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Abstract: In this paper, we formulate a three cell population model of intermittent androgen suppres-
sion therapy for cancer patients to study the treatment resistance development. We compare it with
other models that have different underlying cell population structure using patient prostate specific
antigen (PSA) and androgen data sets. Our results show that in the absence of extensive data, a two
cell population structure performs slightly better in replicating and forecasting the dynamics observed
in clinical PSA data. We also observe that at least one absorbing state should be present in the cell pop-
ulation structure of a plausible model for it to produce treatment resistance under continuous hormonal
therapy. This suggests that the heterogeneity of prostate cancer cell population can be represented by
two types of cells differentiated by their level of dependence on androgen, where the two types are
linked via an irreversible transformation.
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1. Introduction

Prostate cancer (PCa) is a major health concern in the US. It is the second most common cancer
in men with the chance of life-time diagnosis being 1 in 7. PCa is more common in men over 50,
and especially over 65. Recent developments in prostate cancer treatments have increased the rate
of treatment and survival rate greatly, evidenced by a 5/10/15-year survival rate of 99%/98%/95%.
However, for metastatic prostate tumors, the 5-year survival rate is 28%, which is among the lowest of
all cancers [1, 25]. The only known risk factors are age and heredity, while race and living situation
are possible risk factors [1, 27].

Most prostate cancers are found during screening with a prostate-specific antigen (PSA) blood test
or a digital rectal exam (DRE). The fact that PSA level can reflect the size of the tumor and act as a
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predictor of relapse makes PSA the standard biomarker for PCa. Furthermore, PSA is frequently used
as a proxy for the progression of a tumor, especially in mathematical modeling [14, 20]. Androgens like
testosterones and 5α-dihydrotestosterones (DHT) are released by prostate glands in males with over
90% produced by the testes and the rest by the adrenal gland. These androgens bind to the androgen
receptors and are transported to the nucleus. In the nucleus they bind to androgen responsive elements,
which results in the transcription of androgen-regulated genes. This can lead to the proliferation and
inhibition of apoptosis in prostate cancer cells. For this reason, the standard hormonal therapy for
a patient with advanced PCa is androgen deprivation therapy (ADT): a chemical castration process
which is preferred by patients over the surgical process of removing the testes [10, 11]. This treatment
is based on Huggins’ and Hodes’ Nobel Prize-winning discovery that castration causes rapid regression
of PCa. Initially, most of the tumor cells are androgen dependent, but during treatment, they mutate or
adapt in response to the low-androgen environment. Once the population of such androgen independent
cells reaches a certain threshold, the tumor can continue to grow, and this phenomenon is termed
treatment resistance [11].

For ADT, the reduction in androgen during treatment can cause undesirable side-effects such as im-
potence, depression, bone demineralization, and an increased risk of dementia. As a counter measure,
intermittent androgen suppression (IAS) was introduced in the mid-1980s. Under IAS, the patient is
put on ADT until his PSA level decreases to a predetermined lower threshold, which often corresponds
to tumor regression and the PSA thresholds can be varied by the clinicians. Then, ADT is temporarily
stopped until the PSA level rises to another predetermined upper threshold [1]. IAS has been shown
to improve quality of life for patients; however, it remains controversial whether IAS is superior to
continuous androgen suppression (CAS) in prolonging patient survival [4].

The lack of a solid understanding and a gold standard in treatment of prostate cancer drives the need
for mathematical models. Especially in the last 15 years, many mathematical models have emerged to
help explain the progression dynamics of prostate cancer in hope of answering some of the aforemen-
tioned questions [20].

Jackson [18] developed the first experimentally driven PCa model under CAS in 2004, which in-
spired later modeling efforts. In 2008, Ideta et al. [17] introduced the first mathematical model for PCa
under IAS treatment with androgen dependent (AD) cell to androgen independent (AI) cell mutation.
Guo et al. [13] formulated a partial differential equation version of the Ideta’s model. Shimada and Ai-
hara [24] studied the competition between different populations of PCa cells. A different approach to
the formulation of a competition model based on Ideta’s work was proposed by Yang et al. [28]. Eiken-
berry et al. [7] extended Ideta’s model with intracellular signal of androgens to study its role in PCa.
This was extended by Portz et al. [22] to a model that can fit clinical PSA data. And Portz’s model was
later simplified by Baez and Kuang [2] to also fit androgen data. Another extension of Ideta’s model
and the ideas of Eikenberry et al. [7] was presented by Jain et al. in [26], whose model captures the
detailed biochemical dynamics of PCa. On the other hand, Hirata et al. [15] constructed a piecewise
linear model based on the phenomenological behaviors of PSA to fit and describe the dynamics of PCa.

Additionally, numerous attempts have been done to study various clinical aspects such as an optimal
schedule using an adaptive threshold and a stochastic hybrid automaton model [12], or a discrete hybrid
cellular automaton model for a similar purpose for bone metastasized PCa [5]. Elishmereni et al.
developed an algorithm that takes a mechanistic model in combination with the tumor Gleason score,
a classification of the severity of prostate cancer, to predict when castration resistance will occur [9].
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In this work, we rigorously exam and extend two previous approaches, which were developed by
Baez and Kuang [2], Hirata and his colleagues [15], to further our understanding of the dynamics of
prostate cancer and provide better tools for clinical applications.

The data we use to study the models comes from Vancouver Prostate Center [3], which contains the
information of 109 patients. Similar to [2], we require the patient data to have at least 20 data points
for both androgen and PSA in the first 1.5 cycles, the number of eligible patient data for comparison
purpose is reduced to 62. Additionally, we need sufficient data for an additional treatment cycle for the
forecasting comparison, so we select 26 of these 62 patient data.

2. Model and Method

Our model is built upon previous models which were based on a more complex but mechanistic
framework. This is necessary because unlike phenomenological and statistical models, mechanistic
models are created with sound hypotheses or well-known laws observed in nature [19].

2.1. The BK model

Baez and Kuang [2] recently introduced an improved version of the model in [22] with the main
emphasis of developing a simple model that can be readily used by physicians. This model is the
first one to successfully take into account of clinical androgen data via fitting and forecasting. This
is an important feature since the incorporation of androgen data fitting allows for better fitting and
forecasting. In this model, x1 and x2 represent the AD and (strong or irreversible) AI cell populations
respectively. Q is the androgen level and P is the clinical PSA level. λ(Q) represents the mutation
(or adaptation) rate from AD to AI cells, which is dependent on the androgen level. The lower the
androgen level, the higher this mutation/adaptation rate is.

dx1

dt
= µm

(
1 −

q1

Q

)
x1︸           ︷︷           ︸

growth

− (D1(Q) + δ1x1) x1︸                ︷︷                ︸
death

− λ(Q)x1︸ ︷︷ ︸
AD to AI

(2.1)

dx2

dt
= µm

(
1 −

q2

Q

)
x2︸           ︷︷           ︸

growth

− (D2(Q) + δ2x2) x2︸                ︷︷                ︸
death

+ λ(Q)x1︸ ︷︷ ︸
AD to AI

(2.2)

dQ
dt

= γ(Qm − Q)︸       ︷︷       ︸
diffusion

−
µ(Q − q1)x1 + µ(Q − q2)x2

x1 + x2︸                             ︷︷                             ︸
Uptake

(2.3)

dP
dt

= bQ︸︷︷︸
baseline production

+σ(Qx1 + Qx2)︸           ︷︷           ︸
tumor production

− εP︸︷︷︸
clearance

(2.4)

Di(Q) = di
Ri

Q + Ri
, λ(Q) = c

K
Q + K

(2.5)

γ = γ1u(t) + γ2, u(t) =

0, on treatment
1, off treatment.

(2.6)
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One important parameter constraint in the BK model is the inequality involving the cell quotas of AI
and AD cells, q2 < q1, which represents the fact that AI cells can proliferate in an environment with
a low level of androgen better than AD cells. We also want to clarify the common usage of the terms
here. AI cells also depend on androgen for growth, but the reliance on androgen in the body/prostate
is smaller in comparison to that of AD cells. Note that in the BK model, the AI population is non-
reversible, which will be referred to as the strong AI cells. Moreover, the death term expression is
adapted from that of Morken et al. [21].

2.2. The three population model

The validation of a model goes beyond how well it fits the observed data. This is especially true
for mechanistic model, which can be used as direct test of well-founded scientific theories. Although
the BK model has an impressive fitting and forecasting power [2], it may not have the appropriate
underlying population assumption. In other word, the population structure in the BK model may not
be flexible enough to allow for different cancer dynamics. This is especially crucial when the correct
prostate cancer cell population structure and interaction are not yet fully known. Thus, this population
structure simplicity may compromise the BK model’s ability to appropriately represent the dynamics
of the cancer growth and its forecasting potential.

As noted by Hirata et al. [15], a system with three distinguished populations is perhaps optimal in
the case of metastasized prostate cancer because such a system — under linear rates of change — can
reproduce the bi-phasic decline that is observed in the PSA data when the treatment starts.

The difference between the two population model in [2] and the three population model in [15]
is an intermediate population between an androgen-dependent (AD) cell population and a strongly
androgen-independent (strong AI) cell population. We call this new cell population the weakly
androgen-independent (weak AI) cell population. Unlike the strong AI cell population, this weak
AI population has the ability to revert back to the AD cell population. Due to permanent nature of the
transformation, we consider the transition from x1 to x3 mutation, while the transition from x1 to x2

adaptation. Thus the three population model has a similar population structure as in [15]. The under-
lying population structure of this three population model and the parameter definitions are presented
in Figure 1 and Table 1, respectively, and the system of equations takes the form below:

x′1 = µ1(Q)x1︸   ︷︷   ︸
growth

− (D1(Q) + δ11x1) x1︸                 ︷︷                 ︸
death

− (λ12(Q) + λ13(Q)) x1︸                    ︷︷                    ︸
AD to AI

+ λ21(Q)x2︸    ︷︷    ︸
w.AI to AD

(2.7)

x′2 = µ2(Q)x2︸   ︷︷   ︸
growth

− (D2(Q) + δ22x2) x2︸                 ︷︷                 ︸
death

− (λ21(Q) + λ23(Q)) x2︸                    ︷︷                    ︸
w.AI to AD and s.AI

+ λ12(Q)x1︸    ︷︷    ︸
AD to w.AI

(2.8)

x′3 = µ3(Q)x3︸   ︷︷   ︸
growth

− (D3(Q) + δ33x3) x3︸                 ︷︷                 ︸
death

+ λ13(Q)x1 + λ23(Q)x2︸                    ︷︷                    ︸
AD and w.AI to s.AI

(2.9)

Q′ = γ(Qm − Q)︸       ︷︷       ︸
diffusion

−
µ(Q − q1)x1 + µ(Q − q2)x2 + µ(Q − q3)x3

x1 + x2 + x3︸                                                 ︷︷                                                 ︸
uptake

(2.10)

P′ = bQ︸︷︷︸
baseline production

+σQ(x1 + x2 + x3)︸               ︷︷               ︸
tumor production

− εP︸︷︷︸
clearance

(2.11)
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Di(Q) = di
Ri

Q + Ri
, λi j(Q) = ci j

K
Q + K

, µi = µ

(
1 −

qi

Q

)
(2.12)

γ = γ1u(t) + γ2 , u(t) =

0 , on treatment
1 , off treatment.

(2.13)

where “w.AI” and “s.AI” stands for weak AI and strong AI cells. Due to insufficient data to support
differentiating “mutation/adaption” rates in prostate cancer cell, we take the “mutation rates” to be the
same, e.g. λi j(Q) = λ(Q), or ci j = c. It is worth noting that the density dependent death term δ11x1 is
a result of assuming interspecies effect is negligible in cell population growth. This is because cells of
the same tend to cluster.

Figure 1. Adapted from the dynamics of the model in [15], this represents the dynamics of
cells in the three population model. The arrows do not represent the intensity, but rather the
possible pathway for mutation or adaptation from one cell type to the other. Note that x3 is an
absorbing state, meaning there are unidirectional transitions from the other two populations
toward it. The transition from x1 to x3 can be considered to be mutation, while the transition
from x1 to x2 can be thought of as adaptation.

2.3. Model derivation.

We adapt the approach of the BK model formulation to derive our three population model. Recall
that the three-population-model contains three different types of prostate cancer cells: the androgen
dependent type (x1), the reversible (or weak) androgen independent type (x2) and the irreversible (or
strong) androgen independent type (x3). The proliferation rates µi, i = 1, 2, 3, of the three populations
are assumed to be governed by the Droop cell quota equation, where we assume androgen is the
limiting nutrient [6]:

µi(Q) = µ

(
1 −

qi

Q

)
, i ∈ {1, 2, 3},

where µ represents the maximum proliferation rate, Q is the androgen cell quota, qi is the minimum
required androgen level that would allow the respective cancer cell type to proliferate. Since we know
that androgen dependent cell proliferation requires higher androgen levels, we require that q1 > q2 and
q1 > q3, while q2 and q3 may have similar values [11]. The death rate is assumed to also depend on the
androgen level and it takes the following form:
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Table 1. Parameter definition and range adapted from Baez and Kuang [2] with the extension
of the parameters corresponding to the third population, q3, d3, δ3 and R3. Additionally, we
make the assumption that the parameters specific to the strong AI population have the same
range as those of the weak AI population. Note that w.AI and s.AI stands for weak AI and
strong AI cells.

Param Description Range Unit
µ max proliferation rate 0.001 - 0.09 day−1

q1 min AD cell quota 0.1-0.7 nM
q2 min w.AI cell quota 0.1-0.5 nM
q3 min s.AI cell quota 0.1-0.5 nM
b prostate baseline PSA 0.1-2.5×10−3 µg/L/nM/day
σ tumor PSA production rate 0.001-0.9 µg/L/nM/mm3/day
ε PSA clearance rate 0.001-0.01 day−1

d1 max AD cell death rate 0.001-0.09 day−1

d2 max w.AI cell death rate 0.0001-0.001 day−1

d3 max s.AI cell death rate 0.0001-0.001 day−1

δ1 density death rate 0.1-9×10−5 1/day/mm3

δ2 density death rate 0.01-4.5×10−4 1/day/mm3

δ3 density death rate 0.01-4.5×10−4 1/day/mm3

R1 AD death rate half-saturation 0-3 nM
R2 w.AI death rate half-saturation 0-3 nM
R3 s.AI death rate half-saturation 0-3 nM
c maximum mutation rate 10−5 − 10−4 day−1

K mutation rate half-saturation 0-1 nM
γ1 testes androgen production 20 day−1

γ2 secondary androgen production 0.001-0.01 day−1

Qm maximum androgen 15-30 nM

Di(Q) = di
Ri

Q + Ri
, i ∈ {1, 2, 3},

where Ri is the half-saturation level and the apoptosis rates d1 is greater than d2, d3 under the assumption
that androgen deprivation therapy has less effect on androgen independent cells than on androgen
dependent cells. The mutation rates between different cell populations are assumed to be the same,
dependent on androgen level and take the form of a hill function:

λ(Q) = c
K

Q + K
,

where K is the half saturation level and c is the maximum mutation rate. We further include the
interspecific and intraspecific density death rate, δi j, as described in previous section.

We first derive the rate of change for the androgen cell quota Q (nm) for a tumor with a single type
of cells. We assume Qx to be the total androgen inside the tumor x (mm3) and that the androgen cell
quota is uniformly distributed in the tumor. This leads to:
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Qx = Q(t)x(t) nmol

where
x = x1 + x2 + x3.

Let γ be the production rate of androgen in serum. Then γ = u(t)γ1 + γ2, where γ1 and γ2 are the
androgen production rate by the testes and other organs respectively, e.g. γ1 >> γ2. u(t) is the indicator
of on and off treatment, where u(t) = 0 when the treatment is on and u(t) = 1 when the treatment is
off. Assume the increase in androgen cell quota is via diffusion, then inflow of androgen to the tumor
can be approximated as: γ(Qm − Q(t))x(t), where Qm is the maximum androgen level. Additionally,
assume the outflow of androgen in the tumor is mainly due to the death of tumor cells, then it takes the
form

(
ν R

Q+R + δx(t)
)

Q(t)x(t), where ν is the maximum apoptosis rate for androgen. If we assume the
conservation law holds, then the rate of change of androgen inside the tumor takes the form:

(Q(t)x(t))′ = γ(Qm − Q(t))x(t) −
(
ν

R
Q(t) + R

+ δx(t)
)

Q(t)x(t).

Differentiate and solve for Q′(t) to arrive at the desired expression. Note that for the derivation of
the three-population-model, we do similarly but letting x(t) =

∑
i∈{1,2,3} xi(t). Then the death rate also

becomes ∑
i∈{1,2,3}

(
ci

Ri

Q(t) + Ri
+ δiixi(t)

)
Q(t)xi(t).

Finally, we assume the PSA level is produced at a baseline rate of bQ(t) by regular cells and
σ

∑
i∈{1,2,3} xi(t)Q(t) by cancer cells, while being cleared from serum at rate ε.

2.4. Parameter estimations

For parameter fitting , we use MATLAB (version 2017a) function fmincon, which utilizes interior
point algorithm to minimize an objective error function within the range provided in Table 1. The
objective error function is calculated as the sum of the mean squared error (MSE) fitting error for PSA
and androgen since particularly large error is undesirable in clinical application.

ErrorMS E =
1
N

N∑
i=1

(yi − ŷi)2,

where N is the total number of data points, y is either the PSA or androgen data generated from the
model, and ŷ is the respective observed data. Note that, similar to [2], we assume that the level of
intracellular androgen is similar to the serum androgen. The objective error function that is minimized
by fmincon is the sum of PSA and Androgen residuals.

Ob jectiveMS E = ErrorMS E,PS A + ErrorMS E,androgen

The range for the parameter is adapted from [2] under the assumption that the parameter constraints
for the weak and strong AI cells are the same. The initial guesses of the parameters are chosen by hand
within the established range to obtain the best fit.
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3. Analytical results

In this section, we provide some analytical insights into the three population model. Additionally,
we explore a condition on the population structure that ensures the consistency with what is observed
in clinical studies.

3.1. Treatment-resistance under continuous therapy

Hatano et al. [14] points out one important flaw with the PKN model (the predecessor of the BK
model). Under CAS treatment, PKN model fails to reproduce relapse both analytically and numerically
within the given parameter constraints. Note that this does not mean conclusively that the model fails
intrinsically. In fact, BK model allows for possible relapse under a similar analysis. If the choice of
treatment is CAS, then the constant suppression of androgen production will result in a near minimum
level of androgen in the body. Thus we can approximate Q ≈ q1 > q2, which heavily limits the growth
of the AD cell population. Therefore the BK model can be approximated by

d
dt

(
x1(t)
x2(t)

)
=

(
−D1(Q) − δ1x1 − λ(Q) 0

λ(Q) T − D2(Q) − δ2x2

) (
x1(t)
x2(t)

)
, (3.1)

where T = µ
(
1 − q2

q1

)
> 0 is the positive growth term of the AI cells that, under the right conditions,

can give rise to relapse. The linearized system at extinction is then:

J(0, 0) =

(
−D1(Q) − λ(Q) 0

λ(Q) T − D2(Q)

)
. (3.2)

There are many ways to force instability at extinction. One such condition arises from having the
determinant to be negative, e.g. T > D2(Q) or µ

(
1 − q2

q1

)
> d2

R2
q1+R2

, which is possible under the
parameter constraints given in Table 1. Similar conclusion extends directly to the three population
model.

Hatano et al. [14] pointed out that the reasons behind PKN model not being able to reproduce
relapse under CAS is either because it does not have an absorbing state (with respect to the direction
of mutation, see Figure 1 for an example of absorbing state) or the parameter constraints are not
optimal. However, the BK model is capable of reproducing the relapse within the provided parameter
constraints, this suggests that the appropriate structure of the cell dynamics in the case of prostate
tumor should have at least one absorbing state.

3.2. Properties of the three population model

In this section, we provide some standard analysis for our model to justify its biological validity.
First, we establish an invariant positive region under biologically reasonable assumptions. Addition-
ally, we show that the population of a cell is also bounded above, which is coherent with reality. While
the PSA level is an indicator of the growth of the tumor, it has negligible effect on the growth of the
tumor cells and the production of androgen. This is reflected in the mathematical form, where the
dynamics of P is dependent on the dynamics of xi and Q, but not the other way around. This means
analytical results for P can be inferred from the dynamics of xi and Q. Thus we choose to omit the
analysis of P here.
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Proposition 1. Assume q3 ≤ q2 ≤ q1 < Qm and δ11 ≥ δ22 ≥ δ33. Then the solutions that starts
in the region {(x1, x2, x3,Q) : xi > 0, i = 1, 2, 3, x1 + x2 + x3 ≤

µ3(Qm)−Dm(q3)
δ33

, q3 ≤ Q ≤ Qm}, where
Dm(q3) = min{D1(q3),D2(q3),D3(q3)}, stays in that region.

Proof. If xi(0) > 0, it is easy to see that each population remains positive as long as it is bounded. Now
since

dQ
dt

= γ(Qm − Q) −
1
x

3∑
i=1

µ(Q − qi)xi,

it is clear that dQ
dt < 0 when Q = Qm. Since q3 ≤ q2 ≤ q1, one can see that

dQ
dt

= γ(Qm − q3) −
1
x
µ
[
(q3 − q1)x1 + (q3 − q2)x2

]
> 0,

when Q = q3. It follows that q3 ≤ Q(t) ≤ Qm for all t > 0 and initial condition q2 ≤ Q(0) ≤ Qm.
Since x = x1 + x2 + x3 , δ11 ≥ δ22 ≥ δ33, we have

x′ =

3∑
i=1

µi(Q)xi −

3∑
i=1

(Di(Q) + δiixi) xi

≤ (µ3(Q) − Dm(q3)) x − δ33(x2
1 + x2

2 + x2
3)

≤ (µ3(Qm) − Dm(q3)) x − δ33x2.

This implies the limit supremum of x(t) is bounded by µ3(Qm)−Dm(q3)
δ33

. Since x(0) = x1(0)+ x2(0)+ x3(0) ≤
µ3(Qm)−Dm(q3)

δ33
, it implies x(t), or x1(t) + x2(t) + x3(t), is bounded above by µ3(Qm)−Dm(q3)

δ33
. �

The number and locations of nonnegative steady states are natural but challenging mathematical ques-
tions that maybe of interest to readers. Here our focus is to exam the existence and local stability of an
absorbing steady state where both the AD and reversible AI cells are extinct.

Proposition 2. Assume q3 ≤ q2 ≤ q1 < Qm and δ11 ≥ δ22 ≥ δ33, then E1 = (0, 0, µ3(Q∗)−D3(Q∗)
δ33

,Q∗) where
Q∗ =

γQm+µq3
γ+µ

, is the only nonnegative boundary steady state for the system with zero as the first or
second component.

Proof. Let E1 = (x1∗, x2∗, x3∗,Q∗) be a steady state of the system with x1∗x2∗ = 0. Assume first that
x1∗ = 0 and x2∗ > 0. Then at this equilibrium, dx1

dt = λ21(Q∗)x2∗ > 0, which is a contradiction. Similarly
if x1∗ > 0 and x2∗ = 0, then dx2

dt = λ12(Q∗)x1∗ > 0, also a contradiction. Hence we have x1∗ = x2∗ = 0.
Solving the dQ

dt = 0 yields Q∗ =
γQm+µq3
γ+µ

. Solving dx3
dt (E) = 0 for x∗3 yields x∗3 = 0 or x∗3 =

µ3(Q∗)−D3(Q∗)
δ33

.

Thus E1 = (0, 0, µ3(Q∗)−D3(Q∗)
δ33

,Q∗) is the only nonnegative boundary steady state for the system with
zero as the first or second component. It is also the only steady state where only x3 survives.

�

The next proposition presents a set of intuitive but unrealistic sufficient conditions for the extinction of
some or all cancer populations.
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Proposition 3. Define T1(Q) = µ1(Q) − D1(Q) − λ13(Q), T2(Q) = µ2(Q) − D2(Q) − λ23(Q),
S 3(Q) = µ3(Q) − D3(Q). If Ti(Qm) < 0, i = 1, 2, then x1, x2 eventually go extinct. If in addition
S 3(Qm) < 0, then x3 also goes extinct.

Proof. Define 
S 1(Q) = µ1(Q) − D1(Q) − λ12(Q) − λ13(Q)
S 2(Q) = µ2(Q) − D2(Q) − λ21(Q) − λ23(Q)
S 3(Q) = µ3(Q) − D3(Q).

Then the rate of change of each population can be expressed as
x′1(t) = (S 1(Q) − δ11(Q)x1(t)) x1(t) + λ21(Q)x2(t)
x′2(t) = (S 2(Q) − δ22(Q)x2(t)) x2(t) + λ12(Q)x1(t)
x′3(t) = (S 3(Q) − δ33(Q)x3(t)) x3(t) + λ13(Q)x1(t) + λ23(Q)x2(t).

By our definition of T1(Q) and T2(Q), a derivative test reveal that they are both strictly increasing
with respect to the variable Q. Furthermore,

x′1(t) + x′2(t) = (T1(Q) − δ11x1(t)) x1(t) + (T2(Q) − δ22x2(t)) x2(t).

Since Q(t) is bounded above by Qm, in the case that T1(Qm) < 0 and T2(Qm) < 0, we see that

x′1(t) + x′2(t) ≤ min{T1(Qm),T2(Qm)}(x1(t) + x2(t)).

This leads to the estimate

x1(t) + x2(t) ≤ (x1(0) + x2(0))e−|min{T1(Qm),T2(Qm)}|t.

This implies the extinction of the AD and weak-AI populations.
Additionally if S 3(Qm) < 0, then asymptotically x′3(t) ≤ S 3(Qm)x3(t), so the equation for strong-AI

population is bounded above by x3(0)e−|S 3(Qm)|t, which approaches to 0.
�

For stability analysis, the following proposition extends Proposition 2 by establishing sufficient condi-
tions of asymptotic stability of the equilibrium state with only the strong AI population.

Proposition 4. The steady state E1 = (0, 0, µ3(Q∗)−D3(Q∗)
δ33

,Q∗) is locally asymptotically stable if S 3(Q∗) >
0 and

(i)S 1(Q∗) + S 2(Q∗) < 0
(ii)S 1(Q∗)S 2(Q∗) > λ21(Q∗)λ12(Q∗).

Furthermore, a set of sufficient conditions for the locally asymptotically stability of E1 is

S 3(Q∗) > 0, T1(Q∗) < 0, T2(Q∗) < 0.
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Proof. The Jacobian matrix evaluated at E1 is given by

J(E1) =

(
M11 M12

M21 M22

)
where

M11 =

(
S 1(Q∗) λ21(Q∗)
λ12(Q∗) S 2(Q∗)

)

M21 =

(
λ13(Q∗) λ23(Q∗)
µδ33(q1−Q∗)

µ3(Q∗)−D3(Q∗)
µδ33(q2−Q∗)

µ3(Q∗)−D3(Q∗)

)

M22 =

−S 3(Q∗)
(
µq3

Q2
∗

+ d3
R3

(Q∗+R3)2

)
µ3(Q∗)−D3(Q∗)

δ33

0 −(γ + µ)


and M12 is the zero matrix. This format of the J(E1) immediately implies its eigenvalues are −S 3(Q∗)

and −(γ + µ) and the eigenvalues of M11. Denote M11 =

(
a b
c d

)
, then its eigenvalues are given by

λ1,2 = 1
2

(
a + d ±

√
(a − d)2 + 4bc

)
. E1 is locally asymptotically stable if λ1,2 are negative. Hence, we

require −(a + d) >
√

(a − d)2 + 4bc. This holds if a + d < 0 and ad > bc, which are the proposed
conditions.

�

Table 2. Fitting root mean square error (RMSE) comparison (median, 1st quartile, 3st quar-
tile). The fitting of the 3 populations model is comparable to that of the 2 population model
using 26 patients data, which has been shown to have superior fitting ability among existing
models [2]. Furthermore, the fitting of androgen is nearly identical as can be seen in Figure 3.

Model
PSA Androgen

Median Q1 Q3 Median Q1 Q3

3 Populations 1.18 0.69 2.11 2.68 1.88 4.50
2 Populations 1.14 0.78 2.04 2.68 1.88 4.50

4. Numerical result

In this section, we present key numerical results comparing the two and three population models
against clinical data. Additionally, we provide a sensitivity analysis to further enlighten the important
parameters of the three population model. The sensitivity analysis for the two population model can
be found in [2].

4.1. Numerical comparison

We calculate the error of the fitting and forecasting parts for a quantitative comparison, where we
used the predetermined on-treatment time given in the data to make the forecast. Table 2 shows com-
parable errors in the fitting of the first 1.5 cycles of both models. Additional criterion for comparison,
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such as the Akaike Information Criterion (AIC) that was used in similar contexts [14], could be used
to strengthen the comparison. It is worth pointing out that information theoretic comparison like the
AIC does not directly take into account of how well a model describes the dynamics of the natural phe-
nomenon, for instance how well a model can follow the trend of the data. On the other hand, Table 3
shows the forecasting ability of both models are in comparable range. Instances where the models
give large forecasts errors are likely due to the uncertainty associated with the number of parameters.
Examples of the fitting and forecasting are presented in Figure 2. In addition, we also studied the
case where λi j(Q) varies between different transition pathways and the cases where either the mutation
from x1 to x3 or from x2 to x3 is negligible. While each case shows good fitting, the forecasting is not
improved likely due to the increase in uncertainty associated with the higher number of parameters.
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Figure 2. Fitting and forecasting comparison of the two population (model 2, red) and three
population (model 3, blue) models. Both models are fitted using data points on the left of the
vertical line, which represents 1.5 cycles of on/off treatment. On the right side, we forecast
out an additional on/off treatment cycle. The data are plotted along for visual comparison.
Note the significant delay in the data of patient 77 and 100. These chosen patients are repre-
sentative of most of the results from other patients.

4.2. Fitting and forecasting of androgen and cell population

We present selected figures of androgen levels and cell populations corresponding to the forecasting
in Figure 2.
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Table 3. Forecasting RMSE comparison (median, 1st quartile, 3st quartile). The forecasting
of the 3 populations model is in comparable range to that of the 2 population model using
26 patients data, which has been shown to have superior forecasting ability among existing
models [2]. The larger error in the forecasts of the 3 populations model is perhaps associated
with a higher uncertainty due to the model having more parameters. Additionally, direct com-
parison with data without compromise is not straightforward because of the predetermined
on/off treatment times given in the data.

Model
PSA Androgen

Median Q1 Q3 Median Q1 Q3

3 Populations 5.32 3.76 15.61 4.26 2.30 6.45
2 Populations 4.52 2.94 8.10 4.19 2.31 6.62
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Figure 3. Supplementary androgen fitting and forecasting comparison of the two population
(model 2) and three population (model 3) models. Both models are fitted using data points
on the left of the vertical line, which represents 1.5 cycles of on/off treatment. On the right
side, we forecast out an additional on/off treatment cycle.

4.3. Sensitivity analysis

Sensitivity serves an important part in the analysis of any mechanistic model. Sometimes, by per-
forming sensitivity analysis, we can pinpoint parameters that do not serve important parts in the dy-
namics of the models. While for nonlinear models, global sensitivity analysis techniques are often
preferred, local sensitivity analysis serves as a good first step to disclose the relationship of small vari-
ation in parameter values and the variable of interest. Since sensitivity analysis is often affected by
the magnitude of the parameter or the variable, we will use the normalized sensitivity as presented in
section 5.5 in [23], which takes the form:

S p =
∂x
∂p

p
x
.

Here, p is the parameter and x is the variable of interest, for example PSA level. To carry out this
process, we vary each parameter by 1% separately while fixing all other parameters. The normalized
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sensitivity is evaluated at 120 days. The result is shown in Figure 5. A positive peak shows a posi-
tive correlation between the parameter and the variable of interest, whereas a negative peak shows a
negative correlation.
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Figure 4. Supplementary individual dynamics of each cell types in the three population
model corresponding to the presented fitting and forecasting comparison. Red, blue and
black curves represent x1, x2 and x3 respectively.

Figure 5 shows a dominating influence of the maximum androgen Qm on all variables. The cell
populations are sensitive to the growth rate µ and the respective death rate half-saturation level R,
while small variation in initial population has negligible effect on the overall dynamics. Other intrinsic
parameters to the cell population such as the minimum cell quota q and maximum cell death rate d have
minimal effects. The quantity of most interest, PSA level, is most sensitive to Qm and the clearance
rate ε. Curiously, R1 also appears to have a considerable effect on the PSA level.

5. Discussion

There is a need for mathematical modeling effort for understanding and treating (metastasized)
prostate cancer. The aim of this work is to compare two different cell population structures and explore
key aspects that could help future prostate cancer modeling effort. We summarize key results and
discuss our findings here:

(A1) The data fitting part for both models are similarly accurate, especially when there is sufficient
and clear regularity in the data as can be seen in the fitting and forecasting of patient 28 data in Fig-
ure 2. On the other hand, the two population presents better forecasting ability, perhaps due to having a
smaller number of parameters. Since the incorporation of an additional cell population does not signif-
icantly improve fitting and worsen forecasting, it suggests that to model clinical PSA dynamics in the
absence of extensive data, the cancer cells can be assumed to fall into two types, androgen dependent
and androgen independent.

(A2) A delay of PSA relapse from the onset of the off-treatment period can be seen for many
patients. The sudden switch in the androgen available between the off and on treatment periods does not
account for this, leading to situations where the forecast could have been stronger had such measures
have been taken, for instance patients 77 and 100 in Figure 2. The delay, which can be up to several
months if present, can be seen as a sign of drug residual in the patient’s body interfering with the
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Figure 5. Normalized sensitivity of the 3 population models. The line plot shows the result of
a local sensitivity analysis. A positive (negative) value presented in the line plot represents a
positive (negative) relation between the parameter and the variable of interest. The magnitude
(height or depth) of the line determines how sensitive the variable of interest is relative to the
parameter. Since the values are normalized, the magnitudes also represent a relative order
of sensitivity among the parameters. The sensitivity results for weak AI cells follow similar
trend of AD and strong AI cells, so we omit it.

production of androgen, or perhaps a more complex mechanism that delays the availability of androgen
in the tumor. While incorporating a delay term to account for the observed delay is straightforward,
a more biologically motivated alternative would be to use the interpolation of androgen introduced in
ref. [22]; however, the latter approach may require additional assumption on the shape of androgen
data for forecasting.

(A3) It is possible to obtain highly accurate fitting and forecasting with a small number of PSA
data points (around 10), example can be found in simulation of patient 100 in Figure 2. Aside from
the obvious assistance of concurrent fitting of androgen data, having a balanced ratio of high and low
data points and regularity in patient data may play the key role. Although using a small number of data
points may lead to over fitting, most parameters are relatively not sensitive. Thus a thorough sensitivity
analysis follow by fixing the non-sensitive parameters is a possible method to deal with the problem
of problem of over fitting. On the other hand, the disproportional number of data points will possibly
effect the fitting and forecasting (see the three population model fitting and forecasting for patient 29).
This suggests that a resampling technique should be applied and recent approaches in this direction
can be found in [16].

Preliminary dynamical and sensitivity analysis of the model are also provided, which shows that
the model structure is biologically sound. While some conditions for local stability and existence of a
coexistence of all cancer cells are established, a global study is still needed to explore this further. The
simulations in Figure 3 and Figure 4 suggest the global stability for the on and off-treatment connected
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by a switch. According to the simulation results, periodic switching of treatment may allow the model
to generate a stable limit cycle solution. Furthermore, although a local technique has been used to
explore the relationship between variables and parameters, global techniques is highly desirable for
the sensitivity analysis due to the nonlinearity in the model [23]. In addition to data, it will be helpful
to perform parameter identification analysis to exam the credibility of the parameter values identified
via model data fitting prcess [8].

From the perspective of physicians and patients, the following questions could be useful for plan-
ning the course of treatment to optimize the effect. What are the ideal thresholds for PSA level in
IAS? Under optimal treatment schedule and dosage, can IAS prolong a patient’s life in comparison to
CAS? What is a good metric to compare different treatments? When will the tumor become resistant to
hormonal therapy? What triggers the development of hormonal refractory and how to prevent it? Each
question by itself poses difficult practical and theoretical problems, for example the information on the
types of cancer cells and how they interact is difficult to obtain. But perhaps, the most serious problem
is the lack of a good practical method to track the development of a metastasized prostate tumor. In
practice, PSA is primarily used as a direct correspondence to the total tumor population. This has led
to the almost exclusive use of PSA-data-fitting as the only justification for mathematical models [20].
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