c2 + αb2) + β1ab2c1

]
+ β1e−mτb2c1dx3

ab1y3
[
(c1d + β2b1) (c2 + αb2) + β1b2c1

] + 1 < 1. (3.12)

It is obvious that (3.11) has negative real root λ = c1y3 − b1, and other roots are determined by the
following equation:

(λ + a)
[
λ(λ + u + p2w3) + c2 p2v3w3

] (
λ + d +

β1v3

1 + αv3
+ β2y3

)
= e−(λ+m)τx3 (λ + d)

[
β2λ (λ + u + p2w3) + β2c2 p2v3w3 +

β1kλ
(1 + αv3)2

]
.

(3.13)

Similarly, we claim that all roots of (3.13) have negative real parts. If not, there exists a root λ4 =

Reλ4 + iImλ4 with Reλ4 ≥ 0. In this case, it is easy to see that∣∣∣∣∣λ4 + d +
β1v3

1 + αv3
+ β2y3

∣∣∣∣∣ > ∣∣∣e−λ4τ (λ4 + d)
∣∣∣ .

Direct calculation yields∣∣∣∣(λ4 + a)
[
λ4 (λ4 + u + p2w3) + c2 p2v3w3

]∣∣∣∣
−

∣∣∣∣∣∣e−mτx3

[
β2λ4 (λ4 + u + p2w3) + β2c2 p2v3w3 +

β1kλ4

(1 + αv3)2

]∣∣∣∣∣∣
=λ4

[
λ4 (λ4 + u + p2w3) + c2 p2v3w3

]
+
β1e−mτx3v3

y3 (1 + αv3)

(
λ2

4 + c2 p2v3w3

)
+
β1e−mτx3v3

y3 (1 + αv3)
(u + p2w3) λ4 −

β1e−mτkx3

(1 + αv3)2λ4

>λ4
[
λ4 (λ4 + u + p2w3) + c2 p2v3w3

]
+
β1e−mτx3v3

y3 (1 + αv3)

(
λ2

4 + c2 p2v3w3

)
> 0,

which contradicts to (3.13). Therefore, if R2 > 1 and R4 < 1, all roots of Eq. (3.11) have negative real
parts, and E3 is locally asymptotically stable. �

Theorem 3.5. If R3 > 1 and R4 > 1, the immunity-activated equilibrium E∗(x∗, y∗, v∗, z∗,w∗) of system
(1.2) is locally asymptotically stable.

Proof. The characteristic equation of system (1.2) at E∗ is(
λ + d +

β1v∗

1 + αv∗
+ β2y∗

) [
λ (λ + a + p1z∗) + c1 p1y∗z∗

] [
λ (λ + u + p2w∗) + c2 p2v∗w∗

]
= e−(λ+m)τx∗ (λ + d)

{
β2λ

[
λ (λ + u + p2w∗) + c2 p2v∗w∗

]
+

β1kλ2

(1 + αv∗)2

}
.

(3.14)

Similarly, we claim that all roots of (3.14) have negative real parts. Otherwise, there exists a root
λ5 = Reλ5 + iImλ5 with Reλ5 ≥ 0. In this case, it is clear that∣∣∣∣∣λ5 + d +

β1v∗

1 + αv∗
+ β2y∗

∣∣∣∣∣ > ∣∣∣e−λ5τ (λ5 + d)
∣∣∣ .
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Direct calculation shows that∣∣∣∣[λ5 (λ5 + a + p1z∗) + c1 p1y∗z∗
] [
λ5 (λ5 + u + p2w∗) + c2 p2v∗w∗

]∣∣∣∣
−

∣∣∣∣∣β2e−mτx∗λ5
[
λ5 (λ5 + u + p2w∗) + c2 p2w∗v∗

]
+
β1e−mτkx∗λ2

5

(1 + αv∗)2

∣∣∣∣∣
=

(
λ2

5 + c1 p1y∗z∗
) [
λ5 (λ5 + u + p2w∗) + c2 p2v∗w∗

]
+
β1e−mτx∗v∗

y∗ (1 + αv∗)
λ5

(
λ2

5 + c2 p2v∗w∗
)

+
β1e−mτx∗λ2

5

y∗ (1 + αv∗)

(
uv∗ + p2v∗w∗ −

ky∗

1 + αv∗

)
>

(
λ2

5 + c1 p1y∗z∗
) [
λ5 (λ5 + u + p2w∗) + c2 p2v∗w∗

]
+
β1e−mτx∗v∗

y∗ (1 + αv∗)
λ5

(
λ2

5 + c2 p2v∗w∗
)
> 0,

which contradicts to (3.14). Therefore, if R3 > 1 and R4 > 1, all roots of Eq. (3.14) have negative real
parts, and E∗ is locally asymptotically stable. �

4. Global asymptotic stability

In this section, we study the global stability of each of feasible equilibria to system (1.2) by
suitable Lyapunov functionals and LaSalle’s invariance principle. First, we discuss the boundedness
of solutions.

Lemma 4.1. Any solution of system (1.2) with initial condition (1.3) is bounded for all t ≥ 0.

Proof. Let (x(t), y(t), v(t), z(t),w(t)) be any solution of system (1.2) with initial condition (1.3). Denote

B1(t) = x(t − τ) + emτy(t) +
p1

c1
emτz(t), B2(t) = v(t) +

p2

c2
w(t).

Calculating the derivatives of B1(t) and B2(t) in respect to t yields

Ḃ1(t) = s − dx(t − τ) − aemτy(t) − b1
p1

c1
emτz(t) ≤ s −min{a, b1, d}B1(t),

and
Ḃ2(t) = y(t) − uv(t) − b2

p2

c2
w(t) ≤

e−mτs
min{a, b1, d}

−min{b2, u}B2(t).

Therefore, the following set is positively invariant set for system (1.2):

Ω =

{
(x, y, v, z,w)

∣∣∣∣∣x + emτy +
p1

c1
emτz ≤

s
min{a, b1, d}

, v +
p2

c2
w ≤

e−mτs
min{a, b1, d}min{b2, u}

}
.

It is easy to see that x(t), y(t), v(t), z(t) and w(t) are bounded in the invariant set Ω. �

Next, define a function g(x) = x − 1 − lnx, which will be used in Lyapunov functionals of this
section.

Theorem 4.2. If R0 < 1, the infection-free equilibrium E0(s/d, 0, 0, 0, 0) of system (1.2) is globally
asymptotically stable.
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Proof. Let (x(t), y(t), v(t), z(t),w(t)) be any positive solution of system (1.2) with initial condition (1.3).
Define

V1(t) =x0g
(

x(t)
x0

)
+ l11y(t) + l12v(t) + l13z(t) + l14w(t) +

∫ t

t−τ

(
β1x(s)v(s)
1 + αv(s)

+ β2x(s)y(s)
)

ds,

where x0 = s/d, and constants l11, l12, l13, l14 will be determined later. Calculating the derivative of
V1(t) along positive solutions of system (1.2) yields

V̇1(t) =

(
1 −

x0

x(t)

) (
s − dx(t) −

β1x(t)v(t)
1 + αv(t)

− β2x(t)y(t)
)

+ l11

(
β1e−mτx(t − τ)v(t − τ)

1 + αv(t − τ)
+ β2e−mτx(t − τ)y(t − τ) − ay(t) − p1y(t)z(t)

)
+ l12 (ky(t) − uv(t) − p2v(t)w(t)) + l13 (c1y(t)z(t) − b1z(t)) + l14 (c2v(t)w(t) − b2w(t))

+
β1x(t)v(t)
1 + αv(t)

+ β2x(t)y(t) −
β1x(t − τ)v(t − τ)

1 + αv(t − τ)
− β2x(t − τ)y(t − τ).

Direct calculation yields

V̇1(t) =dx0

(
2 −

x0

x(t)
−

x(t)
x0

)
+
β1x0v(t)
1 + αv(t)

− l12uv(t) − l13b1z(t) − l14b2w(t)

+
(
l11e−mτ − 1

) (β1x(t − τ)v(t − τ)
1 + αv(t − τ)

+ β2x(t − τ)y(t − τ)
)

+ (β2x0 + l12k − l11a) y(t) + (l13c1 − l11 p1) y(t)z(t) + (l14c2 − l12 p2) v(t)w(t).

(4.1)

Choose
l11=emτ, l12=

emτa − β2x0

k
> 0, l13=

emτp1

c1
, l14=p2

emτa − β2x0

c2k
> 0. (4.2)

Thus, we obtain from (4.1) and (4.2) that

V̇1(t) ≤ dx0

(
2 −

x0

x(t)
−

x(t)
x0

)
+ (R0 − 1)

emτau
k

v(t) − l13b1z(t) − l14b2w(t).

It follows that V̇1(t) ≤ 0 with equality holding if and only if x = x0, y = v = z = w = 0. It can be
verified that M0 = {E0} ⊂ Ω is the largest invariant subset of {(x(t), y(t), v(t), z(t),w(t)) : V̇1(t) = 0}.
Noting that if R0 < 1, E0 is locally asymptotically stable, thus we obtain the global asymptotic stability
of E0 from LaSalle’s invariance principle. �

Theorem 4.3. If R0 > 1, R1 < 1 and R2 < 1, the immunity-inactivated equilibrium E1(x1, y1, v1, 0, 0)
of system (1.2) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t),w(t)) be any positive solution of system (1.2) with initial condition (1.3).
Define

V2(t) =x1g
(

x(t)
x1

)
+ l21y1g

(
y(t)
y1

)
+ l22v1g

(
v(t)
v1

)
+ l23z(t) + l24w(t)
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+
β1x1v1

1 + αv1

∫ t

t−τ
g
(

x(s)v(s) (1 + αv1)
x1v1 (1 + αv(s))

)
ds + β2x1y1

∫ t

t−τ
g
(

x(s)y(s)
x1y1

)
ds,

where constants l21, l22, l23 and l24 will be determined later. Calculating the derivative of V2(t) along
positive solutions of system (1.2), we have

V̇2(t) =

(
1 −

x1

x(t)

) (
s − dx(t) −

β1x(t)v(t)
1 + αv(t)

− β2x(t)y(t)
)

+ l21

(
1 −

y1

y(t)

) (
β1e−mτx(t − τ)v(t − τ)

1 + αv(t − τ)
+ β2e−mτx(t − τ)y(t − τ) − ay(t) − p1y(t)z(t)

)
+ l22

(
1 −

v1

v(t)

)
(ky(t) − uv(t) − p2v(t)w(t))

+ l23 (c1y(t)z(t) − b1z(t)) + l24 (c2v(t)w(t) − b2w(t))

+
β1x1v1

1 + αv1

[
g
(

x(t)v(t) (1 + αv1)
x1v1 (1 + αv(t))

)
− g

(
x(t − τ)v(t − τ) (1 + αv1)

x1v1 (1 + αv(t − τ))

)]
+ β2x1y1

[
g
(

x(t)y(t)
x1y1

)
− g

(
x(t − τ)y(t − τ)

x1y1

)]
.

(4.3)

Substituting s = dx1 + β1x1v1/(1 + αv1) + β2x1y1, β1e−mτx1v1/(1 + αv1) + β2e−mτx1y1 = ay1, ky1 = uv1

into (4.3) yields

V̇2(t) =dx1

(
2 −

x1

x(t)
−

x(t)
x1

)
+ l21ay1 + l22uv1 − l22v1

uv1

y1

y(t)
v(t)
− l22uv(t)

+
β1x1v1

1 + αv1

[
1 +

v(t) (1 + αv1)
v1 (1 + αv(t))

−
x1

x(t)

]
− l21e−mτ β1x1v1

1 + αv1

x(t − τ)v(t − τ) (1 + αv1) y1

x1v1 (1 + αv(t − τ)) y(t)

+
β1x1v1

1 + αv1
ln

x(t − τ)v(t − τ) (1 + αv(t))
x(t)v(t) (1 + αv(t − τ))

+ β2x1y1

(
1 −

x1

x(t)
− l21e−mτ x(t − τ)y(t − τ)

x1y(t)

)
+ β2x1y1 ln

x(t − τ)y(t − τ)
x(t)y(t)

+
(
l21e−mτ − 1

) (β1x(t − τ)v(t − τ)
1 + αv(t − τ)

+ β2x(t − τ)y(t − τ)
)

+ (β2x1 + l22k − l21a) y(t) + (l21 p1y1 − l23b1) z(t) + (l22 p2v1 − l24b2) w(t)
+ (l23c1 − l21 p1) y(t)z(t) + (l24c2 − l22 p2) v(t)w(t).

(4.4)

Choose
l21 = emτ, l22 =

β1x1v1

ky1 (1 + αv1)
, l23 =

emτp1

c1
, l24 =

β1 p2x1v1

c2ky1 (1 + αv1)
. (4.5)

From (4.4) and (4.5), we obtain that

V̇2(t) =dx1

(
2 −

x1

x(t)
−

x(t)
x1

)
+ emτp1

c1y1 − b1

c1
z(t) +

β1 p2x1v1

ky1 (1 + αv1)
c2v1 − b2

c2
w(t)

−
α(v(t) − v1)2

v1 (1 + αv1) (1 + αv(t))
− g

(
1 + αv(t)
1 + αv1

)
−
β1x1v1

1 + αv1

[
g
(

x1

x(t)

)
+ g

(
y(t)v1

y1v(t)

)]
−
β1x1v1

1 + αv1
g
(

x(t − τ)v(t − τ) (1 + αv1) y1

x1v1 (1 + αv(t − τ)) y(t)

)
− β2x1y1

[
g
(

x1

x(t)

)
+ g

(
x(t − τ)y(t − τ)

x1y(t)

)]
.

(4.6)
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From (3.6) and (3.7), we derive that c1y1 < b1 and c2v1 < b2. Since function g(x) = x − 1 − ln x is
always positive except for x = 1 where g(x) = 0. It follows from (4.6) that V̇2(t) ≤ 0 with equality
holding if and only if x = x1, y = y1, v = v1, z = w = 0. It can be proved that M1 = {E1} ⊂ Ω is the
largest invariant subset of {(x(t), y(t), v(t), z(t),w(t)) : V̇2(t) = 0}. Noting that if R0 > 1, R1 < 1 and
R2 < 1, E1 is locally asymptotically stable, hence we obtain the global asymptotic stability of E1 from
LaSalle’s invariance principle. �

Theorem 4.4. If R1 > 1 and R3 < 1, the cell-mediated immunity-activated equilibrium E2(x2, y2, v2,
z2, 0) of system (1.2) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t),w(t)) be any positive solution of system (1.2) with initial condition (1.3).
Define

V3(t) =x2g
(

x(t)
x2

)
+ l31y2g

(
y(t)
y2

)
+ l32v2g

(
v(t)
v2

)
+ l33z2g

(
z(t)
z2

)
+ l34w(t)

+
β1x2v2

1 + αv2

∫ t

t−τ
g
(

x(s)v(s) (1 + αv2)
x2v2 (1 + αv(s))

)
ds + β2x2y2

∫ t

t−τ
g
(

x(s)y(s)
x2y2

)
ds,

where constants l31, l32, l33 and l34 will be determined later. Calculating the derivative of V3(t) along
positive solutions of system (1.2), we obtain that

V̇3(t) =

(
1 −

x2

x(t)

) (
s − dx(t) −

β1x(t)v(t)
1 + αv(t)

− β2x(t)y(t)
)

+ l31

(
1 −

y2

y(t)

) (
β1e−mτx(t − τ)v(t − τ)

1 + αv(t − τ)
+ β2e−mτx(t − τ)y(t − τ) − ay(t) − p1y(t)z(t)

)
+ l32

(
1 −

v2

v(t)

)
(ky(t) − uv(t) − p2v(t)w(t))

+ l33

(
1 −

z2

z(t)

)
(c1y(t)z(t) − b1z(t)) + l34 (c2v(t)w(t) − b2w(t))

+
β1x2v2

1 + αv2

[
g
(

x(t)v(t) (1 + αv2)
x2v2 (1 + αv(t))

)
− g

(
x(t − τ)v(t − τ) (1 + αv2)

x2v2 (1 + αv(t − τ))

)]
+ β2x2y2

[
g
(

x(t)y(t)
x2y2

)
− g

(
x(t − τ)y(t − τ)

x2y2

)]
.

(4.7)

Substituting s = dx2 + β1x2v2/(1 + αv2) + β2x2y2, β1e−mτx2v2/(1 + αv2) + β2e−mτx2y2 = ay2 + p1y2z2,
ky2 = uv2, c1y2z2 = b1z2 into (4.7) yields

V̇3(t) =dx2

(
2 −

x2

x(t)
−

x(t)
x2

)
+ l31ay2 + l32uv2 + l33b1z2 − l32v2

uv2

y2

y(t)
v(t)
− l32uv(t)

+
β1x2v2

1 + αv2

[
1 +

v(t) (1 + αv2)
v2 (1 + αv(t))

−
x2

x(t)

]
− l31e−mτ β1x2v2

1 + αv2

x(t − τ)v(t − τ) (1 + αv2) y2

x2v2 (1 + αv(t − τ)) y(t)

+
β1x2v2

1 + αv2
ln

x(t − τ)v(t − τ) (1 + αv(t))
x(t)v(t) (1 + αv(t − τ))

+ β2x2y2

(
1 −

x2

x(t)
− l31e−mτ x(t − τ)y(t − τ)

x2y(t)

)
+ β2x2y2 ln

x(t − τ)y(t − τ)
x(t)y(t)

+
(
l31e−mτ − 1

) (β1x(t − τ)v(t − τ)
1 + αv(t − τ)

+ β2x(t − τ)y(t − τ)
)

(4.8)
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+ (β2x2 + l32k − l33c1z2 − l31a) y(t) + (l32 p2v2 − l34b2) w(t)
+ (l31 p1y2 − l33b1) z(t) + (l33c1 − l31 p1) y(t)z(t) + (l34c2 − l32 p2) v(t)w(t).

Choose
l31 = emτ, l32 =

β1x2v2

ky2 (1 + αv2)
, l33 =

emτp1

c1
, l34 =

β1 p2x2v2

c2ky2 (1 + αv2)
. (4.9)

From (4.8) and (4.9), we obtain that

V̇3(t) =dx2

(
2 −

x2

x(t)
−

x(t)
x2

)
+

β1 p2x2v2

ky2 (1 + αv2)
c2v2 − b2

c2
w(t)

−
α(v(t) − v2)2

v2 (1 + αv2) (1 + αv(t))
− g

(
1 + αv(t)
1 + αv2

)
−
β1x2v2

1 + αv2

[
g
(

x2

x(t)

)
+ g

(
y(t)v2

y2v(t)

)]
−
β1x2v2

1 + αv2
g
(

x(t − τ)v(t − τ) (1 + αv2) y2

x2v2 (1 + αv(t − τ)) y(t)

)
− β2x2y2

[
g
(

x2

x(t)

)
+ g

(
x(t − τ)y(t − τ)

x2y(t)

)]
.

(4.10)

Noting that R3 = (c2v2 − b2) /b2 + 1 < 1, it is clear that c2v2 < b2. It follows from (4.10) that V̇3(t) ≤ 0
with equality holding if and only if x = x2, y = y2, v = v2, z = z2,w = 0. It can be verified that
M3 = {E2} ⊂ Ω is the largest invariant subset of {(x(t), y(t), v(t), z(t),w(t)) : V̇3(t) = 0}. Noting that if
R1 > 1 and R3 < 1, E2 is locally asymptotically stable, thus we obtain the global asymptotic stability
of E2 from LaSalle’s invariance principle. �

Theorem 4.5. If R2 > 1 and R4 < 1, the humoral immunity-activated equilibrium E3(x3, y3, v3, 0,w3)
of system (1.2) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t),w(t)) be any positive solution of system (1.2) with initial condition (1.3).
Define

V4(t) =x3g
(

x(t)
x3

)
+ l41y3g

(
y(t)
y3

)
+ l42v3g

(
v(t)
v3

)
+ l43z(t) + l44w3g

(
w(t)
w3

)
+
β1x3v3

1 + αv3

∫ t

t−τ
g
(

x(s)v(s) (1 + αv3)
x3v3 (1 + αv(s))

)
ds + β2x3y3

∫ t

t−τ
g
(

x(s)y(s)
x3y3

)
ds,

where constants l41, l42, l43 and l44 will be determined later. Calculating the derivative of V4(t) along
positive solutions of system (1.2), we obtain that

V̇4(t) =

(
1 −

x3

x(t)

) (
s − dx(t) −

β1x(t)v(t)
1 + αv(t)

− β2x(t)y(t)
)

+ l41

(
1 −

y3

y(t)

) (
β1e−mτx(t − τ)v(t − τ)

1 + αv(t − τ)
+ β2e−mτx(t − τ)y(t − τ) − ay(t) − p1y(t)z(t)

)
+ l42

(
1 −

v3

v(t)

)
(ky(t) − uv(t) − p2v(t)w(t))

+ l43 (c1y(t)z(t) − b1z(t)) + l44

(
1 −

w3

w(t)

)
(c2v(t)w(t) − b2w(t))

+
β1x3v3

1 + αv3

[
g
(

x(t)v(t) (1 + αv3)
x3v3 (1 + αv(t))

)
− g

(
x(t − τ)v(t − τ) (1 + αv3)

x3v3 (1 + αv(t − τ))

)]
+ β2x3y3

[
g
(

x(t)y(t)
x3y3

)
− g

(
x(t − τ)y(t − τ)

x3y3

)]
.

(4.11)
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Substituting s = dx3 + β1x3v3/(1 + αv3) + β2x3y3, β1e−mτx3v3/(1 + αv3) + β2e−mτx3y3 = ay3, ky3 =

uv3 + p2v3w3, c2v3w3 = b2w3 into (4.11) yields

V̇4(t) =dx3

(
2 −

x3

x(t)
−

x(t)
x3

)
+ l41ay3 + l42uv3 + l44b2w3

− l42kv3
y(t)
v(t)
− (l42u + l44c2w3) v(t) +

β1x3v3

1 + αv3

[
1 +

v(t) (1 + αv3)
v3 (1 + αv(t))

−
x3

x(t)

]
− l41e−mτ β1x3v3

1 + αv3

x(t − τ)v(t − τ) (1 + αv3) y3

x3 (1 + αv(t − τ)) v3y(t)
+
β1x3v3

1 + αv3
ln

x(t − τ)v(t − τ) (1 + αv(t))
x(t)v(t) (1 + αv(t − τ))

+ β2x3y3

(
1 −

x3

x(t)
− l41e−mτ x(t − τ)y(t − τ)

x3y(t)

)
+ β2x3y3 ln

x(t − τ)y(t − τ)
x(t)y(t)

+
(
l41e−mτ − 1

) (β1x(t − τ)v(t − τ)
1 + αv(t − τ)

+ β2x(t − τ)y(t − τ)
)

+ (β2x3 + l42k − l41a) y(t) + (l41 p1y3 − l43b1) z(t) + (l42 p2v3 − l44b2) w(t)
+ (l43c1 − l41 p1) y(t)z(t) + (l44c2 − l42 p2) v(t)w(t).

(4.12)

Choose
l41 = emτ, l42 =

β1x3v3

ky3 (1 + αv3)
, l43 =

emτp1

c1
, l44 =

β1 p2x3v3

c2ky3 (1 + αv3)
. (4.13)

It follows from (4.12) and (4.13) that

V̇4(t) =dx3

(
2 −

x3

x(t)
−

x(t)
x3

)
+ emτp1

c1y3 − b1

c1
z(t) −

α(v(t) − v3)2

v3 (1 + αv3) (1 + αv(t))
− g

(
1 + αv(t)
1 + αv3

)
−
β1x3v3

1 + αv3

[
g
(

x3

x(t)

)
+ g

(
y(t)v3

y3v(t)

)
+ g

(
x(t − τ)v(t − τ) (1 + αv3) y3

x3v3 (1 + αv(t − τ)) y(t)

)]
− β2x3y3

[
g
(

x3

x(t)

)
+ g

(
x(t − τ)y(t − τ)

x3y(t)

)]
.

(4.14)

According to (3.12), it is easy to see that c1y3 < b1. It follows from (4.14) that V̇4(t) ≤ 0 with equality
holding if and only if x = x3, y = y3, v = v3, z = 0,w = w3. It can be proved that M4 = {E3} ⊂ Ω is the
largest invariant subset of {(x(t), y(t), v(t), z(t),w(t)) : V̇4(t) = 0}. Noting that if R2 > 1 and R4 < 1, E3

is locally asymptotically stable, hence we obtain the global asymptotic stability of E3 from LaSalle’s
invariance principle. �

Theorem 4.6. If R3 > 1 and R4 > 1, the immunity-activated equilibrium E∗(x∗, y∗, v∗, z∗,w∗) of system
(1.2) is globally asymptotically stable.

Proof. Let (x(t), y(t), v(t), z(t),w(t)) be any positive solution of system (1.2) with initial condition (1.3).
Define

V5(t) =x∗g
(

x(t)
x∗

)
+ l51y∗g

(
y(t)
y∗

)
+ l52v∗g

(
v(t)
v∗

)
+ l53z∗g

(
z(t)
z∗

)
+ l54w∗g

(
w(t)
w∗

)
+
β1x∗v∗

1 + αv∗

∫ t

t−τ
g
(

x(s)v(s) (1 + αv∗)
x∗v∗ (1 + αv(s))

)
ds + β2x∗y∗

∫ t

t−τ
g
(

x(s)y(s)
x∗y∗

)
ds,
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where constants l51, l52, l53 and l54 will be determined later. Calculating the derivative of V5(t) along
positive solutions of system (1.2), we have

V̇5(t) =

(
1 −

x∗

x(t)

) (
s − dx(t) −

β1x(t)v(t)
1 + αv(t)

− β2x(t)y(t)
)

+ l51

(
1 −

y∗

y(t)

) (
β1e−mτx(t − τ)v(t − τ)

1 + αv(t − τ)
+ β2e−mτx(t − τ)y(t − τ) − ay(t) − p1y(t)z(t)

)
+ l52

(
1 −

v∗

v(t)

)
(ky(t) − uv(t) − p2v(t)w(t))

+ l53

(
1 −

z∗

z(t)

)
(c1y(t)z(t) − b1z(t)) + l54

(
1 −

w∗

w(t)

)
(c2v(t)w(t) − b2w(t))

+
β1x∗v∗

1 + αv∗

[
g
(

x(t)v(t) (1 + αv∗)
x∗v∗ (1 + αv(t))

)
− g

(
x(t − τ)v(t − τ) (1 + αv∗)

x∗v∗ (1 + αv(t − τ))

)]
+ β2x∗y∗

[
g
(

x(t)y(t)
x∗y∗

)
− g

(
x(t − τ)y(t − τ)

x∗y∗

)]
.

(4.15)

Substituting s = dx∗ + β1x∗v∗/(1 + αv∗) + β2x∗y∗, β1e−mτx∗v∗/(1 + αv∗) + β2e−mτx∗y∗ = ay∗ + p1y∗z∗,
ky∗ = uv∗ + p2v∗w∗, c1y∗z∗ = b1z∗, c2v∗w∗ = b2w∗ into (4.15) yields

V̇5(t) =dx∗
(
2 −

x∗

x(t)
−

x(t)
x∗

)
+
β1x∗v∗

1 + αv∗

[
1 +

v(t) (1 + αv∗)
v∗ (1 + αv(t))

−
x∗

x(t)

]
+
β1x∗v∗

1 + αv∗

[
ln

x(t − τ)v(t − τ) (1 + αv(t))
x(t)v(t) (1 + αv(t − τ))

− l51e−mτ x(t − τ)v(t − τ)y∗ (1 + αv∗)
x∗v∗y(t) (1 + αv(t − τ))

]
+ β2x∗y∗

(
1 −

x∗

x(t)
− l51e−mτ x(t − τ)y(t − τ)

x∗y(t)
+ ln

x(t − τ)y(t − τ)
x(t)y(t)

)
+ l51ay∗ + l52uv∗ + l53c1y∗z∗ + l54c2v∗w∗ − l52v∗

uv∗ + p2v∗w∗

y∗
y(t)
v(t)

+
(
l51e−mτ − 1

) (β1x(t − τ)v(t − τ)
1 + αv(t − τ)

+ β2x(t − τ)y(t − τ)
)

+

(
β2x∗ + l52

uv∗ + p2v∗w∗

y∗
− l51a − l53c1z∗

)
y(t)

− (l54c2w∗ + l52u) v(t) + (l51 p1 − l53c1) y∗z(t) + (l52 p2 − l54c2) v∗w(t)
+ (l53c1 − l51 p1) y(t)z(t) + (l54c2 − l52 p2) v(t)w(t).

(4.16)

Choose

l51 = emτ, l52 =
β1x∗

(1 + αv∗) (u + p2w∗)
, l53 =

p1

c1
emτ, l54 =

β1 p2x∗

c2 (1 + αv∗) (u + p2w∗)
. (4.17)

From (4.16) and (4.17), we can obtain that

V̇5(t) =dx∗
(
2 −

x∗

x(t)
−

x(t)
x∗

)
−

α(v(t) − v∗)2

v∗ (1 + αv∗) (1 + αv(t))
− g

(
1 + αv(t)
1 + αv∗

)
−
β1x∗v∗

1 + αv∗

[
g
(

x∗

x(t)

)
+ g

(
y(t)v∗

y∗v(t)

)
+ g

(
x(t − τ)v(t − τ)y∗ (1 + αv∗)

x∗v∗y(t) (1 + αv(t − τ))

)] (4.18)
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−β2x∗y∗
[
g
(

x∗

x(t)

)
+ g

(
x(t − τ)y(t − τ)

x∗y(t)

)]
.

It follows from (4.18) that V̇5(t) ≤ 0 with equality holding if and only if
x = x∗, y = y∗, v = v∗, z = z∗,w = w∗. It can be verified that M5 = {E∗} ⊂ Ω is the largest invariant
subset of {(x(t), y(t), v(t), z(t),w(t)) : V̇5(t) = 0}. Noting that if R3 > 1 and R4 > 1, E∗ is locally
asymptotically stable, we therefore obtain the global asymptotic stability of E∗ from LaSalle’s
invariance principle. �

5. Numerical simulations

In this section, we want to illustrate the theoretical results for system (1.2) by numerical
simulations. Besides, we investigate the effects of cell-to-cell transmission, viral production rate,
death rate of infected cells and viral remove rate on viral dynamics. Furthermore, sensitivity analysis
is used to quantify the range of variables in reproduction ratios and identify the key factors giving rise
to reproduction ratios, which can be helpful to design treatment strategies and provide insights on
evaluating effective antiviral drug therapies.

Table 2. List of parameters.

Parameters (units) Case 1 Case 2 Case 3 Case4 Case5 Source

s (cells ·ml/day) 50 23 100 23 100 Assumed

d (/day) 0.0046 0.0065 0.0046 0.0046 0.0046 [26]

β1 (ml · virion/day) 4.8 × 10−7 4.8 × 10−7 4.8 × 10−7 4.8 × 10−7 4.8 × 10−7 [26]

β2 (ml · virion/day) 4.7 × 10−7 4.7 × 10−9 4.7 × 10−7 4.7 × 10−7 4.7 × 10−7 [26]

α 0.01 0.0001 0.01 0.01 0.01 Assumed

m 1.39 1.39 1.39 1.39 1.39 [26]

τ (day) 0.5 0.3 0.5 0.5 0.5 [26]

a (/day) 0.015 0.032 0.008 0.01 0.008 Assumed

p1 (cells ·ml/day) 0.005 0.005 0.001 0.005 0.001 [27]

k (cells · virion/day) 1.1349 7.3 1.1349 11.349 11.349 [26]

u (/day) 0.5 0.25 0.05 0.05 0.05 [26]

p2 (µg/day) 0.01 0.01 0.01 0.01 0.01 [27]

c1 (cells ·ml/day) 0.002 0.021 0.002 0.002 0.002 Assumed

b1 (/day) 0.12 0.25 0.02 0.12 0.02 Assumed

c2 (cells · virion/day) 0.0006 0.0013 0.00013 0.0013 0.0013 [27]

b2 (/day) 0.12 0.46 0.12 0.12 0.12 Assumed

Following [18,26,27,32], we choose appropriate parameters and simulate each of feasible equilibria,
respectively.

Case 1: Corresponding parameters are listed in Case 1 of Table 2. The immunity-inactivated
reproduction ratio is calculated as R0 = 0.5640 < 1. From Theorem 3.1, we derive that infection-free
equilibrium E0 is locally asymptotically stable, which is illustrated in Figure 2.
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Case 2: Corresponding parameters are listed in Case 2 of Table 2. By simple computing, we obtain
that R0 = 1.0217 > 1, R1 = 0.9635 < 1 and R2 = 0.9625 < 1. From Theorem 3.2, we derive that
immunity-inactivated equilibrium E1 is locally asymptotically stable, which is in accord with Figure 3.

Case 3: Corresponding parameters are listed in Case 3 of Table 2. Similarly, we obtain that R1 =

5.1140 > 1 and R3 = 0.2459 < 1. From Theorem 3.3, we derive that cell-mediated immunity-activated
equilibrium E2 is locally asymptotically stable, which is illustrated in Figure 4.

Case 4: Corresponding parameters are listed in Case 4 of Table 2. Likewise, we obtain that R2 =

14.1830 > 1 and R4 = 0.2108 < 1. From Theorem 3.4, we derive that humoral immunity-activated
equilibrium E3 is locally asymptotically stable, which is in keeping with in Figure 5.

Case 5: Corresponding parameters are listed in Case 5 of Table 2. By calculation, we obtain that
R3 = 24.5895 > 1 and R4 = 3.7395 > 1. From Theorem 3.5, we derive that immunity-activated
equilibrium E∗ is locally asymptotically stable, which is consistent with observation in Figure 6.
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Figure 2. The temporal solutions of x(t), y(t), v(t), z(t) and w(t) versus t of system (1.2)
where R0 = 0.5640 < 1.

5.1. Effect of cell-to-cell transmission

In order to investigate the effect of cell-to-cell transmission, we carry out some numerical
simulations to show the contribution of cell-to-cell transmission during the whole infection. First, we
let β2 as zero to compare the virus infection without cell-to-cell transmission with the infection which
has both transmissions. Figure 7 (β2 = 0, β2 = 4.7 × 10−7) shows that cell-to-cell transmission is of
benefit to HIV-1 transmission and the time to reach the peak level of virus is shorter. Then, we
increase β2 to study the change of the peak level of infected cells and virus, and the time to reach the
peak level. Figure 7 (β2 = 4.7 × 10−7, β2 = 4.7 × 10−6, β2 = 4.7 × 10−5) shows that infected cells and
virus reach the peak level more quickly as β2 increases, meanwhile, the peak level become larger as β2

increases, too. Therefore, cell-to-cell transmission plays an important role in the whole virus
infection.
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Figure 3. The temporal solutions of x(t), y(t), v(t), z(t) and w(t) versus t of system (1.2)
where R0 = 1.0217 > 1, R1 = 0.9635 < 1 and R2 = 0.9625 < 1.
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Figure 4. The temporal solutions of x(t), y(t), v(t), z(t) and w(t) versus t of system (1.2)
where R1 = 5.1140 > 1 and R3 = 0.2459 < 1.
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Figure 5. The temporal solutions of x(t), y(t), v(t), z(t) and w(t) versus t of system (1.2)
where R2 = 14.1830 > 1 and R4 = 0.2108 < 1.
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Figure 6. The temporal solutions of x(t), y(t), v(t), z(t) and w(t) versus t of system (1.2)
where R3 = 24.5895 > 1 and R4 = 3.7395 > 1.
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Figure 7. The effect of β2 on the dynamical behavior of system (1.2).

5.2. Effect of viral production rate

Viral production rate also has great influence on the dynamical behavior of the model. We set the
viral production rate k as 11.349, 34.047, 68.094. In Figure 8, we observe that the time to reach the
peak level of infected cells and virus becomes shorter as k increases, which means that larger viral
production rate contributes to the viral infection. Meanwhile, T cells and B cells increase more quickly
as k increases, especially, larger viral production rate can stimulate more B cells. Hence, the peak level
of infected cells and virus decreases as k increases. In terms of the prevention and treatment of HIV,
it implies that antiretroviral therapies, such as, reverse transcriptase inhibitors and protease inhibitors
are effective methods to decrease k, namely, to inhibit virus reproduction.

5.3. Effect of death rate of infected cells and viral remove rate

Usually, the death rate of infected cells is larger than the death rate of uninfected cells due to the fact
that HIV infection can kill more host cells. We present some numerical simulations to study the effect
of death rate of infected cells on the dynamical behavior of the model. We can observe from Figure 9
that, infected cells and virus increase more slowly as a increases, which indicates that increasing the
death rate of infected cells can slow down the virus infection. Humoral immunity is mainly used to
clear virus in our humor, so the viral remove rate has an effect on viral infection as well. Figure 10
implies that as the viral remove rate increases, infected cells and virus increase more slowly, which has
the similar results to a. In the clinic treatment of HIV, promoting body’s immune capacity contributes
to increasing the death rate of infected cells and viral remove rate.

5.4. Sensitivity analysis

Sensitivity analysis is used to quantify the range of variables in reproduction ratios and to identify
the key factors giving rise to reproduction ratios. In [9, 16], Latin hypercube sampling (LHS) is found
to be a more efficient statistical sampling technique which has been introduced to the field of disease
modelling.

LHS allows an un-biased estimate of the reproduction ratios, with the advantage that it requires
fewer samples than simple random sampling to achieve the same accuracy. For each parameter of
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Figure 8. The effect of k on the dynamical behavior of system (1.2).
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Figure 9. The effect of a on the dynamical behavior of system (1.2).
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Figure 10. The effect of u on the dynamical behavior of system (1.2).

reproduction ratios, a probability density function is defined based on experimental data and stratified
into N equiprobable serial intervals. A single value is then selected randomly from every interval and
this is done for every parameter. In this way, an parameter value from each sampling interval is used
only once in the analysis but the entire parameter space is equitably sampled in an efficient manner.
Distributions of the reproduction ratios can then be derived directly by running the model N times with
each of the sampled parameter sets.

In terms of the prevention and treatment of HIV, we pay more attention to antiretroviral therapies,
which is directly related to viral production rate and viral remove rate. Figure 11 shows the scatter
plots of R0, R1 and R2 in respect to k and u, which implies that k is a positively correlative variable
with R0 and R2, while u is a negatively correlative variable. As for R1, we find that the correlation
between k and R1 or u and R1 is not clear.

In [16], Marino et al. mentioned that Partial Rank Correlation Coefficients (PRCCs) provide a
measure of the strength of a linear association between the parameters and the reproduction ratios.
Furthermore, PRCCs are useful for identifying the most important parameters. The positive or negative
of PRCCs respectively denote the positive or negative correlation with the reproduction ratios, and the
sizes of PRCCs measure the strength of the correlation. First, we investigate the immunity-inactivated
reproduction ratio R0, as we can see in Figure 12, β1 and k are positively correlative variables with R0

while others are negatively correlative variables. In order of correlative strength, it goes: β1, d, a, k, u
and β2. Similarly, we obtain the PRCCs of R1 and R2 (see Figure 13). Specially, we observe that k and
u is weakly correlative in respect to R1, which accords with the scatter plots of R1.

6. Conclusion

In this paper, we have considered an HIV-1 infection model to describe cell-to-cell transmission,
saturation incidence, both cell-mediated and humoral immune responses. By a complete mathematical
analysis, the threshold dynamics of the model is established and it can be fully determined by
reproduction ratios. If R0 < 1, the infection-free equilibrium E0 is locally and globally asymptotically
stable; if R0 > 1, R1 < 1 and R2 < 1, the immunity-inactivated equilibrium E1 is locally and globally
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Figure 11. Scatter plots of R0, R1 and R2 in respect to k and u.
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Figure 13. Tornado plots of PRCCs in regard to R1 and R2.

asymptotically stable; if R1 > 1 and R3 < 1, the cell-mediated immunity-activated equilibrium E2 is
locally and globally asymptotically stable; if R2 > 1 and R4 < 1, the humoral immunity-activated
equilibrium E3 is locally and globally asymptotically stable; if R3 > 1 and R4 > 1, the
immunity-activated equilibrium E∗ is locally and globally asymptotically stable.

Numerical simulations vividly illustrate our main results of stability analysis for system (1.2).
Besides, we have investigated the effects of cell-to-cell transmission, viral production rate, death rate
of infected cells and viral remove rate on viral dynamics. It is worth mentioning that as the infection
rate of cell-to-cell transmission β2 increases, virus load rises quickly and largely, which implies that
cell-to-cell transmission facilitates virus spread. Furthermore, we perform a sensitivity analysis of
reproduction ratios, which implies some useful consequences on the prevention and treatment of
HIV-1.

It is easy to see that immunity-inactivated reproduction ratios R0 is the sum of the reproduction
ratio determined by virus-to-cell infection, R01, and that determined by cell-to-cell transmission, R02.
In other words, immunity-inactivated reproduction ratio R0 becomes larger when the model includes
cell-to-cell transmission. Meanwhile, we find that our research includes some existing work. When
β2 = 0 and α = 0, our virus model is similar to the model in [33] and the immunity-inactivated
reproduction ratio R0 reduces to R01. Based on the model in [33], Wang et al. [27] consider nonlinear
incidence and continuous intracellular delay, which is similar to our model with β2 = 0 only. Besides,
when we only consider one of the immune responses, our model reduces to the models in [14] and [26].

Acknowledgments

This work was supported by the National Natural Science Foundation of China
(Nos.11871316,11801340,11371368,11331009), Shanxi Scientific Data Sharing Platform for Animal
Diseases (201605D121014), and the Science and Technology Innovation Team of Shanxi Province
(201605D131044-06).

Mathematical Biosciences and Engineering Volume 16, Issue 1, 292–319.



317

Conflict of interest

The authors declare there is no conflict of interest.

References

1. R. A. Cangelosi, E. J. Schwartz and D. J. Wollkind, A quasi-steady-state approximation to the
basic target-cell-limited viral dynamics model with a non-cytopathic effect, Front. Microbiol., 9
(2018), 54.

2. J. Charles, T. Paul and W. Mark, Immunobiology, 5nd edition, Garland Science, New York, 2001.

3. P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.

4. A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models
with nonlinear infection rate and removal, Nonlinear Anal. RWA, 26 (2015), 161–190.

5. A. M. Elaiw, A. A. Raezah and K. Hattaf, Stability of HIV-1 infection with saturated virus-target
and infected-target incidences and CTL immune response, Int. J. Biomath., 10 (2017), 1750070.

6. T. R. Fouts, K. Bagley, I. J. Prado, et. al., Balance of cellular and humoral immunity determines
the level of protection by HIV vaccines in rhesus macaque models of HIV infection, Proc. Natl.
Acad. Sci., 13 (2015), 992–999.

7. J. K. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer,
New York, 1993.

8. K. Hattaf and N. Yousfi, A class of delayed viral infection models with general incidence rate and
adaptive immune response, Int. J. Dynam. Control, 4 (2016), 254.

9. A. Hoare, D. G. Regan and D. P. Wilson, Sampling and sensitivity analyses tools (SaSAT) for
computational modelling, Theor. Biol. Med. Model., 5 (2008), 4.

10. G. Huang, Y. Takeuchi and W. Ma, Lyapunov functionals for delay differential equations model
of viral infections, SIAM J. Appl. Math., 70 (2010), 2693–2708.

11. X. Lai and X. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math.
Anal. Appl., 426 (2015), 563–584.

12. X. Lai and X. Zou, Modeling HIV-1 virus dynamics with both virus-to-cell infection and cell-to-
cell transmission, SIAM J. Appl. Math., 74 (2014), 898–917.

13. F. Li and J. Wang, Analysis of an HIV infection model with logistic target-cell growth and cell-
to-cell transmission, Chaos Soliton Fract., 81 (2015), 136–145.

14. J. Lin, R. Xu and X. Tian, Threshold dynamics of an HIV-1 virus model with both virus-to-cell
and cell-to-cell transmissions, intracellular delay, and humoral immunity, Appl. Math. Comput.,
315 (2017), 516–530.

15. C. Lv, L. Huang and Z. Yuan, Global stability for an HIV-1 infection model with Beddington-
DeAngelis incidence rate and CTL immune response, Commun. Nonlinear Sci. Numer. Simulat.,
19 (2014), 121–127.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 292–319.

http://dx.doi.org/10.3389/fmicb.2018.00054
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1016/j.nonrwa.2015.05.007
http://dx.doi.org/10.1142/S179352451750070X
http://dx.doi.org/10.1073/pnas.1423669112
http://dx.doi.org/10.1073/pnas.1423669112
http://dx.doi.org/10.1007/s40435-015-0158-1
http://dx.doi.org/10.1186/1742-4682-5-4
http://dx.doi.org/10.1137/090780821
http://dx.doi.org/10.1016/j.jmaa.2014.10.086
http://dx.doi.org/10.1016/j.jmaa.2014.10.086
http://dx.doi.org/10.1137/130930145
http://dx.doi.org/10.1016/j.chaos.2015.09.003
http://dx.doi.org/10.1016/j.amc.2017.08.004
http://dx.doi.org/10.1016/j.cnsns.2013.06.025


318

16. S. Marino, I. B. Hogue and C. J. Ray, A methodology for performing global uncertainty and
sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196.

17. N. Martin and Q. Sattentau, Cell-to-cell HIV-1 spread and its implications for immune evasion,
Curr. Opin. HIV AIDS, 4 (2009), 143–149.

18. A. Murase, T. Sasaki and T. Kajiwara, Stability analysis of pathogen-immune interaction
dynamics, J. Math. Biol., 51 (2005), 247–267.

19. Y. Nakata, Global dynamics of a cell mediated immunity in viral infection models with distributed
delays, J. Math. Anal. Appl., 375 (2011), 14–27.

20. M. Nowak, S. Bonhoeffer, G. Shaw and R. May, Anti-viral drug treatment: Dynamics of resistance
in free virus and infected cell populations, J. Theor. Biol., 184 (1997), 203–217.

21. A. S. Perelson and P. W. Nelson, Mathematical Analysis of HIV-1: Dynamics in Vivo, SIAM
Review, 41 (1999), 3–44.

22. R. R. Regoes, D. Ebert and S. Bonhoeffer, Dose-dependent infection rates of parasites produce the
Allee effect in epidemiology, Proc. R. Soc. Lond. Ser. B, 269 (2002), 271–279.

23. E. J. Schwartz, N. K. Vaidya, K. S. Dorman, S. Carpenter and R. H. Mealey, Dynamics of lentiviral
infection in vivo in the absence of adaptive immune responses, Virology, 513 (2018), 108–113.

24. H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with
infinitely distributed intracellular delays and CTL immune responses, SIAM J. Appl. Math., 73
(2013), 1280–1302.

25. A. Sigal, J. T. Kim, A. B. Balazs, E. Dekel, A. Mayo, R. Milo and D. Baltimore, Cell-to-cell spread
of HIV permits ongoing replication despite antiretroviral therapy, Nature, 477 (2011), 95–98.

26. J. Wang, M. Guo, X. Liu and Z. Zhao, Threshold dynamics of HIV-1 virus model with cell-to-cell
transmission, cell-mediated immune responses and distributed delay, Appl. Math. Comput., 291
(2016), 149–161.

27. J. Wang, J. Pang, T.Kuniya and Y. Enatsu, Global threshold dynamics in a five-dimensional
virus model with cell-mediated, humoral immune responses and distributed delays, Appl. Math.
Comput., 241 (2014), 298–316.

28. S. Wang and D. Zou, Global stability of in-host viral models with humoral immunity and
intracellular delays, Appl. Math. Model., 36 (2012), 1313–1322.

29. T. Wang, Z. Hu, F. Liao and W. Ma, Global stability analysis for delayed virus infection model
with general incidence rate and humoral immunity, Math. Comput. Simulat., 89 (2013), 13–22.

30. T. Wang, Z. Hu and F. Liao, Stability and Hopf bifurcation for a virus infection model with delayed
humoral immunity response, J. Math. Anal. Appl., 411 (2014), 63–74.

31. R. Xu, Global stability of an HIV-1 infection model with saturation infection and intracellular
delay, J. Math. Anal. Appl., 375 (2011), 75–81.

32. J. Xu, Y. Geng and Y. Zhou, Global dynamics for an age-structured HIV virus infection model
with cellular infection and antiretroviral therapy, Appl. Math. Comput., 305 (2017), 62–83.

33. Y. Yan and W. Wang, Global stability of a five-dimensional model with immune responses and
delay, Discrete and Continuous Dynamical Systems - Series B, 17 (2012), 401–416.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 292–319.

http://dx.doi.org/10.1016/j.jtbi.2008.04.011
http://dx.doi.org/10.1097/COH.0b013e328322f94a
http://dx.doi.org/10.1007/s00285-005-0321-y
http://dx.doi.org/10.1016/j.jmaa.2010.08.025
http://dx.doi.org/10.1006/jtbi.1996.0307
http://dx.doi.org/10.1137/S0036144598335107
http://dx.doi.org/10.1137/S0036144598335107
http://dx.doi.org/10.1098/rspb.2001.1816
http://dx.doi.org/10.1016/j.virol.2017.09.023
http://dx.doi.org/10.1137/120896463
http://dx.doi.org/10.1038/nature10347
http://dx.doi.org/10.1016/j.amc.2016.06.032
http://dx.doi.org/10.1016/j.amc.2014.05.015
http://dx.doi.org/10.1016/j.apm.2011.07.086
http://dx.doi.org/10.1016/j.matcom.2013.03.004
http://dx.doi.org/10.1016/j.jmaa.2013.09.035
http://dx.doi.org/10.1016/j.jmaa.2010.08.055
http://dx.doi.org/10.1016/j.amc.2017.01.064
http://dx.doi.org/10.3934/dcdsb.2012.17.401


319

34. H. Zhu and X. Zou, Dynamics of a HIV-1 infection model with cell-mediated immune response
and intracellular delay, Discrete and Continuous Dynamical Systems - Series B, 12 (2009), 511–
524.

c© 2018 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 292–319.

http://dx.doi.org/10.3934/dcdsb.2009.12.513
http://creativecommons.org/licenses/by/4.0

	Introduction
	Reproduction ratios and feasible equilibria
	Local asymptotic stability
	Global asymptotic stability
	Numerical simulations
	Effect of cell-to-cell transmission
	Effect of viral production rate
	Effect of death rate of infected cells and viral remove rate
	Sensitivity analysis

	Conclusion

