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Abstract: The Warburg effect refers to a curious behavior observed in many organisms and cell types
including cancer cells, yeast and bacteria, wherein both the efficient aerobic pathway and the inefficient
fermentation pathway are utilized for respiration, despite the presence of ample oxygen. Also termed
as overflow metabolism in bacteria, this phenomena has remained an enigmatic and poorly understood
phenomenon despite years of experimental work. Here, we focus on bacterial cells and build a model
of three trade offs involved in the utilization of aerobic and anaerobic respiration pathways (rate versus
yield, surface area versus volume, and fast versus slow biomass production) to explain the observed
behavior in cellular systems. The model so constructed also predicts changes in the relative usage of
both pathways in terms of size and shape constraints of the cell, and identifies how substrate availability
influences growth rate. Additionally, we use the model to explain certain complex phenomena in
modern- and paleo-ecosystems, via the concept of overflow metabolism.
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1. Introduction

Nutrients and substrates play a pivotal role in the sustenance and proliferation of living organisms,
and therefore, evolutionary forces have constrained organisms to detect their availability. Cells
reproduce quickly in a nutrient and substrate-rich environment and reduce proliferation when those
resources become scarce. Availability of both energy rich substrates and starting materials for
biomass production control this balance of growth and starvation [41].

Energy is produced in heterotrophic organisms by degrading organic compounds into products with
low free energy. As per the second law of thermodynamics, no process can be fully efficient. So, a
part of the free energy is used up to drive the reaction itself and the rest is stored into ATPs, the cell’s
energy currency. When more than one process is available for such conversions, there usually occurs
a trade-off between rate (kinetic efficiency) versus yield (thermodynamic efficiency). This is true for
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fermentation and oxidative phosphorylation (OP) [34].
Fermentation yields 2–4 moles of ATP per mole of glucose whereas OP produces about 30 ATPs

(the actual number may vary with the organism). In contrast, the rate of fermentation can reach about
two orders of magnitude higher than the rate of OP [34, 44].

Many organisms can utilize both pathways in the presence of oxygen and substrate [26], but OP
is not feasible in the absence of oxygen. A direct consequence of this is seen in a phenomenon, first
observed in cancer cells [45], called the Warburg effect, where cells utilize the fermentation pathways
much more than the OP in presence of ample substrate and even oxygen [34]. A similar phenomenon
can be seen across a broad range of cell types and organisms. Many yeast variants (in which the same
phenomenon is called the Crabtree effect [7]) and bacteria (where it is called overflow metabolism [1])
exhibit this behavior. Other than the cells undergoing growth, lymphocytes and Kupffer cells (upon
activation), fast twitch muscle fibers and microglial cells, also display this effect in the human body
[34,41]. Most of the work on the Warburg effect has been concentrated on cancer cells, and for bacterial
metabolism, the phenomenon has been well studied in Escherichia coli [49].

This behavior can appear to be paradoxical in that a less efficient pathway is utilized even when a
more efficient one is available. Given that substrate limitation is a major environmental constraint, the
properties of these two pathways must have been under intense selection. Such a behavior, therefore,
should confer some additional biological advantage, and a number of explanations and modeling
frameworks have been suggested accordingly [34].

Several game theory models have been proposed describing a population using a common resource
(glucose in most cases), and the two metabolic pathways (i.e., OP and fermentation) as alternate
strategies based on a kinetic-thermodynamic trade-off. A tragedy of the commons scenario sometimes
emerges [16, 26]. Prisoner’s dilemma and Nash equilibria (based on relative enzymatic/protein costs
of the two pathways) were also used to describe the dynamics of this system [13, 34].

For a similar trade-off between investment in protein synthesis and metabolic yield, a medium-scale
kinetic model has also been proposed [22]. Such a model explains the increase in ribosomal content
observed with increasing growth rate and related characteristics in bacteria [34].

Another family of models that has been used extensively to explain this behavior belongs to a
framework called Flux Balance analysis (FBA) [10, 28, 32]. In such an analysis, linear maximization
is utilized to determine optimal values of reaction rates at a steady state condition where a linear
combination of rates attain a maximized value. There has been some controversy on whether the
criterion for optimality should be based on rate or yield in these models [34]. A branch-off from this
family of models, called FBA with macromolecular crowding (FBAwmc), incorporates the areal and
volumetric needs of the enzymes constrained by the cell membrane space and cytoplasm, respectively
[49]. Some studies looked at maximization of biomass production using this framework [37].

Some of the models discussed above focus on one specific behavior seen in the Warburg effect but
avoid other behaviors that are part of the same process, thus preventing study of interactions among
the observed behaviors. Among notable ones, Pfeiffer et al. [26] use the rate-efficiency trade-off to
explore the problem and delve into origins of multicellularity. Kareva [16] uses efficiency of the two
pathways (respiration and fermentation) and the effect of lactic acid produced from fermenting cells,
on neighbouring cells but it looks at cancer cells in specific.

In many other cases, the work utilizes more than one trade-offs, especially using the FBA regime
[3,34,37,42,49]. Vazquez et al. [42] focuses on cancer cells, and uses constraints on maximal glucose
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uptake, enzyme efficiency and total cellular volume, in order to maximize ATP production. Their
model considers not only the stoichiometry of glycolysis and oxidative phosphyrylation but also the
enzyme-volumetric costs of activating these pathways. A comparable idea of constraints on enzyme-
volumetric costs was used in a work focusing on Escherichia coli to explain overflow metabolism
[3]. Yet another work which used a similar concept was that of Shlomi et al. [37], which focuses
on cancer cells in specific. For this class of models, a consistent criticism has been that, despite its
overwhelming success, these models fail to explain overflow metabolism from first principles, that
is, without imposing multiple measured fluxes as constraints on the models [22]. In comparison, a
slightly different approach was taken in the work by Molenaar et al. [22], where they focus on trade-
offs between investments in enzyme synthesis and metabolic yields for different catabolic pathways,
in order to maximize growth rate. Zhuang et al. [49] uses the constraint on membrane occupancy to
explore the effects on fermentation and respiration, via a transformed FBA.

Given this large body of work on modeling the Warburg effect, yet another model may seem to be a
futile exercise, but if one looks closely, most of the models either focus on cancer cells or dive only into
the biochemical aspect of the problem. This leaves the ecological implications of the Warburg effect
to be modeled, specifically in bacteria. None of the models discussed above take into account the
effects associated with size and shape of the bacterial cell on the overall metabolism of the organism,
especially considering the wide variability in both those physical characteristics. Moreover, predicting
overflow metabolism from first principles has always been a challenge without invoking a large number
of boundary conditions [22].

In this work, we attend to the three major trade-offs involved in the Warburg effect, specifically in
the case of a bacterial cell. We seek to incorporate only the necessary details, both from a physical and
a biochemical viewpoint, to retain model simplicity and usability in an ecological context (Table 1).

Our aim here is to predict size and shape dependence of growth rate in bacteria across a range of
substrate concentrations, in addition to estimating the proportions of OP and fermentation (hereafter
denoted AG, for aerobic glycolysis in presence of oxygen) for respiration and metabolism. We also
seek to explain overflow metabolism in our model as a direct consequence of energy production and
consumption trade-off, through first principles. Unlike the previous models on the Warburg effect, we
explore more of the ecological ramifications though the model, in addition to the basic biochemical
effects. In turn, we limit ourselves to a single bacterial cell as the model system and glucose as the
substrate.

2. The model

The model assumes a bacterial cell, with glucose transporter proteins (responsible for importing
glucose into the cell) and cytochrome oxidase enzymes (where OP occurs) embedded in the cell
membrane as trans-membrane proteins [49]. In contrast, the (upper) glycolytic enzymes, which
convert glucose to pyruvate, and the fermentation enzyme pathways function in the cytoplasm [34].
Thus OP should scale as a function of the surface area of the cell whereas fermentation processes
should scale as a function of cell volume. A schematic representation of the model is illustrated in
Figure 1.
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Table 1. Trade-offs involved in Warburg effect.

Trade-offs involved in a bacterial cell
in the Warburg Effect

Seen in

1. Yield versus rate:
Fermentation yields about 2–4 moles of ATP per mole of glucose whereas OP
produces about 30 ATPs. However, rates of fermentation can reach about two
orders of magnitude higher than that of OP [34, 44]

.
Game theory models [16, 26]

2. Surface area versus volume:
The enzymes responsible for OP are located on the cell surface whereas those
for fermentation are in the cytoplasm

.
FBAwmc [49]

3. Biomass production trade-off:
Fermentation facilitates biomass generation [41]

.
FBA and related models [37]

Figure 1. A simplified representation of the model. The external glucose is imported into
the bacterial call via glucose transporters located on the cell membrane at a rate r0. This
glucose is utilized by upper glycolysis pathways to convert it to pyruvate at a rate r1. This
converted substrate is then divided into two paths: either to OP (at a rate r2 at the cytochrome
oxidase located in the membrane) or to fermentation/aerobic glycolysis (AG) (at a rate r3 at
the fermentation enzyme sites located in the cytoplasm). Note that only the substrate used in
the latter shunt goes into biomass production whereas substrate used in OP is lost as CO2.
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The rate of glucose input into the cell (r0) can be represented as,

r0(t) =
dGcell(t)

dt
= β(t) · A(acell) · kβ ·G0(r, t) (1)

where t is time, r is position, Gcell is the cellular concentration glucose, G0 is the concentration of
glucose in the environment around the cell, β is the areal density of glucose transporter sites on the cell
membrane, A is area of the cell membrane (as a function of the semi-major axis of the cell, acell), and kβ
is normalized efficiency of the transporters (we define normalized efficiency as the ratio of molecules
transported relative to the total number present on the outer/source side per unit time). We assume a
uniform G0 in the environment around the cell here and therefore, inside it (Gcell).

This glucose imported into the cell goes into the upper glycolysis pathway, whose enzymes are
located in the bacterial cytoplasm. In bacteria, there are two well known pathways for this:
Embden-Meyerhof-Parnas (EMP) pathway and Entner-Doudoroff (ED) pathway, which differ in both
their output of ATP (2 mol in EMP versus 1 mol in ED for every mol of glucose consumed) and their
enzyme costs (the EMP enzyme costs can be 3.5 to 5 fold higher than ED pathway enzymes) [11].
The end product is pyruvate in both the cases, and the rate of conversion (r1) can be written as:

r1(t) = (δEMP · κEMP(t) · kEMP + δED · κED(t) · kED) · V(acell) · r0(t) (2)

where κEMP and κED are the volume density of EMP and ED enzyme sites respectively, kEMP and kED

are normalized efficiencies of the pathways, and V is the volume of the cell. δEMP and δED indicate
presence of EMP and/or ED pathway in the organism under scrutiny, taking a value 1 if present and 0
if absent; else if both are present, it denotes the fraction out of 1 which is occupied by either pathway
such that δEMP + δED = 1. About 43% of the prokaryotic cells use just EMP pathway, 13% use just the
ED pathway, 14% use both pathways, and in about 30% of the cases, the pathway is not known [11].

The relative usage of the EMP and ED pathways can be calculated on the basis of protein cost,
kinetics and the efficiency of the enzymes involved in both the pathways at any given glucose
concentration as well as the thermodynamic constraints [11]. To put it in simpler terms, the ED
pathway is about 3–5 times faster than EMP pathway, but EMP produces 2 ATP molecules whereas
ED produces 1 per molecule of glucose [11]. So, in the case of OP, a difference of one ATP is not of
much significance because the total production of ATP is high, but in cases of fermentation, one ATP
is a substantial difference. Thus, we would expect to see mostly EMP in anaerobes versus ED in
aerobes. Anaerobic bacteria have predominantly only EMP (97%), whereas some facultative
anaerobes and aerobes have ED only (10% and 21% respectively), others have both ED and EMP
(19% and 21% respectively), and more than half have only EMP [11]. Here we seek to model aerobic
heterotrophic bacteria, so we can expect that the ED pathway is prevalent when the metabolism is
predominantly aerobic (OP) while EMP is prevalent when it is anaerobic (fermentation).

Next, this r1(t) flux of products from upper glycolysis goes to either the oxidative phosphorylation
(OP) pathway (r2(t)) or to the fermentation pathway (r3(t)). This splitting of the flux forms the basis of
the three trade-offs on which we focus: yield vs rate, surface area vs volume, and biomass production
(Table 1). The rates for r2 and r3, can be written as:

r2(t) = (γCyo · kCyo + γCydII · kCydII) · A(acell) · r1(t) (3)

and
r3(t) = σ · kσ · V(acell) · r1(t) (4)
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where γCyo and γCydII are the areal density of the two cytochrome complexes Cyo and Cyd-II
respectively, kCyo and kCydII are normalized efficiency of the complexes, σ is the volume density of the
fermentation enzymes (sites), and kσ is the normalized efficiency of the fermentation enzymes (sites).
Here, normalized efficiency is defined as the ratio of products formed by the enzyme site relative to
the total substrate that was present, per unit time. As a part of the simplification in the model, we have
only considered the cytochrome complexes Cyo and Cyd-II as a part of the model leaving behind the
Cyd-I complex.

For maintenance of the cellular membrane structure in prokaryotes, the protein-to-lipid ratio is
kept within certain bounds [22]. At high rates of catabolism, the surface area available to proteins can
become saturated and proteins might need to ’compete’ for expression [49]. Both substrate transporters
(in this case, glucose transporters) and OP enzymes are located on the membrane, and thus, compete
for the available space for expression. Thus, we can write:

r2(t) ≤ r2,max (5)

where, we assume a constant maximal value.
In previous literature, the relative membrane cost of an enzyme has been inversely related to its

turnover rate [2] and hence at high catabolic rate one would expect the faster and inefficient Cyd-II to
be preferred over efficient but slower Cyd [2]. The relative cost of moderately efficient Cyd-I is similar
to Cyo under completely aerobic conditions, but under low concentration of oxygen, the cost becomes
much less due to the high affinity of Cyd-I to O2 [40, 49].

Summarizing the model, the net energy production rate can be written as

e+(t) =
dEgain

dt
= er2(t) + er3(t) = 〈εOP〉 (t) · r2(t) + 〈εF〉 (t) · r3(t) (6)

where er2 is the energy produced through r2 (via OP) and er3 is the energy produced through r3 (via
fermentation (F) or in presence of oxygen, termed as aerobic glycolysis). 〈εOP〉 and 〈εOP〉 (t) are the
weighted average efficiencies of ATP production from OP (via Cyo and Cyd-II), and F respectively.
For simplicity, each of these process averages also include a term regarding the overall efficacy of the
upper glycolysis (as a function of the proportion of EMP and ED pathways). In other words, the two
averages mentioned above involve the efficiency from the point of upper glycolysis to the end of their
respective processes.

A main function of unregulated glycolysis in proliferating cells is to maintain the supply of
intermediates required to support biosynthesis [20, 41]. Interestingly, in such rapidly proliferating
cells, most of the glucose is converted into lactate (or other fermentation products) and excreted.
However, an increased lactate excretion is correlated with increased growth [1, 20, 41]. Such a
seemingly inefficient high glycolytic flux to fermentation products and low flux to biosynthesis
actually helps in regulation of biomass production during growth [20,41]. The branching of a low flux
process (biosynthesis) from a high flux one (fermentation) would render the former extremely
sensitive to the latter [20, 25]. Comprehending the exact role of such processes in biomass production
would need a thorough study of carbon metabolism (for details please see [20]). However, given the
dependence, one can certainly assume a simple linear relationship between biomass synthesis and
fermentation. Here onwards, we explain biomass production in terms of r3 flux and thus, the rate of
biomass addition Λ, can be given by:

Λ(t) = g · r3(t) (7)
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where g is the conversion constant relating the products of fermentation pathway to biomass. The
process of biomass production also involves energy usage (along with the need for other resources
such as nitrogen and phosphorus, which have been assumed to be present in sufficient quantity for this
model).

The energy consumption rate can thus, be given by:

e−(t) = eb + εg · g · r3(t) (8)

where eb is the basal energy requirement of the cell and εg is the energy required per unit conversion
for biomass production from base materials.

Most metabolic networks operate in a steady state [34]. Thus, here we tried to optimize the energy
production and growth using linear programming, adhering to the following relations:

r0(t) ≥ r2(t) + r3(t) (9)

eb ≤ 〈εOP〉 (t) · r2(t) + 〈εF〉 (t) · r3(t) (10)

r2

(γCyo · kCyo + γCydII · kCydII) · A(acell)
−

r3

σ · kσ · V(acell)
= 0 (11)

The first inequality states that the total glucose processing that takes place in OP and fermentation
is constrained by the total glucose input into the cell. The next relation describes the fact that the total
energy production in the cell has a lower bound of the basal metabolic rate of the cell (eb). Below
this level, the cell may cease to function properly or shut down entirely [17]. The third relation is an
equation which is modified and combined form of Equations (3) and (4). The way to look at it is that
both the terms in Equation (10) simplify to r1, as is evident from Equations (3) and (4).

Let us also define an additional parameter called Z denoting the ratio of surface area-to-volume of a
cell. From (11), it is evident that Z controls the distribution of r1 into r2 and r3 by controlling the total
number of sites available for those processes. A low value of Z denotes either a spherical cell and/or a
large cell size; and a high value of Z represents an elongated/deformed cell shape and/or a small cell
size.

These conditions can be used for linear programming and the point in solution space having the
highest value of r3 will give the optimal values of (r2, r3) at a given set of steady state conditions. This
accords with our assumption that only r3 related processes directly help in biomass production, and
any organism would maximize its biomass production in a given set of conditions, provided its basal
needs are satisfied. All other parameters are considered to be constants for finding the optimal solution
for a given iteration.

3. Results

Given the number of model parameters, it is pragmatic to focus on a few important ones, which
would enable us to predict and investigate broad-scale natural phenomena from an improved viewpoint.
In this work, we primarily focus on changing the substrate concentration and the surface area-to-
volume ratio of bacterial cells to gain insights from the model and explore the Warburg effect (overflow
metabolism) in bacterial cells.
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3.1. Dependence on substrate concentration

r0 is the rate of substrate input from the environment, and is representative of the external substrate
concentration. Figure 2 plots the results of the applying the maximization criterion for r3 constrained
by (9)–(11), on changing the value of r0. Three important regimes of substrate concentration are
considered: glucose starved (low r0), moderate glucose availability (moderate r0), and glucose rich
environment (high r0).

When (9) and (10) do not have a common solution space, i.e., when the substrate availability is not
sufficient to sustain all basic metabolic activities, but is high enough not to cause complete dormancy
[17], the maximized solution is (0, r0) in the (r2, r3) space. This suggests that under a substrate-poor
scenario there exists a need for high efficiency in substrate conversion, without much consideration for
its rate of production or cellular growth.

Increasing r0 enables high rates of r3 due to fulfillment of basal metabolic processes and a need
to increase biomass output for growth. This points at the higher growth rates associated with nutrient
and substrate rich environments [41]. At extremely high glucose concentrations, the value of β would
saturate (to its highest value in order to keep the protein-to-lipid ratio of the membrane intact) and
kβ would decrease (as only a specific maximal number of glucose molecules can be transported into
the cell constrained by the protein efficiency) in Equation (1). These two features make the value
of r0 constant above a certain threshold of G0. Thus, beyond this threshold value, growth (which is
proportional to r3) would not depend upon G0 explicitly, but only on the available r0. Such a behavior is
observed in E. coli along with an increase in expected growth rate with increasing G0 until the threshold
concentration (maximal value of r0) is reached [35].

Such an overall pattern of starvation metabolism in environments with scarce substrate
environments and proliferative metabolism in environments with abundant substrate is seen in all
unicellular organisms [41].

Figure 2. Representation of the solutions for a bacterial cell at steady state with all features
except glucose concentration constant. The dot-dashed red line represents relation (9), the
solid green line represents relation (10) and the dashed blue line represents Equation (11).
The area shaded in yellow represents the solution for (9) and (10), and the red dot represents
the optimized value of r3 for (9)–(11).
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Figure 3. Representation of the solutions for a bacterial cell at steady state with all features
constant except the ratio of surface area to volume of the cell (denoted by Z). The dot-dashed
red line represents relation (9), the solid green line represents relation (10) and the dashed
blue line represents Equation (11). The area shaded in yellow represents the solution for (9)
and (10), and the red dot represents the optimized value of r3 for (9)–(11).

3.2. Dependence on cellular size and shape

The solutions of the constraint equations (9)–(11) for three differing regimes of Z are plotted in
Figure 3. The value of r0 has been kept constant in the three cases for clarity. As mentioned previously,
a low value of Z refers to either a spherical cell and/or a large cell size; and a high value of Z points to
an elongated/deformed cell shape and/or a small cell size.

Large values of Z enable higher efficiency for energy conversion processes but trade off for slower
growth, which may be typical for substrate poor environments. Low values of Z sacrifice efficiency for
a higher rate of energy and biomass production, and would be expected in conditions where substrate
is abundant. This shape and size based control of metabolic strategies is quite commonly seen in
different types of bacteria [48]. Numerous previous works and experiments support the predictions
from our model regarding the interdependence of metabolism, growth, shape and size. These cases
have been analyzed in the discussion section.

3.3. Overflow metabolism and bacterial metabolic regime

The Warburg effect is termed overflow metabolism in bacteria, due to the cellular excretion (or
overflow) of excess metabolites like lactate, acetate, or ethanol after incomplete oxidation of glucose.
Acetate overflow metabolism has been well documented in E. coli [49], but the process is not clearly
understood [43].

During the process of conversion of r3 products into biomass, energy consumption is involved as in
Equation (8). If the value of εg · g > εF , then the energy gained from r3 alone is insufficient to convert
substrate into biomass and the cell would depend upon more efficient r2 for energy. But, if the value
of r3 is high enough e+ (Equation 6) would be insufficient to sustain e− (Equation 8), i.e., e− > e+.
In such a case, the excess r3 products would be dumped outside the cell and the rest would be used
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Figure 4. Representation of overflow metabolism in a bacterial cell. (a) The dot-dashed
red line represents relation (9), the solid green line represents relation (10) and the dashed
blue line represents Equation (11) and the solid purple line represents relation (5). The area
shaded in yellow represents the solution for (9) and (10), and the red dot represents the
optimized value of r3 for (9)–(11). The black dot represents altered final solution due to (5).
See text for details. (b) The solid green line represents (10), the solid purple line represents
the final solutions of (5), (9)–(11) and the black dot dash line represents (12). ∆r3 represents
the estimate of overflow metabolic products. The phase space has been divided in four parts
based on the solid purple line and (12). (c) Overflow products vs. growth (Equation 7).

for biomass production. The maximum value of r3 for which all substrate would be converted into
biomass, is given by the relation:

e+ ≥ e− ⇒ ε2 · r2 + ε3 · r3 ≥ eb + εg · g · r3

⇒ ε2 · r2 + (ε3 − εg · g) · r3 ≥ eb (12)

The solution for (9) and (12) would give us the maximal value of r3 beyond which export of excess
r3 products will occur. Additionally in such a high flux regime, we would need to invoke Equation
(5), which describes the maximum rate of OP, in order not to destabilize the protein-lipid ratio of the
bacterial membrane.

In such a scenario, the fermentation related enzymes are up-regulated [20], resulting in changes to
the slope of Equation (11), even though the value of Z remains unchanged. This occurs because the
number of OP enzymes (γs) remaining constant whereas that of fermentation (σ) increasing in value.
This decreases the slope of the line- a shift to match the intersection of Equations (5) and (9), i.e., in
order to process the remaining glucose influx (shown in Figure 4a via the black dot, which is the final
solution for Equations (5), (9)–(11)).

Furthermore, the intersections of the line representing final solutions of (5), (9)–(11) with the line
representing (12), provides us with three different regimes of bacterial metabolism (denoted by regime
2-4 in Figure 4b). We also find an additional regime of metabolism arising from the part of the phase
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space where there is no solution for (5), (9)–(11) (denoted by regime 1 in Figure 4b). This leads us to
a total of four such scenarios (as seen in Figure 4b). We discuss these regimes in brief before delving
into overflow metabolism in detail again.

As discussed in section 3.1, regime 1 in Figure 4b,c, is characterized by substrate concentrations that
are insufficient to fulfill all the basic metabolic requirements of the cell. Thus, the cell resorts to limited
activity and uses only OP to extract as much energy as possible from the substrate for sustainence.

Regime 2 is more interesting and is denoted by an arrow in Figures 4b,c. Here, the substrate flux
is enough to maintain the basic cellular metabolic requirements, but does not produce enough energy
for biomass production (i.e., e+ ≥ eb but < εg · g · r3). In such a case, even though it is a low substrate
scenario, r3 products are in excess. According to a previous model [23], in such a regime, excess r3

products might be converted back to pyruvate (r1 product) and reused for OP to keep the respiration
at full capacity. Unfortunately, a direct prediction of this could not be obtained from our model, but it
predicts excess r3 products that is definitely not known to be excreted away (see data in [1]).

Once enough energy can be produced for the cell to start proliferating (the first intersection of the
solid purple line and the dot dashed black line in Figure 4b), the cell not only has enough energy to
sustain basic metabolic activities but also for biomass production. In this case, there are no overflow
products. This scenario continues till the second intersection of the aforementioned lines in Figure
4b. Above this limit, overflow metabolism takes place, because e+ ≯ e− and thus the excess products
are excreted. There are several other reasons for non-reduction of r3 processes even though they seem
wasteful and they can be found in relevant reviews [20].

In Figure 4b, the difference (∆r3) in the final solution of r3 value for the solutions of (7), (9)–
(11) with (12) will give an estimate of the overflow metabolism. In this fourth regime, ∆r3 can be
plotted against growth/biomass production rate (Equation (7)) to obtain Figure 4c. The prediction of
this relation matches numerous laboratory observations of overflow metabolism in multiple strains of
bacteria [1].

3.4. Further considerations and applications

As represented in Equation (7), the bacterial growth rate R can be given by:

R =
Λ

Λ0
=

g · r3,max

Λ0
(13)

where r3,max is the final solution for (5), (9)–(12) (symbolized by the purple line in Figure 4b) and Λ0

is the biomass (Λ) required to make a new cell. This growth rate, R, can then be incorporated into a
regular Lotka-Volterra equation system to find the population size Ni of a species i directly as a function
of substrate concentration through R, given by:

dNi(t)
dt

= Ri · Ni(t)
(
1 −

∑
j αi j · N j(t)

Ki

)
(14)

where Ri is the growth rate of species i, Ni is the number of individuals of species i, αi j is the competi-
tion coefficient between species i and j and Ki is the carrying capacity of species i.

Our model can be extrapolated to include multiple substrates using a vector to symbolize r0, in order
to estimate R. We can then use the independent experimental data for growth and substrate preference
in individual species to calculate αi j [39], in order to obtain all the parameters in (13).
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In addition to the direct estimation of populations, we can use the same technique of vectorization
of resources and then species in the model to calculate the magnitude of overflow metabolism. This
understanding can then be used in the context of many modern and paleo-ecosystems where
spatio-temporal change in substrate concentration is significant and would result in interactions
between various communities. Such usage is not possible from any of the earlier models because they
do not estimate overflow metabolism from first-principles [22], and further, most the FBA models are
specific to a particular species. Temperate wetlands are one such example of an ecosystem with
spatio-temporal change in substrate concentration. Our model can be extrapolated to predict and
estimate the gas fluxes (CO2 and methane), and further to account for phenomena such as aerobic
methanogenesis.

In temperate zone wetlands, the fall season can be seen as a pulse of high concentration of substrate
and resources. Due to the Warburg effect, an increased concentration of substrates would not result
in higher carbon dioxide fluxes, but rather in production of secondary metabolites like lactate and
acetate, and a sudden proliferation of bacterial populations. This can not only affect the amount of
carbon dioxide released but also the amount of substrate that is available to methanogens. Acetate
is produced by heterotrophic bacteria through overflow metabolism [1] and can be utilized by the
acetate-based methanogens, which form a large part of the methanogen community in the wetlands.
Moreover, lactate is also formed during the process [41] and can be used by the syntropic relations of
hydrogen-based methanogens and sulfate-reducing bacteria [21].

This methane produced by the methanogens, using the metabolites from the Warburg effect
(overflow metabolism), is then oxidized by the methanotrophs, which use the oxygen from the water
column (of the small water bodies in these wetlands) above the methanogens, thus producing carbon
dioxide. We illustrate this idea in Figure 5 where the bold red line is the total CO2 production and the
dotted red line represents the CO2 emitted from the heterotrophic bacteria. So, even though the total
CO2 emissions increase, it is actually the increase in methane production and its subsequent oxidation
that is fueling this rise.

Once the initial substrates start depleting, the water column becomes anoxic due to oxygen usage by
both the methanotrophs, whose population rises because of increased methane availability, and by the
already large aerobic heterotrophic community, fueled by the initial pulse of substrates. After a certain
degree of anoxia is reached, the aerobic heterotrophs start declining due to lower oxygen and lower
substrate availability. Only the anaerobic heterotrophs remain plentiful, but in reduced abundance as
easily available resources have been depleted, and they have to process the less usable ones. During
this time the total CO2 production falls, and due to the lack of sufficient oxygen, not all of the methane
gets oxidized. This results in a net release of methane from the system.

Now as the process continues, the methane flux rises to a maximum, where the metabolites for
methanogenesis are still available (from the accumulated overflow metabolism of the heterotrophs) but
are getting depleted. After a certain tipping point, the methane flux also decreases, and the column
becomes completely anoxic. In previous literature [5], such a rough pattern has been observed and the
time frame for the whole process sums up to about one year. Seasonal rainfall mixes the anoxic waters
with atmospheric oxygen well, and the cycle starts again by provision of pulsed high substrate input in
the next fall. The process has been visualized in Figure 5.
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Figure 5. A representation of the effect of overflow metabolism in temperate zone wetlands.
A refers to heterotrophic bacteria, B refers to methanogens (which feed on lactate and acetate
to produce methane), and C refers to methanotrophs (which consume CH4 and O2 to produce
CO2). The area shaded yellow in the figure, refers to the CO2 produced by methanotrophs, by
oxidizing CH4. The CO2 and methane emissions are representative from previous literature
[5].
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4. Discussion

Here we considered the three major trade-offs of Warburg effect in a bacterial cell through linear
equations and inequalities with the goal of improving the understanding of the ecological consequences
of bacterial metabolism.

4.1. Comparison with previous work

Most previous modeling of the Warburg effect comes from the family of models called FBA (Flux
Balance Analysis), which was briefly discussed in the introduction of this work [22, 23, 34, 37, 42,
49]. These models use the knowledge of constructed biochemical networks, in particular the genome-
scale metabolic network reconstructions [22]. These networks consist of most identified metabolic
reactions in a given organism and the genes that encode each enzyme. The model estimates the flow of
metabolites through this network, thus predicting the growth rate of an organism or rate of production
of a given metabolite. These networks are specific to organisms and making a generalized model
network for all aerobic heterotrophic bacteria would be an immense task. Calculations over such
networks are also computationally intensive.

In contrast, we try to generate a very simple model using linear relations. The parameters that
are used in the model can be inferred from experiments and are usable for any aerobic heterotrophic
bacterial species. In addition, one can look at the growth and other estimates that are predicted by
the model, and explore how they change as functions of the parameter values. Disadvantages of our
approach are that we cannot predict the flux of other metabolites that are not encoded in our model and
we cannot take protein costs and related terms into account.

Consequently, our model reflects the classic trade-off between generalizability and specificity.
Because our aim was to study the ecology of these organisms, we chose a more general model that
helps us explore the Warburg effect in this class of organisms broadly, rather than obtaining highly
resolved pathways and fluxes. This simple formulation allowed us to incorporate the volume and
surface area of the cell, leading to parameterization of shape and size of the cell. Exploration of how
cellular metabolism and growth depend on cell shape and size (in addition to substrate concentration)
is a novel feature of our model as compared to previous studies [22, 23, 34, 37, 42].

Even though this family of FBA models has been noticeably successful in estimating fluxes, it is
unable to explain overflow metabolism from first principles [22]. Only when using measured fluxes
like maximal oxygen uptake rates or other pathway capacities as auxiliary constraints do FBA models
predict the use of fermentation or other inefficient routes [22]. Such a method does not seem adequate,
as these constraints act like fitted parameters and the models do not fully explain why organisms
simply do not increase the capacity of the efficient routes by producing more enzymes [22]. We note,
however, that Zhuang et al. [49] incorporated membrane crowding and an upper limit on the number
of respiratory enzymes in order to add a physical constraint on the model (FBAwmc).

In comparison, our model has a physical constraint similar to Zhuang et al. [49], but unlike them, we
use a generalized model instead of a specific organism’s metabolic network. We take into consideration
the facts that, as a component of the maintenance of cellular membrane structure in prokaryotes, the
protein-to-lipid ratio is kept within certain bounds [22] and that at high rates of catabolism, the surface
area available to proteins can become saturated and proteins (such as glucose transporters and OP
enzymes) might ’compete’ for expression [49].
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Molenaar et al. [22] used constraints of membrane structure maintenance and a maximal cellular
density of proteins to construct their model. That work introduced a shape parameter but did not
develop it further as the primary focus was to optimize enzyme systems in order to maximize growth.
But even their model, which overcame some of the shortcomings of FBA, did not consider the minimal
energy requirement of the cell.

Though minimal energy requirements for bacterial cells have been known for some time [17], they
were not directly incorporated in the models mentioned above. Our incorporation of such a constraint
helped us to classify different metabolic regimes in bacteria, something that has not been done in many
previous studies [22, 34, 37, 42]. Vazquez et al. [42] sought to identify dynamic regimes but ended up
making two very strict ones: one with only OP and one with mixed metabolism (fermentation and OP).
Moller et al. [23] aimed to classify dynamical regimes but did not take minimal energy requirements
into consideration and did not address overflow metabolism.

Our adoption of a minimum energy constraint equation leads directly to the four regimes in
metabolism, as described in the Results and Figure 4. These regimes stretch all the way from low
substrate conditions to very high substrate concentrations. Even more, the same set of equations give
us a direct estimate of overflow metabolism products. Understanding this set of regimes is crucial for
many biotechnological applications which may utilize bacterial culture under different conditions.

4.2. Support from previous studies and experiments

There are numerous studies and experiments that follow the predictions outlined in our work -
especially regarding the shape and size dependence of bacterial metabolism and growth.

In substrate poor conditions, it has been observed that E. coli reduces its Z by becoming much
smaller to allow for more efficiency [18]. In a similar note, certain strains of E. coli grew to become
much larger than undiluted cells within a few generations [4] on serial dilution with fresh growth
media.

A comparable result was shown in a long term evolutionary experiment in the same organism, where
the mean cell volume increased in serial dilutions over 10,000 generations [19]. The increase in cell
volume was also accompanied by an increase in relative fitness, which can be taken as a measure of r3,
implying a lower Z has a higher r3, as predicted from our model. Such a general trend of higher fitness
being associated with larger size was shown in about 40 species of obligate heterotrophic bacteria in
another work [6].

In a set of classic experiments, Salmonella enterica serovar Typhimurium produced wider cells
(lower Z) in resource rich medium than when grown in minimal medium, and slow growing cells (low
r3) were smaller than fast growing cells (high r3) [33]. The latter was been also demonstrated in E.
coli, where faster growing cells (high r3) are significantly wider (high Z) [24].

Geobacter sulfurreducens has a capacity to process acetate more efficiently than a similar iron-
reducer Rhodoferax ferrireducens [9, 29, 49] due to its smaller size (and thus, larger Z). Similarly,
living in energy-starved environments Dehalococcus spp. may have evolved its disc shape to maximize
the dechlorination rate (given that the process has a low thermodynamic efficiency) [15].

When grown in nutrient-limiting conditions, certain Streptococcus isolates grew as true filaments
instead of as cocci [12, 31]. In a similar way, Pseudomonas aeruginosa, Pseudomonas putida and
Pseudomonas fluorescens elongate into thin slim cells in nutrient poor environment, unlike the short
rods observed in normal media [36, 38].
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A cell cannot increase its Z indefinitely by change in cell shape, hence another strategy would
be to use subsidiary filaments to increase surface area (and Z). When deprived of certain substrates,
Actinomyces israelii grows branched filamentous roads (high Z) and returns to its normal morphology
once those substrates are added back [27]. Nutrient-poor conditions also enhance filamentation in
Arthobacter globiforms [8, 14] and Clostridiium welchii [46, 47].

4.3. Further comments

As outlined in the Results, we can use a vectorized version of our model to understand the wetland
gas emission dynamics via estimation of overflow metabolism. As a further speculation, we note that
a similar process may have happened over longer geological timescales. In the past, events involving
heavy releases of methane such as the end-Permian mass extinction [30] might also be explainable to
some extent using our formulation. High primary productivity and substrate availability due to
increased CO2 and weathering processes might have triggered overflow metabolism in the
heterotrophic microbes leading to a large scale production of metabolites such as acetate and lactate.
These substrates can then be utilized by methanogens, especially acetate, which has been linked to the
massive methanogenic burst at end-Permian [30].

Although simple, our work provides a fairly straightforward way to look at ecological trends in
systems of bacterial taxa. This is an added benefit which extends beyond the main results concerning
overflow metabolism and the relative dynamics of respiration and fermentation. Not only are these
trends supported by previous studies and experiments, but even more importantly they provide simple
predictions, which can be tested in the lab.
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