
http://www.aimspress.com/journal/MBE

Mathematical Biosciences and Engineering, 16(1): 234–264
DOI: 10.3934/mbe.2019013
Received: 30 October 2018
Accepted: 30 October 2018
Published: 12 December 2018

Research article

Modeling nutrient and disease dynamics in a plant-pathogen system

Bruce Pell1,∗Amy E. Kendig2, Elizabeth T. Borer3 and Yang Kuang4

1 Department of Mathematics, Statistics, and Computer Science, St. Olaf College, Northfield, MN
55057, USA

2 Agronomy Department, University of Florida, Gainesville, FL 32611, USA
3 Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN 55108,

USA
4 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85287, USA

* Correspondence: Email: pell1@stolaf.edu.

Abstract: Human activities alter elemental nutrient cycling, which can have profound impacts on
agriculture, grasslands, lakes, and other systems. It is becoming increasingly clear that enhanced nitro-
gen and phosphorus levels can affect disease dynamics across a range of taxa. However, there are few
mathematical models that explicitly incorporate nutrients into host-pathogen interactions. Using viral
load and plant mass data from an experiment with cereal yellow dwarf virus and its host plant, Avena
sativa, we propose and compare two models describing the overall infection dynamics. However, the
first model considers nutrient-limited virus production while the other considers a nutrient-induced vi-
ral production delay. A virus reproduction number is derived for this nutrient model, which depends on
environmental and physiological attributes. Results suggest that including nutrient mediated viral pro-
duction mechanisms can give rise to robust models that can be used to untangle how nutrients impact
pathogen dynamics.

Keywords: disease ecology; droop equation; delay differential equation; within-host; cereal yellow
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1. Introduction

Industry, agriculture, transportation, and other human activities cause large amounts of nitrogen and
phosphorus to enter terrestrial and aquatic systems [73, 21, 70]. In terrestrial plant systems, nutrient
inputs can alter plant diversity and yield [18, 12, 37] as well as disease severity (i.e. the extent of symp-
toms on an individual) and prevalence (i.e. the frequency of infection in the population) [50, 24, 65].
One potential mechanism behind the relationship between nutrient supply and disease dynamics is the
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link between within-host pathogen populations and disease severity and prevalence [17, 71]. For in-
stance, high host carbon to phosphorus ratios (C:P) also have been shown to inhibit viral production
of Paramecium bursaria Chlorella virus-1 (PBC-1) in the fresh water alga, Chlorella NC64A [19]. In
a study by Mancio-Silva et al., Plasmodium blood-stage parasites were found to rearrange their tran-
scriptome and adjust their multiplication rate when host dietary calorie alterations were changed [49].
Nutrient supply can alter the prevalence and competitive interactions among two viruses coinfecting
plants [47]. Therefore, understanding how disease dynamics change with nitrogen and phosphorus
enrichment is important because of the potential impact on crop yields and community diversity.

The increase in recent studies linking disease ecology and human alterations of nitrogen, carbon
and phosphorus cycles have motivated the development of mathematical modeling approaches for
studying within-host pathogen dynamics that incorporate nutrient effects [7, 34]. For instance, math-
ematical models have suggested that phosphorus levels have implications for controlling cancer cell
growth [46, 31, 45]. While within-host pathogen models have been used for decades mainly for as-
sessing various disease severity pathways and the evolution of virulence, researchers have only re-
cently started incorporating nutrient effects into mathematical models of within-host pathogen dynam-
ics [4, 20, 3, 5, 6, 58]. The models that have been developed that included nutrients and within-host
pathogen dynamics yield useful insights for aquatic and human systems, so they are likely to be useful
for terrestrial plant systems too.

1.1. Background

Barley and cereal yellow dwarf virus (B/CYDV), a group of the Luteoviridae family, is a positive-
sense single-stranded RNA virus [42]. B/CYDVs infect over 150 grass species and generally causes
leaf discoloration, stunted growth and reduced seed production. Cereal yellow dwarf virus RPV is
vectored by Rhopalosiphum padi (the “RP” in RPV) [23]. The virus is transmitted by feeding aphids
in a persistent manner, that is, the virus must be first taken up by the aphids stylet, then pass through
the gut and the salivary glands before the aphid can infect another plant [2]. In addition, the virus is
circulative, meaning it does not replicate while inside of the aphid [2].

After being injected by an infected aphid, RPV enters the phloem cells of its plant host, where it
replicates. The virus moves relatively quickly through the plant host, infecting cells throughout the
phloem in less than 24 hours [15]. The phloem cells in plants are used to transport sucrose throughout
the plant [61] and help in spreading the virus. Phloem cells within grasses come in two general types:
sieve tube elements (the cells that “transport” sucrose) and cells that support the sieve tube elements.

Since RPV infect sieve tube elements and ultimately damage or destroy them, they inhibit the
movement of crucial resources and carbohydrates to the roots and leaves. The reduction of nutrients
to these plant structures is the proposed mechanism by which RPV reduces the growth of its plant
host [29].

Previous studies have examined the impact nitrogen and phosphorus have on viral loads and infec-
tion prevalence of Barley and Cereal Yellow Dwarf Viruses [13, 47, 56, 63, 65, 75]. RPV has been
shown to be subdued by higher levels of P [47], however there is no evidence that it is limited by N or
P [11, 48, 65].
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1.2. Motivation

Several groups have used mathematical models to investigate plant virus dynamics. Spatiotemporal
dynamics of plant virus infection was considered by work of Tromas et al. [72]. They used a type of
patch model that considered the fraction of infected cells in each leaf of an infected plant host. They
concluded that virus expansion between-cells is restricted, most likely due to the spatial structure of the
host environment. Other researchers have employed delayed differential equations to model the time
delay in post-transcriptional gene silencing (i.e. a plant defense against viruses) and the maturation
time of the growing plant tissue [52]. While they did not parameterize the model, they did identify
parameter regions associated with recovery and resistant plant phenotypes and possible chronic infec-
tions. In addition to modeling post-transcriptional gene silencing, Neofytou et al., introduced a new
mathematical model to investigate the role of RNA silencing in a plant infected with two competing
viruses [51].

In an experiment by Kendig et al., individuals of Avena sativa (common oats) were inoculated
with RPV [41]. Plants were randomly assigned to four different nutrient solution treatments to test
the effects of nutrient concentration on virus dynamics within the plants. Plants were treated with a
control solution (CTRL) that specifically was very low in N and P levels and was chosen because it has
been shown to highly limit plant growth [64], a nitrogen addition solution (+N), a phosphorus addition
solution (+P) and finally a treatment with both nitrogen and phosphorus addition (+NP), see Figure 1.
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Figure 1. Virion data from plants grown under different nutrient solutions.

Figure 1 shows the change in virion population dynamics under different nutrient treatments. In
the control treatment, the virion population remain low, until 18 days post inoculation when it grows
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quickly. Furthermore, the virion population in the control treatment is larger than all other treatments.
In the nitrogen addition treatment, the virion population dips after 15 days, but ultimately increases
over the 29-day timespan. The phosphorus addition treatment we also see this dip and a slight increase
around 25-29 days after inoculation. Lastly, the data suggests that the virus population oscillates during
the +NP treatment.

At the very basic level, the models typically used to study virus dynamics usually stem from model-
ing the susceptible cells, infected cells and free virus particles. Many of these models rely on constant
or logistic growth of healthy cells and typically assume that an infected cell produces a fixed number
of virus particles over its lifespan. A model that incorporates these concepts may take the simple form
of:

dS
dt

= r
(
1 −

S + I
K

)
S − βS V − mS (1.1a)

dI
dt

= βS V − δI (1.1b)

dV
dt

= bδI − dV − βS V. (1.1c)

S represents the number of susceptible cells, I represents the number of infected cells and V is the
number of free virus particles. Susceptible cells are produced by a logistic growth term and die at
constant rate m. Infected cells release b virus particles continuously throughout their lifespan and die
at rate δ. Smith et al., simplified the logistic term to depend only on S . This simplification allowed
them to fully analyze the global dynamics of the model [67]. Figure 2 illustrates the best fit solution to
the data of Kendig et al. We fitted bI + V since this represents the total virion population. This simple
model can fit reasonably well to the majority of the cases, but cannot reproduce the early dynamics
seen in the CTRL and +N treatments between days 5-20. In addition, the model does not accurately
reproduce the dynamics of the +NP treatment between 15-30 days past inoculation.

Like parasites, viruses use resources from their host cells to reproduce. In addition, the regulation
of proteins and viral nucleic acids by host cell growth rate have been observed [10, 35]. Although,
the precise mechanisms and relationships between host growth rate and virus replication are not fully
understood, multiple studies have been published that observed sensitivity between host growth rate
and virus replication rates [14, 16, 53, 54, 77].

A shortcoming to this model formulation is that production of healthy susceptible cells is described
by the logistic term and this growth rate does not rely on any type of nutrient or resource from the
environment from which the plant is rooted in. Moreover, the above model and the formulation by
Smith et al., do not relate the production of virus particles as a function of those same nutrients that
are taken up by their host cell [67]. We argue that a more robust and biologically grounded model can
be formulated by including nutrient limited growth into the dynamics of healthy cell growth and virus
production.

Another way of modeling a more realistic form of virion production implicitly is to include a delay
for the time it takes for virions to be manufactured inside the host cell. Specifically, the delay in
virion production is caused by nutrient conditions. This would do away with the need to include a
dynamically changing nutrient variable in the model while still capturing effects of nutrient limitation
that would occur inside the infected cell.
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Motivated by the changes in virion population under different nutrient supply rates compared to the
control conditions, we (1) derive a within-host pathogen model where growth of the virus population is
dependent on the resource nutrient concentration taken up by the plant; and we (2) test the hypothesis
that the temporal change in virus titer within plant hosts in response to differing nutrient supply ratios
can be explained by a delay in virus reproduction. In this article, we model within-host interactions of
RPV from an experiment by Kendig et al [41].
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Figure 2. Model trajectories from the SIV model (equations 1.1a-1.1c) for the control, ni-
trogen addition, phosphorus addition and both nitrogen and phosphorus addition treatments.
The blue solid represents the model’s realization of the total virion population, bI +V . Virion
data is in red.
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2. Model 1: Nutrient growth model

Since virions can only replicate within a host’s cell, it is important to accurately describe the amount
of nutrient in the host’s cells. Nutrient-controlled growth rates can be employed via the Droop cell
model [25, 26, 27]. Droop showed that there existed an empirical relationship between algal specific
growth rate and the intracellular concentration of vitamin B12 inside the chemostat in which algae were
being grown. Droop defined the cell quota, Q, as the total cell nutrient per unit biomass. He discovered
a simple relationship between specific growth rate (µ) and the cell quota:

µ = µm

(
1 −

q
Q

)
, (2.1)

where the subsistence quota, q, is interpreted as the minimum Q required for life and µm is the maxi-
mum specific growth rate. Figure 3 is an illustration of Droop’s cell quota equation (equation 2.1).
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Figure 3. Plot of Droop equation (equation 2.1), q = 0.03, µm = 0.8. Dashed line represents
maximum specific growth rate. Solid line represents the specific growth rate.

Recently, the Droop equation has been applied to model dynamics of cancer growth [31, 32, 55] and
has been used to derive the logistic equation [44]. It should be noted that nutrient growth functions for
plants have also been developed by Ågren [1]. These growth functions, although specifically developed
for plants, rely on a minimum function that makes mathematical analysis slightly challenging, but not
impossible. For our analysis here, we use the Droop equation for its simplicity. However, it should be
noted that Ågren’s growth model has been shown to be mathematically equivalent to Droop’s, but with
slightly different interpretations [28].

To generalize to n nutrients, one could use Liebig’s law of the minimum: an organism’s growth will
be limited by the resource that is in lowest supply with respect to the organism’s needs:

µ = µm min
{(

1 −
q1

Q1

)
, ...,

(
1 −

qn

Qn

)}
. (2.2)

Let S and I be the number of susceptible and infected cells respectively and V be the number of free
virions. Since virus particles that cause cereal yellow dwarf disease are restricted to the phloem of host
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plants we let S represent a typical phloem cell. Consider the following model derivation with nutrient
limited virus and cell growth.

2.1. Healthy phloem cells and nutrient uptake

We assume that in the absence of infection, the susceptible cells obey nutrient limited growth via
the Droop equation [25, 26, 27]. That is, let NS and N f be the nutrient in the plant’s cells and the free
nutrient respectively, then the total amount of nutrient in the (closed) system is Nt = NS + N f . By free
nutrient, we mean nutrient that is inside the plant that is available to the phloem cells, but not actually
inside them. Let Q = Q(t) be the plant’s cell nutrient quota. With this, we may write down a governing
equation for S ,

dS
dt

= µm

(
1 −

q
Q

)
S − mS ,

where the maximum specific growth rate is µm and we have included a natural death rate, m, of the
cells.

To formulate a governing equation for Q, we let the rate of change of free nutrient, N f , change
according to

dN f

dt
= −αS N f + mS Q,

where the first term approximates the loss of free nutrient by the uptake by cells, and the second term
represents the nutrient that is released back into the intra-plant environment when cells die. Since
NS = QS we obtain Nt = N f + QS . Solving for Q and differentiating with respect to t and using the
fact that dN f

dt = −αS N f + mS Q, we obtain

dQ
dt

=
−S N′f −

(
Nt − N f

)
S ′

S 2

=
S

(
αS N f − mQS

)
−

(
Nt − N f

) (
µm

(
1 − q

Q

)
S − mS

)
S 2

= αN f − µm (Q − q)

= α (Nt − S Q) − µm (Q − q) .

Therefore, we arrive at a simple model for nutrient cell growth in the absence of infection,

dS
dt

= µm

(
1 −

q
Q

)
S︸          ︷︷          ︸

growth

− mS︸︷︷︸
mortality

(2.3a)

dQ
dt

= α (Nt − S Q)︸        ︷︷        ︸
uptake

− µm (Q − q) .︸        ︷︷        ︸
loss from cell growth

(2.3b)

Under the assumption that all parameters are positive, Everett showed this model exhibits a unique
positive steady state that is globally asymptotically stable [30].
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2.2. Infected phloem cells

We assume that infection of healthy phloem cells is governed by mass action and that infected cells
die upon production of virus particles. With these assumptions the governing equation for the rate of
change of infected phloem cells is

dI
dt

= βS V︸︷︷︸
infection

− δI.︸︷︷︸
infected cell mortality

Due to the introduction of infected cells and virus particles, we include the cell quota contained within
infected cells and virus particle, I (Q + θ) and θ, respectively, in the equation for total nutrient,

Nt = N f + S Q + I(Q + θ) + θV. (2.4)

Where we have assumed that the infected cell population has their growth mechanism hijacked by the
virus and the amount of nutrient contained within a virus particle is equal to θ.

2.3. Free virions

Our modeling approach as of now has been similar to work by Fuhrman et al., but we now diverge
from their work by incorporating nutrient dependent virus growth [34].

Virions are relatively homeostatic and must process nutrients within the host to replicate. Further-
more, virions are simple in structure (a genome and protein capsid) and elemental composition. Thus
we make the assumption that the cell nutrient inside of a virus particle is constant for all time and is
equal to θ.

One way to model the growth function of the virion population is to simply assume that it also
behaves like the Droop equation. That is

b(Q) = bm max{
(
1 −

qv

Q

)
, 0},

where qv is the minimum amount of nutrient needed for virion production. In the case when Q < qv,
we assume that there is not enough nutrient for virus production and is therefore 0, which ultimately
amounts to introducing the maximum function. In short, this function relates the growth rate of the
virus (b(Q)) to the nutrient concentration inside the cells of the host plant (Q).

Free virions are produced at a maximum rate, bm, per infected phloem cell per unit of time and are
destroyed or cleared by the immune system at rate d. Free virions that are not destroyed or cleared are
assumed to be absorbed by neighboring susceptible phloem cells.

dV
dt

= b (Q) δI︸  ︷︷  ︸
viral production

− dV︸︷︷︸
cleared virions

− βS V.︸︷︷︸
absorption

2.4. Free nutrient equation

With the added infected cell and virus populations we obtain an updated equation that governs the
free nutrient within the system, equation (2.4). As we did before, to find an updated governing equation
for Q, we let the change of free nutrient change according to

dN f

dt
= −αN f (S + I) + mS Q + dθV + δIQ̂,
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where the first term is the loss of free nutrient due to cell uptake, the second and fourth are from the
release of nutrient due to healthy cell death and virus death and the third term represents nutrient that
is released when infected cells die, where,

Q̂ = Q︸︷︷︸
quota initially

in cell

+ θ︸︷︷︸
quota from virions

in cell

− θb(Q)︸︷︷︸
loss from produced

virions

+
µ(Q − q)

δ
.︸     ︷︷     ︸

nutrient uptake
exceeding the minimum quota

over the life cycle
of an infected cell

Q̂ is interpreted as the remaining nutrient from an infected cell after virus release that has not been
taken up by the virus particles [34].

2.5. Full model

The full model with nutrient dependent virus growth is summarized below:

dS
dt

= µm

(
1 −

q
Q

)
S︸          ︷︷          ︸

growth

− βS V︸︷︷︸
loss from infection

− mS︸︷︷︸
cell degeneration

dI
dt

= βS V︸︷︷︸
growth

− δI︸︷︷︸
viral shedding

dV
dt

= b (Q) δI︸  ︷︷  ︸
new virions

− dV︸︷︷︸
cleared virions

− βS V︸︷︷︸
absorption

dQ
dt

= αN f︸︷︷︸
uptake

− µm (Q − q)︸      ︷︷      ︸
loss from cell growth

dN f

dt
= −αN f (S + I)︸          ︷︷          ︸

loss from cell uptake

+ mS Q︸︷︷︸
release from
healthy cell

death

+ dθV︸︷︷︸
release from
virus death

+ δIQ̂︸︷︷︸
release from
infected cell

death

where b (Q) = bm max{
(
1 − qv

Q

)
, 0}. If we assume b(Q) = bm we obtain the model by Fuhrman et al.,

who have studied this system fully [34].

The assumption that the nutrient is constant allows this model to be reduced to 4 equations. Indeed,
to see this conservation law note that total nutrient is Nt = N f (t) + S (t)Q(t) + I(t)(Q(t) + θ) + θV(t) and
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therefore,
N′t = N′f + S ′Q + S Q′ + I′Q + IQ′ + θI′ + θV ′

= −αN f (S + I) + mS Q + dθV + δIQ̂

+ µ

(
1 −

q
Q

)
S Q − βS VQ − mS Q

+ αN f S − µ (Q − q) S

+ βS VQ − δIQ

+ αN f I − µ (Q − q) I

+ θβS V − δθI

+ b(Q)δθI − dθV − βS VQ.

Canceling like terms, this reduces to

N′t = δIQ̂ − δIQ − µ (Q − q) I − δθI + b(Q)δθI

= δIQ̂ − δI
(
Q +

µ(Q − q)
δ

+ θ − b(Q)θ
)

= δIQ̂ − δIQ̂

= 0

and allows us to reduce the model to a system of 4 equations.

dS
dt

= µm

(
1 −

q
Q

)
S︸          ︷︷          ︸

growth

− βS V︸︷︷︸
loss from infection

− mS︸︷︷︸
mortality

(2.5a)

dI
dt

= βS V︸︷︷︸
growth

− δI︸︷︷︸
mortality from infection

(2.5b)

dV
dt

= b (Q) δI︸  ︷︷  ︸
viral production

− dV︸︷︷︸
cleared virions

− βS V︸︷︷︸
absorption

(2.5c)

dQ
dt

= α(Nt − S Q − I(Q + θ) − θV)︸                               ︷︷                               ︸
uptake

− µm (Q − q) .︸        ︷︷        ︸
loss from cell growth

(2.5d)

We would like to note that to keep our modeling approach simple, we have decided not to model
explicitly the virus population within the infected cell population. We assume that in each infected cell
there are b(Q) virus particles and therefore the total virus population is b(Q)I + V . In addition, the
nutrient model assumes that there is only one nutrient limiting the growth of the plant and virus, and
that this nutrient is the same for both.

2.6. Basic analysis of the nutrient model

Due to the different time scales between nutrient absorption, cell reproduction and virion reproduc-
tion, we apply the quasi steady state argument to Q and obtain the following system,
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dS
dt

= µm

(
1 −

q
Q∗

)
S︸           ︷︷           ︸

growth

− βS V︸︷︷︸
loss from infection

− mS︸︷︷︸
mortality

(2.6a)

dI
dt

= βS V︸︷︷︸
growth

− δI︸︷︷︸
mortality from infection

(2.6b)

dV
dt

= b (Q∗) δI︸    ︷︷    ︸
viral production

− dV︸︷︷︸
cleared virions

− βS V︸︷︷︸
absorption

(2.6c)

Q∗ =
αN f − αθ(I + V) + qµm

(I + S )α + µm
. (2.6d)

Equations 2.6a-2.6d yield two biologically relevant equilibria: E1 = (S 1, 0, 0,Q1) and E2 =

(S 2, I2,V2,Q2). We call these the disease free and endemic equilibria respectively. We find that

S 1 =
Nt(µm − m)

µmq
−

m
α

Q1 =
qµm

µm − m

S 2 =
d

β
(
bm(1 − qv

Q2
) − 1

)
I2 =

d
(
µ(1 − q

Q2
) − m

)
βδ

(
bm(1 − qv

Q2
) − 1

) =
µ(1 − q

Q2
) − m

δ
S 2

V2 =
µ(1 − q

Q2
) − m

β

In the case of the endemic equilibrium, solving for Q2 is mathematically challenging, if not impossible.
In the case of the disease free equilibrium, we find that it is mathematically tractable. Below we assume
that µm > m and αNtµm − αNtm > µmm. This ensures that S 1 > 0 and Q1 > 0.

2.7. The virus reproduction number

To derive the virus reproduction number, R0, we first observe that at the disease-free steady state,
the average number of virions produced per individual per timestep is βδb(Q1) and the average lifetime
of a virion is 1

δ(d+βS 1) . Multiplying these together yield the basic reproduction number for the model:

R0 :=
b(Q1)βS 1

d + βS 1

where, S 1 is the size of the phloem cell population at steady state. Note that by modeling the production
of virus particles as a function of Q, we find that R0 depends on Q = Q1, where Q1 is the cell quota at
the disease free equilibrium.
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proposition 1. The disease free equilibrium of system 2.6, E1, is locally asymptotically stable if and
only if R0 < 1. If R0 > 1, then E1 is unstable.

Proof. The jacobian matrix at E1 is,

J(E1)=


a11 a12 a13

0 −δ βS 1

0 δb(Q1) − (d + βS 1)

.
The eigenvalues are a11 = −

S 1qµm(Ntα+qµm)
αN2

t
(< 0) and the resulting eigenvalues from the 2 × 2 matrix,

J1=

 −δ βS 1

bmδ
(
1 − qv

Q1

)
−(d + βS 1)

.
We find that the trace and determinant are

(J1) = − (δ + d + βS 1) < 0

det(J1) = δ (d + S 1β) − bmδ

(
1 −

qv

Q1

)
βS 1

= δ (d + S 1β) (1 − R0) .

Therefore the two eigenvalues of J are negative if and only if R0 < 1. Furthermore, if R0 > 1 then E1

is unstable. �

3. Virion production delay model

The second model, which we’ll call the delay model, is an adapted version of the model found
in [8], but standard incidence is used in place of mass action to describe infection of susceptible cells.
We develop a mathematical model that incorporates a delay in virus production. This leads naturally
to a system of delay differential equations.

As in the previous model, let S and I be the number of susceptible and infected cells respectively and
V be the number of virions. Consider the following model derivation with a delayed virus production.

3.1. Healthy phloem cells

We assume that in the absence of infection, the susceptible cells obey logistic growth with carrying
capacity K. Furthermore, we assume a maximum per-capita proliferation rate µ and a constant per-
capita death rate m:

dS
dt

= µ
(
1 −

S
K

)
S − mS . (3.1)

3.2. Rate of infection

We employ a standard incidence rate of infection:

βS (t)V(t)/N(t),

where N(t) = S (t) + I(t) and β can be interpreted as the maximum rate at which virions infect healthy
phloem cells or the probability that a single virion infects a healthy phloem cell.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 234–264



246

3.2.1. Infected phloem cells

We assume the virus is produced with a time delay τ, where we interpret that each infected phloem
cell on average produces b viruses in its lifetime with average life expectancy 1

δ
after infection of τ

days.
At any time t, the density of the infected plant cells, I(t), is obtained by integrating

βS (t − u)V(t − u)e−δu

S (t − u) + I(t − u)

for u ≥ 0. Here βS (t−u)V(t−u)
S (t−u)+I(t−u) , represents the rate of infection at previous times, and e−δu represents the

probability of a cell surviving the infection from t − u to t with natural mortality rate δ. Finally, we
note that for any time, t, we do not integrate past −τ, because these virions have already been released
and left the I class. With these observations we obtain a governing equation for I(t):

I(t) =

∫ τ

0

βS (t − u)V(t − u)e−δu

S (u) + I(u)
du.

With a change of variables s = t − u we obtain:

I(t) =

∫ t

t−τ

βS (s)V(s)eδ(s−t)

S (s) + I(s)
ds

and differentiating with respect to t yields

dI(t)
dt

=
βS (t)V(t)
S (t) + I(t)

− e−δτ
βS (t − τ)V(t − τ)
S (t − τ) + I(t − τ)

− δI. (3.2)

We note that equation 3.2 can also be derived from the Mckendrick-von Foerster age-structured
model [36].

3.3. Free virions

Free virions are produced at rate b per infected phloem cell per unit of time and are destroyed or
cleared by the (innate) immune system at rate d. Free virions that are not destroyed or cleared are
absorbed by neighboring phloem cells. With these observations we obtain the governing equation for
V,

dV
dt

= be−δτ
βS (t − τ)V(t − τ)
S (t − τ) + I(t − τ)

− dV −
βS V
S + I

.

3.4. Full model

With the above considerations we obtain the following delayed virus production compartmental
model,

dS
dt

= r
(
1 −

S + I
K

)
S︸             ︷︷             ︸

growth

−
βS V
S + I︸︷︷︸

loss from infection

− mS︸︷︷︸
mortality

(3.3a)
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dI
dt

=
βS V
S + I︸︷︷︸

growth from infection

− δI︸︷︷︸
mortality

− e−δτ
βS (t − τ)V(t − τ)
S (t − τ) + I(t − τ)︸                       ︷︷                       ︸

proportion for delayed viral production

(3.3b)

dV
dt

= be−δτ
βS (t − τ)V(t − τ)
S (t − τ) + I(t − τ)︸                        ︷︷                        ︸

viral production

− dV︸︷︷︸
mortality

−
βS V
S + I︸︷︷︸

absorption

. (3.3c)

For simplicity and parameter estimation purposes we rewrite the equation for S as

dS
dt

= r̂
(
1 −

S + I
K̂

)
S −

βS V
S + I

, (3.4)

where r̂ = r − m and K̂ = K r̂
r .

Initial data for the system takes the form of

S (s) = S 0(s) ≥ 0, I(s) = I0(s) ≥ 0, V(s) = V0(s) ≥ 0
and K ≥ S (s) + I(s) > 0, I(0) > 0 for s ∈ [−τ, 0],

(3.5)

where

I0(0) =

∫ 0

−τ

βS 0(s)V0(s)eδs

S 0(s) + I0(s)
ds. (3.6)

3.5. The basic reproduction number

To derive R̃0 we first observe that at the average number of virions produced per infected cell per
timestep is βbe−δτ and the average lifetime of a virion is 1

d+β
. Multiplying these together yield the basic

reproduction number for the model:

R̃0 :=
bβe−δτ

d + β
.

3.6. Basic analysis of the delay model

When modeling populations, it is important that the model makes biological sense. In particular,
populations should never become negative and also be bounded above by some finite number. We
show below that solutions of system (3.3) with nonnegative initial conditions remain nonnegative and
bounded (and hence exists for all time) for all t > 0.

proposition 2. Each component of system (3.3), subject to initial conditions (3.5), remains nonnegative
and bounded for all t > 0.

Proof. Observe that system (3.3) is locally Lipschitz at t = 0. Hence the solution of system (3.3),
subject to initial conditions (3.5), exists and is unique on [0, c) for some c > 0. Furthermore, if
S (0) = 0, then S (t) ≡ 0 for all t > 0. Therefore we may assume that S (0) > 0. In a similar fashion, if
V(0) = 0, then V(t) ≡ 0 for all t > 0. Therefore we may also assume that V(0) > 0.

To see that S + I is bounded, observe that,

d(S + I)
dt

= r̂
(
1 −

S + I
K̂

)
S −

βS (t − τ)V(t − τ)
S (t − τ) + I(t − τ)

≤
−r̂
K̂

(
S + I − K̂

)
S .
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This implies that
d(S + I − K̂)

dt
≤
−r̂
K̂

(
S + I − K̂

)
S

and integrating yields

S (t) + I(t) ≤ K̂ +
[
S (0) + I(0) − K̂

]
exp{
−r̂
K̂

∫ t

0
S (s)ds}.

Therefore, if S (0) + I(0) < K̂, then S (t) + I(t) < K̂ for all t > 0.
Case 1: By way of contradiction we assume that there exists t1 ∈ (0, c) such that S (t1) = 0 and

S (t) > 0, I(t) > 0 and V(t) > 0 for t ∈ (0, t1). Observe that for t ∈ [0, t1],

dS
dt

= r̂
(
1 −

S + I
K̂

)
S −

βS V
S + I

≥ −

(
βV

S + I

)
S

≥ − max
t∈[0,t1]

{
βV

S + I

}
S

= −αS

Where α = maxt∈[0,t1]

{
βV

S +I

}
and integrating yields,

S (t) ≥ S (0)e−αt > 0,

which is a contradiction when t = t1. Therefore S (t) > 0 for t ∈ [0, c).
Case 2: Assume that there exists a t1 ∈ (0, c) such that V(t1) = 0, I(t) > 0 and S (t) > 0, I(t) > 0 for

t ∈ (0, t1). Therefore, for t ∈ [0, t1],

dV
dt

= be−δτ
βS (t − τ)V(t − τ)
S (t − τ) + I(t − τ)

− dV −
βS V
S + I

≥ −

(
d +

βS
S + I

)
V

≥ − max
t∈[0,t1]

{
d +

βS
S + I

}
V

= −α1V

where α1 = maxt∈[0,t1]

{
d +

βS
S +I

}
. This implies,

V(t) ≥ V(0)e−α1t > 0,

which yields a contradiction for t = t1. Therefore V(t) > 0 for t ∈ [0, c).
Case 3: Assume that there exists a t1 ∈ (0, c) such that I(t1) = 0 and that S (t) > 0, I(t) > 0 V(t) > 0

for t ∈ (0, t1). Since I(t) =
∫ t

t−τ
βS (s)V(s)eδ(s−t)

S (s)+I(s) ds, we have

I(t1) =

∫ t1

t1−τ

βS (s)V(s)eδ(s−t1)

S (s) + I(s)
ds > 0
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a contradiction. Therefore I(t) > 0 for t ∈ [0, c).
Finally we prove a rather large bound for the entire system. Consider W = S + I + 1

bV . Then
differentiating yields,

dW
dt

= r̂
(
1 −

S + I
K̂

)
S − δI −

d
b

V −
βS V

b(S + I)

≤ r̂
(
1 −

S + I
K̂

)
S − δI −

d
b

V

= r̂S −
r̂S 2

K̂
−

r̂S I
K̂
− δI −

d
b

V

≤ r̂K̂ − δI −
d
b

V

= r̂K̂ − δI −
d
b

V + (r̂S − r̂S )

= 2r̂K̂ − δI −
d
b

V − r̂S

≤ 2r̂K̂ −min {δ, d, r̂}
(
I + S +

1
b

V
)

= 2r̂K̂ − α2W.

Integrating finally yields

W(t) ≤ W(0)e−αt +
2r̂K̂
α3

(
1 − e−α2t) .

Therefore

lim sup
t→∞

W(t) ≤
2r̂K̂
α2

,

where α2 = min {δ, d, r̂} . Thus we may conclude that all state variables are bounded.
The above contradictions together show that components of the solution of system (3.3), subject

to initial data (3.5), are nonnegative for all t ∈ [0, c). This together with the uniform boundedness of
W = S + I + 1

bV imply that c = ∞. This completes the proof of the proposition. �

There exists two biologically relevant steady states: Ẽ0 =
(
K̂, 0, 0

)
and Ẽ∗ =

(
S̃ ∗, Ĩ∗, Ṽ∗

)
where,

S̃ ∗ =
eδτK̂ (dr̂ + bβδ)

βr̂(eδτ − 1)(b − eδτ)
(R∗ − 1)

Ĩ∗ =
eδτK̂ (d + β) (dr̂ + bβδ)
βdr̂(eδτ − 1)(b − eδτ)

(R∗ − 1)
(
R̃0 − 1

)
Ṽ∗ =

eδτK̂δ (d + β) (dr̂ + bβδ)
βd2r̂(eδτ − 1)2

(R∗ − 1)
(
R̃0 − 1

)
and R∗ =

eδτ(βδ+d(r̂+δ))
dr̂+bβδ . Ẽ0 represents a healthy plant and is called the disease free steady state. Ẽ∗ is the

called the endemic equilibrium and represents chronic infection of the plant by the virus.
Turning our attention to the endemic equilibrium, it’s easy to see that it exists exactly when the

following conditions hold:
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R∗ =
eδτ (βδ + d (r̂ + δ))

dr̂ + bβδ
> 1 b > eδτ and R̃0 > 1.

We focus on the stability of the biologically relevant equilibria. With this in mind we compute the
characteristic polynomial,

h(λ) = det(λI − P − e−δτe−λτQ).

The matrices P and Q are given by,

P =


r̂(−I+K̂−2S )

K̂
−

IVβ
(I+S )2 −

r̂S
K̂

+
S Vβ

(I+S )2 −
S β
I+S

IVβ
(I+S )2 −

S Vβ
(I+S )2 − δ

S β
I+S

−
IVβ

(I+S )2
S Vβ

(I+S )2 −d − S β
I+S


and

Q =


0 0 0

−
IVβ

(I+S )2
S Vβ

(I+S )2 −
S β
I+S

bIVβ
(I+S )2 −

bS Vβ
(I+S )2

bS β
I+S

.
At Ẽ0 the characteristic equation is

(r̂ + λ)(δ + λ)(βbe(−λτ−δτ) − (d + β) − λ) = 0

where the roots are λ1 = −r̂, λ2 = −δ and λ3 satisfies λ3 = bβe−(λ3+δ)τ − (d + β). Setting λ3 = 0 and
rearranging this we obtain,

1 =
bβe−δτ

d + β
=: R̃0,

the basic reproduction number for the standard incidence model. This further confirms our definition
of the basic reproduction number since it determines the stability of the disease free steady state.

proposition 3. Ẽ0 is asymptotically stable if R̃0 < 1.

Proof. For Ẽ0 to exists, S̃ ∗ > 0 and therefore K̂ > 0. By the above discussion the roots of the charac-
teristic polynomial are given by λ1 = −r̂, λ2 = −δ and λ = bβe−(λ+δ)τ − (d + β). Hence, the first two
roots have negative real part. Thus the stability of the disease free equilibrium depends on the roots of,

g(λ) = λ + (d + β) − bβe−(λ+δ)τ.

We prove that g(λ) cannot have a root with nonnegative real part when R̃0 < 1. By way of contradiction,
assume R̃0 < 1, but there does exist a root with nonnegative real part, λ = x + iy where x ≥ 0 and
x, y ∈ R. Setting g(λ) = 0 yields λ = bβe−δe−λτ − (d + β) and substituting λ = x + iy we obtain,

x + iy = bβe−δτe−(x+iy)τ − (d + β)
= bβe−δτe−xτe−iyτ − (d + β)
= bβe−δτe−xτ (cos(yτ) − i sin(yτ)) − (d + β)
= bβe−δτe−xτ cos(yτ) − (d + β) − ibβe−δτ sin(yτ).
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Equating real parts yields,
x = bβe−δτe−xτ cos(yτ) − (d + β)

= (d + β)
(
bβe−δτ

d + β
e−xτ cos(yτ) − 1

)
= (d + β)

(
R̃0e−xτ cos(yτ) − 1

)
< 0,

a contradiction. Thus, any root of g(λ) must have negative real part. �

proposition 4. Ẽ0 is unstable if R̃0 > 1.

Proof. As in the previous proof, for Ẽ0 to exist, S̃ ∗ > 0 and therefore K̂ > 0. Furthermore, stability
depends on,

g(λ) = λ + (d + β) − bβe−(λ+δ)τ.

Assume R̃0 > 1, then g(0) = d + β − bβeδτ < 0. Furthermore, for λ ≥ 0 we have

g′(λ) = 1 + τbβe−δτe−λτ > 0.

Finally, lim
λ→∞

g(λ) = ∞. Since g(λ) is a continuous function that is negative at λ = 0 and increases to
+∞ as λ → +∞, it must cross the λ-axis. This proves the existence of a positive real root. Therefore,
the disease free steady state is unstable. �

It is notable to mention that there are other ways to prove the stability of the disease free steady
state. Indeed, exercise 4.9 from [66] or theorem 3.1 from [9] along with theorem 1.4 from [43] are
other ways to prove the theorems. We decided to include the proofs that we did, because of their simple
and intuitive arguments.

4. Numerical work

We fit our mathematical models to the virion data from the four different treatments in the experi-
ment carried out by Kendig et al. We use shoot mass from healthy plants that were grown under CTRL,
+N, +P and +NP and convert this mass into numbers of healthy cells under the assumption that there
are roughly 109 plant cells for 1 gram of plant tissue [74]. Initial conditions were set to S 0 = 74157.7;
I0 = 30; V0 = 2000 for both models and Q0 = 0.13.

4.1. Nutrient model

Parameter estimations and data fitting were conducted in two rounds. The first round of parameter
estimations used healthy plant data and the disease-free model of the nutrient model (equations 2.3a-
2.3b). We used nonlinear least squares (implemented with R version 3.3.2 using the FME package
[57, 69]) with susceptible cell data to estimate parameters µ, m, α, q and initial conditions S (0) and
Q(0). These parameter estimations were then fixed when fitting the complete model (system 2.5) in
the second round, except for Q(0) which was refitted in the second round. This was done for all four
nutrient treatments. Despite differences in nutrient supply rates across the experimental treatments, we
used the same value of Nt for all datasets. Therefore, differences in plant and virus growth due to the
experimental treatments are reflected in various parameter estimates.
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The second round was conducted by fitting b(Q)I + V to virion data to generate parameter estima-
tions for β, qv, m, d bm and Q(0). δ was held constant at 1/13 day−1 as estimated in [33] for a virus
similar to CYDV-RPV. As discussed above, during this second round of parameter estimations, we
fixed the previous estimations of µ, m, α q, S (0). In both rounds, best fit parameters were obtained by
minimizing the following error function:

err =

N∑
i

(
(b(Qi)Ii + Vi) − V̄i

)2
. (4.1)

The ith virion observation is given by V̄i and the analogous value given by our model is b(Qi)Ii + Vi.
We use b(Qi)Ii + Vi because V̄i represents all virions (inside infected cells and free). N is the number
of data points.

Model fittings are presented in Figure 5 and fitted parameters can be found in Table 1. Model
fittings are quite similar to what is seen with the typical SIV model, but the nutrient model allows us
to investigate how dynamics change with respect to physiological and environmental parameters.

Table 1. Parameter values from fitting the nutrient model (system 2.5) to the virion data.

Parameter Fitted (CTRL) Fitted (+N) Fitted (+P) Fitted (+NP) Units
µm 0.65 0.74 0.65 0.63 day−1

m 0.55 0.64 0.55 0.56 day−1

α 0.00092 0.0012 .0234 0.125 fmol cell−1day−1

q 0.0024 0.0016 0.002 0.00084 fmol
β 3.95e-07 1.14e-07 8.29e-07 4.40e-07 cells virion−1 day−1

d 0.77 0.21 0.76 1.09 day−1

δ 1/13 1/13 1/13 1/13 day−1

bm 87 103 140 117 virions cell−1 day−1

qv 3.04e-03 1.26e-03 1.92e-04 4.14e-04 fmol
Nt 104 104 104 104 fmol
θ 4.106 × 10−4 4.106 × 10−4 4.106 × 10−4 4.106 × 10−4 fmol

4.1.1. The reproduction number

The reproduction number for the nutrient model allows us to gather deeper insight into what mech-
anisms increase its value. Using the computer software program, Mathematica version 11.1 [38], we
numerically explored the reproduction number using the calibrated parameters from Table 1 in Fig-
ure 6. The explicit reproduction number is:

R0 =

 β(m(Ntα+µm)−Ntαµm)bm
(
1− qv(m−µm)

qµm

)
βm(Ntα+µm)−αµm(d+Ntβ)

qµm
µm−m > qv

0 qµm
µm−m ≤ qv.

(4.2)

Results show that R0 is sensitive to physiological attributes of the host and the virus. Assuming all
other parameters are held constant, the reproduction number increases with infection rate, β. In addi-
tion, R0 also increases with the minimal cell quota for the host, q. Intuitively, if a higher minimal cell
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Figure 4. The nutrient model (blue line) with no infection (equations 2.3a-2.3b) fitted to
healthy plant data (red points).

quota is needed to sustain host growth, then this would also increase the amount of resources available
to the virus and thus increase its replication rate. In contrast, R0 decreases with respect to the virus’s
minimal cell quota, qv. This makes good sense, since requiring more resources for minimal growth of
the virus would decrease the number of viruses being produced. Lastly, the reproduction number is an
increasing function of µm except for the +CTRL treatment. One might expect that increasing growth
rate would allow for more susceptible cells to become infected, and hence increase the reproduction
number. However, the model also predicts that a high enough growth rate can overcome the infection
(+CTRL treatment).
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Figure 5. Nutrient model (system 2.5) fits to virion data for the CTRL, +N, +P and +NP
treatments. Model trajectories (blue line) of b(Q)V + I were fitted to virion data (red points).
Note: b := b(Q) was used in the legend for compactness.

4.2. Delay model

As with the nutrient model, r̂, S (0) and K̂ were estimated using equation 3.1 and fitting it to healthy
plant cell data. These parameters were then used as the initial values when fitting the full model to the
virion data. Our decision not to keep r̂ and K̂ fixed but used as the initial starting values was to allow
for stochastic changes that can occur to the plant parameters when the virus is introduced. We did not
do this in the nutrient model since the limiting nutrient (Q(t))) should change, not µm, q α and m. For
example, when the virus is introduced into the nutrient model, the specific growth rate changes due to
the now lower Q(t) (from virion uptake), not the maximum specific growth rate, µm. The method of
nonlinear least squares was use again with an analogous error function as Equation 4.1. We present
model fits to virion data in Figure 7 and fitted parameters in Table 2.
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Table 2. Parameter values from fitting the delay model (system 3.3) to the virion data.

Parameter Fitted (CTRL) Fitted (+N) Fitted (+P) Fitted (+NP) Units
r̂ 0.10 0.10 0.10 .10 day−1

K̂ 597479 828855 547118 1015762 cells
β 0.43 0.32 0.552 .15 cells virion−1 day−1

d 0.17 0.87 0.13 .18 day−1

δ 1/13 1/13 1/13 1/13 day−1

b 40 106 171 169 virions cell−1 day−1

τ 8.8 7 7 6 days

Table 3. Mean squared error from the SIV (system 1.1), nutrient (system 2.5) and delay
(system 3.3) models, across all nutrient treatments.

Experiment SIV Nutrient Delay
CTRL 1.19e+13 1.59e+13 7.72e+13

+N 4.44e+13 4.19e+13 5.39e+13
+P 4.77e+12 4.75e+12 6.56e+12

+NP 4.33e+13 4.42e+13 8.68e+13

Table 4. Mean absolute error percentage from the SIV (system 1.1), nutrient (system 2.5)
and delay (system 3.3) models, across all nutrient treatment treatments.

Experiment SIV Nutrient Delay
CTRL 76.37 78.69 141.64

+N 80.84 72.60 78.78
+P 41.43 33.21 32.96

+NP 64.63 56.65 56.56
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Figure 6. R0 (equation 4.2) trajectories from the nutrient model using the calibrated parame-
ters from Table 1. The reproduction number is most sensitive to β and µm and is an increasing
function of β, µm and q.

Table 3 and 4 compares the SIV (system 1.1), nutrient (system 2.5) and delay model (system 3.3) us-
ing the mean square error and mean absolute percentage error (MAPE). The SIV model outperformed
the other two models in the CTRL treatment, but was slightly surpassed in the +P and +NP treatments
when comparing the MAPE values.

5. Discussion

In this article we formulated two mathematical models to investigate the virion dynamics of a plant
virus under different nutrient regimens. Both models were motivated and guided by the nature of the
data and research with this system. Our first model was motivated by the hypothesis that nutrient con-
ditions inside the infected cells controlled the virion production. With this in mind, we designed a
mathematical model that was based off Fuhrman et al., that related virus production to nutrient con-
centration in its host cells [34]. By assuming that virus production can be approximated by the Droop
equation (equation 2.1), we were able to capture the general dynamics of the virion data. Although
the nutrient model and SIV model returned relatively similar model fiitings, the nutrient model gave
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Figure 7. The delayed differential equation model (system 3.3) fits to virus/plant control,
nitrogen, phosphorous and both nitrogen and phosphorus addition treatments. Model trajec-
tories (blue line) of bV + I were fitted to virion data (red dots).
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us deeper insight into the behavior of the reproduction number. Indeed, the nutrient model captured
physiological and environmental aspects of the reproduction number that cannot be captured by the
SIV model.

Our second modeling approach was designed to investigate the plausibility that the different nutri-
ent treatments delayed the virion production in response to altered supply ratios within infected cells.
Model fits for the control, nitrogen addition and phosphorus addition experiments suggest that delayed
virus production in response to changes in elemental supply ratios is a plausible mechanism for ex-
plaining the dynamics seen in the virion data. The best fit solutions from our models uncover patterns
that otherwise would be hard to detect when viewing the data by itself, see Figure 7. Moreover, this
modeling approach results in at least two new questions: what mechanisms are capable of delaying
virus production in response to altered nutrient supply and what roles do phosphorus and nitrogen play
in these mechanisms?

The delay model suggests that virion production delay is another reasonable mechanism for ex-
plaining the results from 3 of 4 experimental treatments (CTRL, +N and +P), see Figure 7 and Table 2.
Since virion estimations from the experiment were taken from leaf tissue samples, virus particles that
move to the roots to replicate and then return to the leaves [33] could explain the bumps in the data.
Another mechanism for describing the data could be that the nutrient treatments are changing the host’s
innate immune system [39]. RNA silencing is one such defense a plant has against infectious particles
and perhaps this mechanism is eventually overcome by viral silencing suppressors [22], allowing the
virus population to increase as best seen in the data and model fittings from Figure 7. In the +NP
treatment, the delay model yields unsatisfactory results and does not capture the oscillatory nature of
the data. However, it is well known that delay models usually are prone to oscillatory dynamics be-
cause of their very nature [43, 66]. Further analysis of the delay model should be directed towards
locating parameter regions where oscillatory behavior might manifest. Interestingly, the time delay,
τ, decreased as the nitrogen and/or phosphorus supply was elevated. Indeed, environmental nutrient
supply has been linked to indirectly manipulating virus growth [48] and our modeling exercise may
give one such viable way of how nutrients manipulate that growth. Ultimately, since some of the data
points were collected after a nutrient addition, it is plausible that the patterns in the data could have
resulted from the increased supply of nutrient.

Since the nutrient model is based on nutrient limited growth mechanisms, we should not be surprised
that its virus reproduction number is as well. In a study by Smith et al., the reproduction number of an
SIV model was explored in the context of resource content and physiological state of infected hosts, but
did not explicitly model nutrient dynamics [68]. The nutrient model allows for a deeper understanding
of what and how environmental and physiological attributes change the reproduction number. To our
knowledge, this is the first time a reproduction number has been derived within a nutrient-explicit
disease model. Thus, with the increasing interest in the relationship between nutrition and infection,
this approach can serve as a framework to further develop this field.

The error metrics from Tables 1 and 2 show slight discrepancies between model fits, but the delay
model does have a higher MAPE value for the CTRL treatment (almost double than the other models).
Qualitatively, we see vastly different dynamics. The delay equation captures the earlier (approximately
0-15 days past inoculation) virion population levels much better than the other two models. However,
the delay model fails to predict the behavior near the end of the experiment during the +N and +NP
treatments.
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Although we did parameterize the model to the best of our abilities, there is much work to be done.
Neither of our modeling approaches explicitly model the virus particles within each infected cell, and
instead we assume that there are b(Q) viruses per infected cell. This was done, due to the lack of
data and the need for first iteration models. Future model iterations should incorporate both free and
intracellular virus particles to capture deeper insight into nutrient and pathogen dynamics. In addition,
the nutrient model assumes that both the plant and virus are limited by the same nutrient. In the future,
this simplifying assumption can be built upon by incorporating multiple nutrients using Liebig’s law of
the minimum (equation 2.2). Another future direction would be to consider a specific limiting nutrient
supplied. When considering a specific nutrient, parameter values can be more accurately specified and
the model more constrained.

Parameter identifiability and sensitivity analysis could guide the direction for future model itera-
tions, experiment design and further investigation of the reproduction number (equation 4.2). Indeed,
preliminary investigations using local sensitivity analysis showed that the virus population is not sen-
sitive to α with the associated fitted parameters. Sensitivity analysis could be implemented by various
methods such as the Morris and Sobol’ methods, Latin hypercube sampling-partial rank correlation co-
efficient and the sensitivity heat map method [76], while parameter identifiability could be implemented
by the Differential Algebra Identifiability of Systems (DASIY) and other such methods discussed in
[62, 40, 60, 59].
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