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Abstract: This paper investigates a mathematical model of competition between two species for inor-
ganic carbon and light in a well-mixed water column. The population growth of the species depends on
the consumption of two substitutable forms of inorganic carbon, “CO2” (dissolved CO2 and carbonic
acid) and “CARB” (bicarbonate and carbonate ions), which are stored internally. Besides, uptake rates
also includes self-shading by the phytoplankton population, that is, an increase in population density
will reduce light available for photosynthesis, and thereby reducing further carbon assimilation and
population growth. We also incorporate the fact that carbon is lost by respiration, and the respiration
rate is assumed to be proportional to the size of the transient carbon pool. Then we study the extinction
and persistence of a single-species system. Finally, we show that coexistence of the two-species system
is possible, depending on parameter values, and both persistence of one population.
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1. Introduction

It has been known that organic nutrients (e.g., nitrogen and phosphorus), light, and inorganic car-
bon are the important factors that affect the growth of phytoplankton. However, previous competition
theory only focused on the interaction between the species and nutrients/light (see, e.g., [7, 9]), and
neglected the role of inorganic carbon. This is probably due to the complexities including the bio-
chemistry of carbon acquisition by phytoplankton and the geochemistry of inorganic carbon in the
ecosystem [10, 20]. In the Supplementary Information of [20], the authors proposed a system of ODEs
modeling the competition of the species for inorganic carbon and light in a well-mixed water column.
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Dissolved CO2 and carbonic acid are regarded as one resource (denoted as “CO2” ), and bicarbonate
and carbonate ions are regarded as another (denoted as “CARB”). The resources “CO2” and “CARB”
are stored internally, and they are substitutable in their effects on algal growth [17, 20]. On the other
hand, uptake rates also includes self-shading by the phytoplankton population, namely, an increase
in population density will reduce light available for photosynthesis, and thereby suppressing further
carbon assimilation and population growth [20].

It was known that pH and alkalinity are two main factors in the modeling of inorganic carbon [20].
The consumption terms for “CO2” and “CARB” used in [20] include computations of feedbacks that
arise from changes in pH and alkalinity during algal growth. In the recent work [17], the authors
ignore these latter feedbacks and assume that the parameters in the system are constants, simplifying
the complex processes of “CO2” and “CARB” involved. Incorporating the simplifications used in [17],
we modify the model presented in the Supplementary Information of [20] and we shall investigate the
following chemostat-type model with internal storage:



dR
dt = (R(0) − R)D − fR1(R,Q1)g1(u1, u2)u1 − fR2(R,Q2)g2(u1, u2)u2

+γ1(Q1)u1 + γ2(Q2)u2 − ωrR + ωsS ,
dS
dt = (S (0) − S )D − fS 1(S ,Q1)g1(u1, u2)u1 − fS 2(S ,Q2)g2(u1, u2)u2 + ωrR − ωsS ,
dQ1
dt = fR1(R,Q1)g1(u1, u2) + fS 1(S ,Q1)g1(u1, u2) − µ1(Q1)Q1 − γ1(Q1),

du1
dt =

[
µ1(Q1) − D

]
u1,

dQ2
dt = fR2(R,Q2)g2(u1, u2) + fS 2(S ,Q2)g2(u1, u2) − µ2(Q2)Q2 − γ2(Q2),

du2
dt =

[
µ2(Q2) − D

]
u2,

R(0) ≥ 0, S (0) ≥ 0, ui(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2.

(1.1)

Here R(t) and S (t) denote the concentrations of “CO2” and “CARB” in the chemostat at time t,
respectively. ui(t) denotes the concentration of species i at time t. Qi represents the amount of cell
quota of resources R and S per individual of species i at time t. µi(Qi) is the growth rates of species i as
a function of cell quota Qi. fRi(R,Qi) ( fS i(S ,Qi)) is the per capita uptake rate of species i as a function
of resource concentration R (S ) and cell quota Qi. D is the dilution rate of the chemostat. Each nutrient
is supplied at the rate D, and both input concentrations are R(0) and S (0) respectively. Qmin,i denotes
threshold cell quota below which no growth of species i occurs. γi(Qi) represents the respiration rate
of species i as a function of cell quota Qi. gi(u1, u2) stands for the photosynthetic rate of the species i as
a function of u1(t) and u2(t). Following the ideas of model simplifications in [17], we also assume that
carbonic acid loses a proton to become bicarbonate at the rate ωr, and the rate of the reverse reaction
is denoted by ωs.

One type of the photosynthetic rate of the species i, gi(u1, u2), takes

gi(u1, u2) =
1
zm

∫ zm

0

mi Î(z)
ai + Î(z)

dz, (1.2)

where mi and ai are the maximal growth rate and half saturation constant of species i, respectively, and

Î(z) = Iin exp (−k0z − k1zu1(t) − k2zu2(t)) . (1.3)
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Here we have assumed that the light intensity at each depth is described by Lambert-Beer law
[11, 14], which states that the amount of light absorbed is proportional to the light intensity (Iin), but
decreases with the depth in the water column (z), the background turbidity of the water itself (k0), the
specific light attenuation coefficients of the competing species (ki), and the population densities of the
species (ui). Assume that zm is the total depth of the water column. Substituting (1.3) into (1.2), then
the photosynthetic rate gi(u1, u2) becomes

gi(u1, u2) =
mi

(k0 + k1u1 + k2u2)zm
ln

(
ai + Iin

ai + Î(zm)

)
=

mi

ln
(

Iin
Î(zm)

) ln
(

ai + Iin

ai + Î(zm)

)
,

where
Î(zm) = Iin exp (−k0zm − k1zmu1(t) − k2zmu2(t)) .

We also note that the other type of the photosynthetic rate gi(u1, u2) takes the form

gi(u1, u2) =
miI

ai + I
, (1.4)

with
I(t) = Iin exp (−k0zm − k1zmu1(t) − k2zmu2(t)) .

According to [20], we take the growth rate µi(Qi) as follows

µi(Qi) = µmax,i
Qi − Qmin,i

Qmax,i − Qmin,i
,

where µmax,i is the maximum specific growth rate of species i; Qmin,i is the minimum cellular carbon
content required for growth of species i; Qmax,i is the maximum cellular carbon content of species i.
From [3, 4, 5], for i = 1, 2, the growth rate µi(Qi) can also take the forms :

µi(Qi) = µ∞,i

(
1 −

Qmin,i

Qi

)
, or

µi(Qi) = µ∞,i
(Qi − Qmin,i)+

Ai + (Qi − Qmin,i)+

,

where (Qi − Qmin,i)+ is the positive part of (Qi − Qmin,i) and µ∞,i is the maximal growth rate at infinite
quotas (i.e., as Qi → ∞) of the species i.

According to [6, 16], for H = R, S and i = 1, 2, the uptake rate fHi(H,Qi) takes the form:

fHi(H,Qi) = ρHi(Qi)
H

KHi + H
.

Here H = R, S represents the concentration of the extracellular resource; ρHi(Qi) represents the maxi-
mal uptake rate of the species i; KHi is the half-saturation constant, the resource concentration at which
uptake rate is half of the maximal rate. The maximal resource uptake rate, ρHi(Qi), is a decreasing,
linear function of quota [8, 16], which is defined by

ρHi(Qi) = ρ
high
max,Hi − (ρhigh

max,Hi − ρ
low
max,Hi)

Qi − Qmin,i

Qmax,i − Qmin,i
,
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for Qmin,i ≤ Qi ≤ Qmax,i. In other words, the maximal rate of resource uptake, ρHi(Qi), varies between
upper and lower bounds, ρhigh

max,Hi and ρlow
max,Hi, respectively, while quota varies between lower and upper

bounds, Qmin,i and Qmax,i, respectively (see, e.g., [8]). Cunningham and Nisbet [1, 2] took ρHi(Qi) to be
a constant. The authors in [20] put ρhigh

max,Hi ≡ ρmax,Hi, ρlow
max,Hi = 0, then ρHi(Qi) becomes

ρHi(Qi) = ρmax,Hi
Qmax,i − Qi

Qmax,i − Qmin,i
.

System (1.1) also includes the fact that carbon is lost by respiration. The respiration rate is propor-
tional to the size of the transient carbon pool [20]:

γi(Qi) = γmax,i
Qi − Qmin,i

Qmax,i − Qmin,i
,

where Qmin,i ≤ Qi ≤ Qmax,i, and γmax,i is the maximum respiration rate of species i.
In this whole paper, we always assume that the photosynthetic rate gi(u1, u2) takes the form in (1.2)

or (1.4); the functions µi(Qi), fHi(H,Qi), and γi(Qi) satisfy the following assumptions: (i = 1, 2 and
H = R, S )

(C1) µi(Qi) is continuously differentiable for Qi ≥ Qmin,i, µi(Qmin,i) = 0, µi(Qi) ≥ 0 and µ′i(Qi) > 0 for
Qi ≥ Qmin,i.

(C2) fHi(H,Qi) is continuously differentiable for H > 0 and Qi ≥ Qmin,i, fHi(0,Qi) = 0, fHi(H,Qi) ≥ 0,
∂ fHi(H,Qi)

∂H > 0 and ∂ fHi(H,Qi)
∂Qi

≤ 0 for H > 0 and Qi ≥ Qmin,i.

(C3) γi(Qi) is continuously differentiable for Qi ≥ Qmin,i, γi(Qmin,i) = 0, γi(Qi) ≥ 0 and γ′i (Qi) > 0 for
Qi ≥ Qmin,i.

The rest of the paper is organized as follows. Section 2 is devoted to the study of the single pop-
ulation model. In Section 3, we shall investigate the possibility of coexistence of the two competing
species system (1.1). A brief discussion section completes this paper.

2. Single population model

In this section, we first investigate the extinction and persistence of the single population model.
Mathematically, it simply means that we remove equations of Q2 and u2 from (1.1). In order to simplify
notation, all subscripts are dropped in the remaining equations and the single population model takes
the form: 

dR
dt = (R(0) − R)D − fR(R,Q)G(u)u + γ(Q)u − ωrR + ωsS ,
dS
dt = (S (0) − S )D − fS (S ,Q)G(u)u + ωrR − ωsS ,
dQ
dt = fR(R,Q)G(u) + fS (S ,Q)G(u) − µ(Q)Q − γ(Q),
du
dt =

[
µ(Q) − D

]
u,

R(0) ≥ 0, S (0) ≥ 0, u(0) ≥ 0, Q(0) ≥ Qmin.

(2.1)

The specific growth rate G(u) takes the form

G(u) =
1
zm

∫ zm

0

mĨ(z)
a + Ĩ(z)

dz =
m

ln
(

Iin
Ĩ(zm)

) ln
(

a + Iin

a + Ĩ(zm)

)
,
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where
Ĩ(z) = Iin exp (−k0z − kzu(t)) , 0 ≤ z ≤ zm,

or
G(u) =

mI
a + I

, with I(t) = Iin exp (−k0zm − kzmu(t)) .

The feasible domain for system (2.1) takes the form

X = {(R, S ,Q, u) ∈ R4
+ : Q ≥ Qmin}. (2.2)

Then it is easy to show that X is positively invariant for system (2.1). Next, we study the boundedness
of solutions of (2.1):

Lemma 2.1. Every solution (R(t), S (t),Q(t), u(t)) of system (2.1) exists globally. Furthermore, solu-
tions of (2.1) are ultimately bounded on X.

Proof. By the continuation theorem, it suffices to prove that the solution of system (2.1) is bounded on
finite time intervals. Let

Θ(t) = R(t) + S (t) + u(t)Q(t). (2.3)

Then Θ(t) satisfies
dΘ(t)

dt
= (R(0) + S (0) − Θ(t))D. (2.4)

Thus, Θ(t) is bounded on finite time intervals. This fact and the positivity of the solution imply that
R(t), S (t), and u(t)Q(t) are bounded on finite time intervals. Since Q(t) ≥ Qmin, we can also deduce
that u(t) is bounded on finite time intervals.

It remains to show that Q(t) is bounded on finite time intervals. Inspired by the ideas in [15,
Proposition 3], we will investigate the dynamics of the variable V(t) = 1

2 (Q(t))2. By the monotonicity
of fN for N = S ,R, the inequality x ≤ 1

2 (1 + x2), and the fact that Q ≥ Qmin, it is easy to see that V(t)
satisfies

dV(t)
dt

=
dQ(t)

dt
Q

≤ G(0)[ fR(R(t),Qmin) + fS (S (t),Qmin)]Q

≤
1
2

G(0)[ fR(R(t),Qmin) + fS (S (t),Qmin)][1 + Q2] (2.5)

= G(0)[ fR(R(t),Qmin) + fS (S (t),Qmin)][
1
2

+ V].

Since R(t) and S (t) in (2.5) are bounded on finite time intervals, we see that V(t) is bounded on finite
time intervals, and hence, so is Q(t). Thus, every solution of system (2.1) exists globally.

From (2.4), it is easy to see that
lim
t→∞

Θ(t) = R(0) + S (0), (2.6)

and hence, Θ(t) is ultimately bounded. This together with the positivity of the solution, we deduce
that R(t), S (t), and u(t)Q(t) are ultimately bounded. Using the fact Q(t) ≥ Qmin, we see that u(t) is
ultimately bounded. Finally, we show that Q(t) is ultimately bounded. From (2.3), (2.6), and the third
equation of (2.1), it follows that there exist τ0 > 0 and η0 > 0 such that

dQ
dt
≤ G(0)[ fR(R(0) + S (0),Q) + fS (R(0) + S (0),Q)] + η0 − µ(Q)Q − γ(Q), t ≥ τ0.
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Then
lim
t→∞

Q(t) ≤ Qη0 ,

where Qη0 is the positive root uniquely determined by

G(0)[ fR(R(0) + S (0),Q) + fS (R(0) + S (0),Q)] + η0 − µ(Q)Q − γ(Q) = 0.

Thus, solutions of (2.1) are ultimately bounded on X since η0 > 0 is independent of initial values.
�

In order to find the species-free equilibrium of system (2.1), which corresponds to the absence of
species, we put u = 0 in (2.1). Then we consider the following system

dR
dt = (R(0) − R)D − ωrR + ωsS ,
dS
dt = (S (0) − S )D + ωrR − ωsS ,

R(0) ≥ 0, S (0) ≥ 0.

(2.7)

It is easy to see that (2.7) is a cooperative/monotone system (see, e.g., [18]), and

(R∗, S ∗) := (
DR(0) + ωsR(0) + ωsS (0)

D + ωr + ωs
,

DS (0) + ωrS (0) + ωrR(0)

D + ωr + ωs
)

is the unique equilibrium for (2.7). For a monotone dynamical system, the unique steady state is
globally asymptotically stable if and only if every forward orbit has compact closure (see [13, Theorem
D]). By Lemma 2.1 and the above discussions, we have the following results:

Lemma 2.2. The unique equilibrium (R∗, S ∗) is globally asymptotically stable for (2.7) in R2.

From Lemma 2.2, the species-free equilibrium of system (2.1), which we label E0, is given by

E0 = (R, S ,Q, u) = (R∗, S ∗,Q∗, 0),

where Q∗ satisfies

fR(R∗,Q∗)G(0) + fS (S ∗,Q∗)G(0) − µ(Q∗)Q∗ − γ(Q∗) = 0 (2.8)

The local stability of E0 is determined by the Jacobian matrix of (2.1) at E0, denoted by

J0 =


−D − ωr ωs 0 − fR(R∗,Q∗)G(0) + γ(Q∗)
ωr −D − ωs 0 − fS (S ∗,Q∗)G(0)

∂ fR(R∗,Q∗)
∂R G(0) ∂ fS (S ∗,Q∗)

∂S G(0) j33 [ fR(R∗,Q∗) + fS (S ∗,Q∗)]G′(0)
0 0 0 µ(Q∗) − D

 ,
where

j33 = [
∂ fR(R∗,Q∗)

∂Q
+
∂ fS (S ∗,Q∗)

∂Q
]G(0) − [µ(Q∗) + µ′(Q∗)Q∗] − γ′(Q∗) < 0.
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It is easy to see that the eigenvalues of J0 are j33, µ(Q∗) − D, together with the eigenvalues of the
following matrix

J̃0 =

(
−D − ωr ωs

ωr −D − ωs

)
.

Since j33 < 0 and the eigenvalues of J̃0 are both negative, we see that the sign of µ(Q∗)−D determines
the stability of E0. That is, E0 is locally asymptotically stable if µ(Q∗) − D < 0, and unstable if
µ(Q∗) − D > 0. Thus, we have proved the following result concerning with the local stability of E0:

Lemma 2.3. E0 is locally asymptotically stable if µ(Q∗) − D < 0, and unstable if µ(Q∗) − D > 0.

2.1. Persistence of system (2.1)

This subsection is devoted to the investigations of persistence of system (2.1).

Theorem 2.4. Assume that (R(t), S (t),Q(t), u(t)) is the unique nonnegative solution of system (2.1), for
all t ∈ [0,∞), with the initial value (R0, S 0,Q0, u0) ∈ X. If µ(Q∗)−D > 0, then system (2.1) is uniformly
persistent in the sense that there exists a ξ > 0 such that

lim inf
t→∞

u(t) ≥ ξ, provided that u0 , 0.

Further, system (2.1) admits at least one positive equilibrium (R̂, Ŝ , Q̂, û).

Proof. Recall that X is defined in (2.2). Let

X0 = {(R, S ,Q, u) ∈ X : u > 0},

and
∂X0 := X\X0 := {(R, S ,Q, u) ∈ X : u = 0}.

It is easy to see that both X and X0 are positively invariant for system (2.1), and ∂X0 is relatively closed
in X. Furthermore, system (2.1) is point dissipative (see Lemma 2.1). Let Φ(t) : X→ X be the solution
maps associated with system (2.1). Set M̃∂ := {P ∈ ∂X0 : Φ(t)P ∈ ∂X0, ∀ t ≥ 0} and ω̃(P) be the
omega limit set of the orbit Õ+(P) := {Φ(t)P : t ≥ 0}. We show the following claim.

Claim: ω̃(P) = {E0}, ∀ P ∈ M̃∂.
Since P ∈ M̃∂, we have Φ(t)P ∈ ∂X0, ∀ t ≥ 0. Thus, u(t, P) = 0, ∀ t ≥ 0. In view of the first two

equations of (2.1), it follows that (R(t, P), S (t, P)) satisfies (2.7), ∀ t ≥ 0. Then Lemma 2.2 implies that

lim
t→∞

(R(t, P), S (t, P)) = (R∗, S ∗).

Then, the equation for Q(t) in (2.1) is asymptotic to

dQ
dt

= fR(R,Q)G(0) + fS (S ,Q)G(0) − µ(Q)Q − γ(Q).

From the theory for asymptotically autonomous semiflows (see, e.g., [19, Corollary 4.3]), it follows
that limt→∞ Q(t, P) = Q∗, where Q∗ is given in (2.8). Hence, the claim is proved.
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Let η1 := 1
2 (µ(Q∗) − D) > 0. Then it follows from the continuity of µ(Q) that there exists σ1 > 0

such that
µ(Q) > µ(Q∗) − η1, ∀ |Q − Q∗| < σ1. (2.9)

Claim: E0 is a uniform weak repeller for X0 in the sense that

lim sup
t→∞

|Φt(P) − E0| ≥ σ1, ∀ P ∈ X0.

Suppose not. Then there exists a P ∈ X0 such that

lim sup
t→∞

|Φt(P) − E0| < σ1.

Thus, there exists a τ1 > 0 such that

|Q(t, P) − Q∗| < σ1, ∀ t ≥ τ1.

This and (2.9) imply that

µ(Q(t, P)) − D > µ(Q∗) − D − η1 = η1, ∀ t ≥ τ1.

From this inequality and the fourth equation of (2.1), we have

du(t, P)
dt

> η1u(t, P), ∀ t ≥ τ1,

which shows that limt→∞ u(t, P) = ∞, a contradiction.
Therefore, E0 is isolated in X and W̃ s(E0)∩X0 = ∅, where W̃ s(E0) is the stable set of E0 (see [21]).

Since Φt : X → X is point dissipative and compact, we conclude from [21, Theorem 1.1.3] that there
exists a global attractor A for Φt in X. By [21, Theorem 1.3.1] on strong repellers, Φt : X → X is
uniformly persistent with respect to (X0, ∂X0). It follows from [21, Theorem 1.3.6] that there exists a
global attractorA0 for Φt in X0 and Φt admits at least one fixed point

(R̂, Ŝ , Q̂, û) ∈ X0.

Then Q̂ ≥ Qmin > 0, û > 0, and (R̂, Ŝ ) satisfies(R(0) − R̂)D − fR(R̂, Q̂)g(û)û + γ(Q̂)û − ωrR̂ + ωsŜ = 0,
(S (0) − Ŝ )D − fS (Ŝ , Q̂)g(û)û + ωrR̂ − ωsŜ = 0.

(2.10)

In view of (2.10), we deduce that R̂ > 0, Ŝ > 0. Thus, (R̂, Ŝ , Q̂, û) is a positive steady-state solution
for (2.1). We complete the proof. �

2.2. Extinction of system (2.1)

In this subsection, we neglect the effect of respiration and investigate the extinction of system (2.1).
Putting the respiration rate to be zero,

γ(Q) ≡ 0, ∀ Q ≥ Qmin. (2.11)

Then we have the following result:
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Theorem 2.5. Suppose (R(t), S (t),Q(t), u(t)) is the unique nonnegative solution of system (2.1), for all
t ∈ [0,∞), with the initial value (R0, S 0,Q0, u0) ∈ X. Assume that (2.11) holds. If µ(Q∗) − D < 0, then
system (2.1) is washed out, that is,

lim
t→∞

(R(t), S (t),Q(t), u(t)) = (R∗, S ∗,Q∗, 0).

Proof. For η > 0, we assume that Qη is the unique root of

G(0)[ fR(R∗,Q) + fS (S ∗,Q)] + η − µ(Q)Q = 0. (2.12)

Recall that Q∗ is the unique root of (2.8). Since

lim
η→0

[µ(Qη) − D] = µ(Q∗) − D and
−1
3

[µ(Q∗) − D] > 0,

we may find an η2 > 0 such that

µ(Qη2) − D < [µ(Q∗) − D] +
−1
3

[µ(Q∗) − D] =
2
3

[µ(Q∗) − D]. (2.13)

On the other hand, by the continuity, we may find a σ2 > 0 such that
fR(R∗ + σ2,Q) < fR(R∗,Q) +

η2
2G(0) ,

fS (S ∗ + σ2,Q) < fS (S ∗,Q) +
η2

2G(0) ,

µ(Qη2 + σ2) < µ(Qη2) + −1
3 [µ(Q∗) − D]

(2.14)

In view of the assumption (2.11) and the first two equations of system (2.1), it follows that dR
dt ≤ (R(0) − R)D − ωrR + ωsS ,
dS
dt ≤ (S (0) − S )D + ωrR − ωsS .

By the comparison arguments and Lemma 2.2, we have

lim
t→∞

(R(t), S (t)) ≤ (R∗, S ∗).

Then there exists a τ2 > 0 such that

R(t) ≤ R∗ + σ2, S (t) ≤ S ∗ + σ2, ∀ t ≥ τ2.

Then it follows from the third equation of (2.1) that

dQ
dt
≤ G(0)[ fR(R∗ + σ2,Q) + fS (S ∗ + σ2,Q)] − µ(Q)Q, ∀ t ≥ τ2. (2.15)

In view of the first two inequalities of (2.14) and (2.15), we have

dQ
dt
≤ G(0)[ fR(R∗,Q) + fS (S ∗,Q)] + η2 − µ(Q)Q, ∀ t ≥ τ2.
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Using the comparison arguments, we have

lim
t→∞

Q(t) ≤ Qη2 , (2.16)

where Qη2 is the unique root of (2.12) with η = η2. Thus, we may find a τ3 > 0 such that

Q(t) ≤ Qη2 + σ2, ∀ t ≥ τ3,

and hence,
µ(Q(t)) ≤ µ(Qη2 + σ2), ∀ t ≥ τ3. (2.17)

In view of the third inequality of (2.14) and (2.17), we have

µ(Q(t)) ≤ µ(Qη2) +
−1
3

[µ(Q∗) − D], ∀ t ≥ τ3. (2.18)

By (2.13), (2.18) together with the fourth equation of (2.1), it follows that

du
dt

=
[
µ(Q(t)) − D

]
u ≤

1
3

[µ(Q∗) − D]u, ∀ t ≥ τ3. (2.19)

Since µ(Q∗) − D < 0 and (2.19), we have

lim
t→∞

u(t) = 0.

Then (R(t), S (t)) is asymptotic to (2.7). By Lemma 2.2 and the theory for asymptotically autonomous
semiflows (see, e.g., [19, Corollary 4.3]), it follows that

lim
t→∞

(R(t), S (t)) = (R∗, S ∗).

Similarly, Q(t) is asymptotic to

dQ
dt

= fR(R∗,Q)G(0) + fS (S ∗,Q)G(0) − µ(Q)Q,

and limt→∞ Q(t) = Q∗, where Q∗ is given in (2.8) with γ(Q) ≡ 0. We complete the proof.
�

3. Coexistence for the two-species model

In this section, we shall concentrate on the study of coexistence of system (1.1). The subsequent
discussions will reveal that two semi-trivial steady-state solutions of system (1.1), corresponds to the
presence of one of the species and the absence of the other species, are not necessarily unique. This
makes our analysis more difficult. Fortunately, we can adopt the ideas developed in [12, Section 4] to
overcome this difficulty.

The trivial steady-state solution of (1.1), labeled E0, corresponds to the absence of both species. It
is given by

E0 = (R, S ,Q1, u1,Q2, u2) = (R∗, S ∗,Q∗1, 0,Q
∗
2, 0),

Mathematical Biosciences and Engineering Volume 16, Issue 1, 205–221.



215

where (R∗, S ∗) is given in Lemma 2.2, and Q∗i satisfies

fRi(R∗,Q∗i )Gi(0) + fS i(S ∗,Q∗i )Gi(0) − µi(Q∗i )Q∗i − γi(Q∗i ) = 0, i = 1, 2,

where G1(u1) = g1(u1, 0) and G2(u2) = g2(0, u2).
In order to determine the semi-trivial steady-state solutions of (1.1), we need the following single

population system associated with the growth of species i:

dR
dt = (R(0) − R)D − fRi(R,Qi)Gi(ui)ui + γi(Qi)ui − ωrR + ωsS ,
dS
dt = (S (0) − S )D − fS i(S ,Qi)Gi(ui)ui + ωrR − ωsS ,
dQi
dt = fRi(R,Qi)Gi(ui) + fS i(S ,Qi)Gi(ui) − µi(Qi)Qi − γi(Qi),

dui
dt =

[
µi(Qi) − D

]
ui,

R(0) ≥ 0, S (0) ≥ 0, ui(0) ≥ 0, Qi(0) ≥ Qmin,i, i = 1, 2.

(3.1)

Next, we shall summarize the result of system (3.1). By Theorem 2.4, for i = 1, 2, system (3.1)
admits at least one positive equilibrium and we may assume that A0

i ⊂IntR4
+ is a global attractor of the

semiflows generated by system (3.1), under the condition that µi(Q∗i ) − D > 0. One of the semi-trivial
steady-state solutions of (1.1), labeled E1, corresponds to the presence of species 1 and the absence of
species 2. It is given by

E1 = (R, S ,Q1, u1,Q2, u2) = (R̂1, Ŝ 1, Q̂1, û1, Q̂2, 0),

where (R̂1, Ŝ 1, Q̂1, û1) ∈ A0
1 is a positive equilibrium of system (3.1) with i = 1, which is not necessarily

unique. Here, Q̂2 = Q̂2(R̂1, Ŝ 1, Q̂1, û1) is the root of

fR2(R̂1,Q2)g2(û1, 0) + fS 2(Ŝ 1,Q2)g2(û1, 0) − µ2(Q2)Q2 − γ2(Q2) = 0. (3.2)

Inspired by the arguments in [12, Section 4], we assume that

Q̂min
2 = inf{Q̂2(R̂1, Ŝ 1, Q̂1, û1) : (R̂1, Ŝ 1, Q̂1, û1) ∈ A0

1}. (3.3)

The other semi-trivial steady-state solution of (1.1), labeled E2, corresponds to the presence of species
2 and the absence of species 1. It is given by

E2 = (R, S ,Q1, u1,Q2, u2) = (Ř2, Š 2, Q̌1, 0, Q̌2, ǔ2),

where (Ř2, Š 2, Q̌2, ǔ2) ∈ A0
2 is a positive equilibrium of system (3.1) with i = 2, which is not necessarily

unique. Here, Q̌1 = Q̌1(Ř2, Š 2, Q̌2, ǔ2) is the root of

fR1(Ř2,Q1)g1(0, ǔ2) + fS 1(Š 2,Q1)g1(0, ǔ2) − µ1(Q1)Q1 − γ1(Q1) = 0.

Similarly, we assume

Q̌min
1 = inf{Q̌1(Ř2, Š 2, Q̌2, ǔ2) : (Ř2, Š 2, Q̌2, ǔ2) ∈ A0

2}. (3.4)

The feasible domain for system (1.1) takes the form

Y = {(R, S ,Q1, u1,Q2, u2) ∈ R6
+ : Q ≥ Qmin,i, i = 1, 2}.

Then it is easy to show that Y is positively invariant for system (1.1). By the similar arguments in
Lemma 2.1, we can show the following result:

Mathematical Biosciences and Engineering Volume 16, Issue 1, 205–221.



216

Lemma 3.1. Every solution (R(t), S (t),Q1(t), u1(t),Q2(t), u2(t)) of system (1.1) exists globally. Fur-
thermore, solutions of (1.1) are ultimately bounded on Y.

Assume that Ψ(t) : Y→ Y is the semiflow associated with system (1.1). Let

Y0 = {(R, S ,Q1, u1,Q2, u2) ∈ Y : u1 > 0 and u2 > 0},

and
∂Y0 := Y\Y0 := {(R, S ,Q1, u1,Q2, u2) ∈ Y : u1 = 0 or u2 = 0}.

Following the ideas in [12, Section 4], we assume thatM0 = {E0},

M1 = {(R̂1, Ŝ 1, Q̂1, û1, Q̂2, 0) ∈ Y : (R̂1, Ŝ 1, Q̂1, û1) ∈ A0
1 and Q̂2 is defined by (3.2)},

and
M2 = {(Ř2, Š 2, Q̌1, 0, Q̌2, ǔ2) ∈ Y : (Ř2, Š 2, Q̌2, ǔ2) ∈ A0

2 and Q̌1 is defined by (3.4)}.

One can easily to use “the method of proof by contradiction” to deduce the following result:

Lemma 3.2. Let µi(Q∗i ) − D > 0, for some i ∈ {1, 2}. ThenM0 is a uniform weak repeller in the sense
that there exists a δ0 > 0 such that

lim sup
t→∞

|Ψ(t)v0 −M0| ≥ δ0, for all v0 ∈ Y0.

Next, we shall use the strategy in [12, Lemma 4.2] to show the following result:

Lemma 3.3. Let µi(Q∗i ) − D > 0, for each i ∈ {1, 2}. If µ2(Q̂min
2 ) − D > 0, thenM1 is a uniform weak

repeller in the sense that there exists a δ1 > 0 such that

lim sup
t→∞

dist(Ψ(t)v0,M1) ≥ δ1, for all v0 ∈ Y0. (3.5)

Proof. Let

B1 = {Q̂2 = Q̂2(R̂1, Ŝ 1, Q̂1, û1) : (R̂1, Ŝ 1, Q̂1, û1) ∈ A0
1 and Q̂2 is defined by (3.2)}.

Then
Q̂min

2 = inf{Q̂2(R̂1, Ŝ 1, Q̂1, û1) : Q̂2(R̂1, Ŝ 1, Q̂1, û1) ∈ B1}.

Setting

ε1 =
1
2

[µ2(Q̂min
2 ) − D] > 0.

Define G : B1 → R by
G(φ) = µ2(φ), φ ∈ B1.

We may find a δ1 > 0 such that
dist(G(φ),G(B1)) < ε1,

whenever φ ∈ R with dist(φ, B1) < δ1. Since B1 is compact, it follows that for any φ ∈ R with
dist(φ, B1) < δ1, there exists φ∗ ∈ B1 with φ∗ depending on φ such that

|G(φ) − G(φ∗)| = dist(G(φ),G(B1)) < ε1.
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Thus, we have
|µ2(φ) − µ2(φ∗)| = |G(φ) − G(φ∗)| < ε1, (3.6)

whenever φ ∈ R with dist(φ, B1) < δ1.
Suppose that (3.5) is not true. Then there exists v0 ∈ Y0 such that

lim sup
t→∞

dist(Ψ(t)v0,M1) < δ1.

This implies that
lim sup

t→∞
dist(Q2(t), B1) < δ1 and lim sup

t→∞
|u2(t)| < δ1. (3.7)

From the first inequality of (3.7), we can choose t1 > 0 such that

dist(Q2(t), B1) < δ1, ∀ t ≥ t1.

By (3.6), it follows that there exists φt
∗ ∈ B1 such that

|µ2(Q2(t)) − µ2(φt
∗)| < ε1, ∀ t ≥ t1,

which implies that

µ2(Q2(t)) − D > µ2(φt
∗) − D − ε1 ≥ µ2(Q̂min

2 ) − D − ε1 = ε1, ∀ t ≥ t1.

From the sixth equation of (1.1), we have

du2(t)
dt

=
[
µ2(Q2(t)) − D

]
u2(t) > ε1u2(t), ∀ t ≥ t1.

We deduce that limt→∞ u2(t) = ∞ since ε1 > 0 and u2(t1) > 0. This contradicts the second inequality of
(3.7) and we complete the proof.

�

By the same arguments in Lemma 3.3, the following result holds:

Lemma 3.4. Let µi(Q∗i ) − D > 0, for each i ∈ {1, 2}. If µ1(Q̌min
1 ) − D > 0, thenM2 is a uniform weak

repeller in the sense that there exists a δ2 > 0 such that

lim sup
t→∞

dist(Ψ(t)v0,M2) ≥ δ2, for all v0 ∈ Y0.

Now we are in a position to prove the main result of this paper.

Theorem 3.5. Assume that (R(t), S (t),Q1(t), u1(t),Q2(t), u2(t)) is the unique solution of (1.1) with the
initial value (R(0), S (0),Q1(0), u1(0),Q2(0), u2(0)) ∈ Y. Let µi(Q∗i )−D > 0, ∀ i = 1, 2, µ2(Q̂min

2 )−D >

0, and µ1(Q̌min
1 ) − D > 0. Then system (1.1) is uniformly persistent with respect to (Y0, ∂Y0) in the

sense that there is a positive constant ζ > 0 such that if u1(0) , 0 and u2(0) , 0, we have

lim inf
t→∞

ui(t) ≥ ζ, i = 1, 2.

Furthermore, system (1.1) admits at least one (componentwise) positive equilibrium.
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Proof. Recall that Ψ(t) : Y → Y is the semiflow associated with system (1.1). It is easy to see that
Ψ(t)Y0 ⊂ Y0. Since solutions of the system (1.1) are ultimately bounded (see Lemma 3.1), it follows
that Ψ(t) is point dissipative and compact, and hence, Ψ(t) admits a global attractor (see, e.g., [21,
Theorem 1.1.3]). Let

M∂ := {v0 ∈ ∂Y0 : Ψ(t)v0 ∈ ∂Y0,∀ t ≥ 0},

and ω(v0) be the omega limit set of the orbit O+(v0) := {Ψ(t)v0 : t ≥ 0}.

Claim:
⋃

v0∈M∂
ω(v0) ⊂ M0 ∪M1 ∪M2.

For any given v0 := (R0, S 0,Q0
1, u

0
1,Q

0
2, u

0
2) ∈ M∂, we have v0 ∈ ∂Y0 and Ψ(t)v0 ∈ ∂Y0, ∀ t ≥ 0. We

discuss the following three subcases:

(i) If u0
1 = 0, u0

2 = 0, then we have u1(t, v0) = 0 and u2(t, v0) = 0, ∀ t ≥ 0. Thus, it is easy to see that
limt→∞Ψ(t)v0 = E0.

(ii) If u0
1 , 0, u0

2 = 0, then we have u1(t, v0) > 0 and u2(t, v0) = 0, ∀ t ≥ 0. Then
(R(t, v0), S (t, v0),Q1(t, v0), u1(t, v0)) satisfies system (3.1) with i = 1. Since µ1(Q∗1) − D > 0,
it follows from Theorem 2.4 that

(R(t, v0), S (t, v0),Q1(t, v0), u1(t, v0))

will eventually enter the global attractor A0
1 ⊂IntR4

+, and hence, Ψ(t)v0 will eventually enterM1.

(iii) If u0
1 = 0, u0

2 , 0, then we have u1(t, v0) = 0 and u2(t, v0) > 0, ∀ t ≥ 0. Then
(R(t, v0), S (t, v0),Q2(t, v0), u2(t, v0)) satisfies system (3.1) with i = 2. Since µ2(Q∗2) − D > 0,
it follows from Theorem 2.4 that

(R(t, v0), S (t, v0),Q2(t, v0), u2(t, v0))

will eventually enter the global attractor A0
2 ⊂IntR4

+, and hence, Ψ(t)v0 will eventually enterM2.

The proof of the claim is complete.
By Lemma 3.2, Lemma 3.3 and Lemma 3.4, it follows that for i = 0, 1, 2, Mi is a uniform weak

repeller for Y0 in the sense that there exists δi > 0 such that

lim sup
t→∞

dist(Ψ(t)v0,Mi) ≥ δi, for all v0 ∈ Y0.

Note that M0, M1, and M2 are pairwise disjoint, compact and isolated invariant sets for Ψ(t) in
∂Y0. Further, eachMi is isolated in Y andWs(Mi) ∩ Y0 = ∅, whereWs(Mi) is the stable set ofMi

(see [21]). It is easy to see that no subsets ofM0,M1, andM2 forms a cycle in ∂Y0. By [21, Theorem
1.3.1] on strong repellers, Ψ(t) : Y → Y is uniformly persistent with respect to (Y0, ∂Y0). It follows
from [21, Theorem 1.3.6] that there exists a global attractor Â0 for Ψ(t) in Y0 and Ψ(t) has at least one
fixed point

(R̃, S̃ , Q̃1, ũ1, Q̃2, ũ2) ∈ Y0.

Thus, (R̃, S̃ , Q̃1, ũ1, Q̃2, ũ2) is a positive steady-state solution for system (1.1). This completes the proof.
�
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4. Discussion and conclusion

In this paper, we study the chemostat-type system (1.1) modeling the interactions of two species
competing for “CO2” (dissolved CO2 and carbonic acid), “CARB” (bicarbonate and carbonate ions),
and light in a spatially homogeneous water column. Our mathematical model presented in this paper
is inspired by the recent works [17, 20]. In fact, system (1.1) is a modified version of the model
in the Supplementary Information of [20], where the specific growth rate of the competing species i
depends on their stored cellular carbon content (quota) Qi. The dynamics of Qi can be affected by the
uptake rates of inorganic carbon, “CO2” (R(t)) and “CARB” (S (t)), photosynthetic activity (gi(u1, u2)),
and respiration (γi(Qi)). The resources “CO2” and “CARB” are substitutable in their effects on algal
growth, which also involves a very complex processes. In order to make our system (1.1) analytically
tractable, we have adopted the ideas in [17] to assume that carbonic acid loses a proton to become
bicarbonate at the rate ωr, and the rate of the reverse reaction is denoted by ωs, which simplifies the
complex processes of “CO2” and “CARB” involved.

Solutions of both the two-species system (1.1) and its single-species sub-system (2.1) follow mass
conservation laws, and are eventually bounded (see Lemma 2.1 and Lemma 3.1). Persistence of a single
species depends on the sign of µ(Q∗) − D (see Theorem 2.4), where Q∗ is given in (2.8). Biologically,
Q∗ represents the quota that a species can obtain when the inorganic carbon concentration is at its long-
term upper bound (R∗, S ∗), which is the unique equilibrium for system (2.7) governing the available
inorganic carbon in a species-free habitat. Then Theorem 2.4 states that the species can persist if
the quota Q∗ exceeds the quota Q̂ required for growth to balance losses (i.e., µ(Q̂) = D). Thus, the
persistence criterion (i.e., µ(Q∗) − D > 0) summarizes the characteristics of carbon uptake, the growth
rate, light availability, and the respiration rate. If the quota Q∗ is less than the quota Q̂, then we can
show that the species population is washed out of the habitat (see Theorem 2.5), where we have ignored
the effect of respiration (see the specific assumption (2.11)), due to a technical reason.

In Theorem 2.4, we only show that the single-species model (2.1) admits at least one positive equi-
librium if the species can persist by using the theory of uniform persistence. The uniqueness and global
stability of positive equilibrium for (2.1) are still open if no extra assumptions are imposed. Thus, two
semi-trivial steady-state solutions of the two-species system (1.1), corresponds to the presence of one
of the species and the absence of the other species, are not necessarily unique. This makes the inves-
tigation of coexistence for the two-species system (1.1) more difficult. Inspired by [12, Section 4], we
first define two suitable parameters, Q̂min

2 and Q̌min
1 (see (3.3) and (3.4)), then we are able to show that

the compact attractorM1 (on the boundary u2 = 0), and the compact attractorM2 (on the boundary
u1 = 0) are uniform weak repellers for two-species system (1.1) (see Lemma 3.3 and Lemma 3.4)
under appropriate conditions depending on Q̂min

2 and Q̌min
1 , respectively. Finally, we are able to show

that system (1.1) is uniformly persistent, and it admits at least one coexistence (componentwise pos-
itive) steady-state solution (see Theorem 3.5) when the trivial steady-state solution, the compact set
M1, and the compact setM2 are all invasible. From biological viewpoints, invasibility will depend on
whether the missing competitor obtains sufficiently large quotas (Q̂min

2 or Q̌min
1 ) to permit a growth rate

that exceeds the loss to dilution (D). Then robust coexistence occurs when there is mutual invasibility
of bothM1 andM2.
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