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Abstract: Accurately assessing the risks of contaminants requires more than an understanding of the
effects of contaminants on individual organism, but requires further understanding of complex ecolog-
ical interactions, elemental cycling, and the interactive effects of natural stressors, such as resource
limitations, and contaminant stressors. There is increasing evidence that organisms experience interac-
tive effects of contaminant stressors and food conditions, such as resource stoichiometry, availability
and excess of nutrient. Here, we develop and analyze the first producer-grazer population model that
incorporates the effects of excess nutrients, as well as nutrient limitations on grazer exposed to toxi-
cants. We use analytical, numerical and bifurcation analysis to reduce and explore model parameterized
for an aquatic system of algae and zooplankton exposed to methylmercury under varying phosphorus
conditions. Under certain environmental conditions, our models predict higher toxicity than previous
models that neglect the consequences excess nutrient conditions can have on grazer populations.
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1. Introduction

Elemental imbalances between producer and grazers can influence life-history traits such as growth,
survival, and reproduction. Chemical contaminants can have similar impacts on these traits [5]. Re-
cently, there have been experimental efforts to investigate any interactive effects of these stressors.
Hansen et al. 2008 [8] found empirical evidence that Daphnia experience strong interactive effects
of food quality and the contaminant fluoxetine on their survival, growth, and reproduction. Here they
observed that Daphnia fed nutrient-rich algal food experience greater toxicity to fluoxetine. Ieromina
et al. 2014 [11] observed that Daphnia fed nutrient-deficient algal food experience high toxicity to the
contaminant imidacloprid. They also observed evidence that nutrient excess food can impact the repro-
ductive output for D. magna. While Lessard et al. 2012 [13] observed no interactive effects between
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food nutrient content and an herbicide contaminant on Daphnia survival but observed great effects on
Daphnia growth rates under nutrient-rich conditions.

The toxic contaminant mercury (Hg) can bioaccumulate in aquatic food chains as methylmercury
(MeHg) posing a risk to ecosystems and humans [15]. Karimi et al. 2007 [12] shows stoichiometric
constraints, such as food quality, can affect the accumulation of MeHg in Daphnia. The interactive
effects of nutrient availability and aqueous Hg concentration may play a significant role in the bioac-
cumulation of MeHg. Recently, Peace et al. 2016 [20] developed a stoichiometric producer-grazer
model subject to concurrent stoichiometric constraints and contaminant stressors. They parameterized
the model for algae and Daphnia exposed to MeHg under variable phosphorus conditions. This model
assumes the organisms pay an energy or carbon cost when exposed to contaminants, that reduce the
growth rates based on a linear dose response of growth to concentrations of the toxicant.

Following the stoichiometric assumptions of the classical LKE model [14], the stoichiometric-
toxicant model developed by Peace et al. 2016 [20] allows the producer Phosphorus:Carbon(P:C)
ratio to vary while keeping the grazer P:C ratio constant. This assumption is based on the fact that,
although grazer stoichiometries are variable, the range of variation is small compared to the range of
producer stoichiometries [22]. This often results in elemental imbalances between grazers and their
resources. The model assumes the producer is optimal food for the grazer if its P:C ratio is equal to or
greater than the P:C of the grazer, thus incorporating the effects of low-nutrient food content on grazer
dynamics.

However, it has been reported that grazer dynamics are also affected by excess food nutrient content
[3, 6]. This phenomenon, called the stoichiometric knife edge, reflects a reduction in animal growth not
only by food with low Phosphorus(P) content but also by food with excessively high P content. Peace
et al. 2013 [18] extended the LKE model [14] in order to incorporate the effects of excess nutrient food
content on grazer’s growth in the absence of toxicants. They did this by stoichiometrically modifying
the grazer’s ingestion rate and conversion efficiency. The model assumes the mechanism behind this
stoichiometric knife edge phenomenon is the grazer’s feeding behavior. It assumes that high P content
of food causes the animal to strongly decrease their ingestion rate, perhaps leading to insufficient
Carbon(C) intake and thus decreased growth rate. This extended model captures the consequences of
imbalances from both low P:C and high P:C food resources in the absence of toxicants.

Peace et al. 2016 [20] investigate grazer growth dynamics exposed to a contaminant stresses while
under nutrient limited conditions. However, this model does not incorporate the consequences of
nutrient excess conditions. Here, we integrate the stoichiometric tox-mediated producer-grazer model
[20] with the non-toxicant stoichiometric knife edge model [18]. This result is the first model that
incorporates the impact of excess nutrients on the producer-grazer dynamics when subject to a toxicant.
We parameterize the model for algae and Daphnina exposed to the toxicant MeHg and investigate the
impact of varying P and light conditions.

2. Model Formulation

We start with the Stoichiometric Toxicant-mediated predator-prey model developed by Peace et al
2016 [20] based on Huang et al. 2014 [10]:
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dx
dt︸︷︷︸

Change in

prey

= α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} x︸                                               ︷︷                                               ︸
gain from

growth

− f (x)y︸︷︷︸
loss

from
predation

(2.1a)

dy
dt︸︷︷︸

Change in

predator

= min
{
β1,

Q
θ

}
max{0, 1 − β2v} f (x)y︸                                      ︷︷                                      ︸

gain from
growth

− d2(v)y︸︷︷︸
loss

from
death

(2.1b)

du
dt︸︷︷︸

Change in tox

conc. of prey

= a1T︸︷︷︸
uptake

− σ1u︸︷︷︸
efflux

−α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} u︸                                               ︷︷                                               ︸
loss due to

growth

(2.1c)

dv
dt︸︷︷︸

Change in tox

conc. of

predator

= a2T︸︷︷︸
uptake

+ ξ f (x)u︸ ︷︷ ︸
uptake

from
prey

− σ2v︸︷︷︸
efflux

−min
{
β1,

Q
θ

}
max{0, 1 − β2v} f (x)v︸                                      ︷︷                                      ︸
loss due to

growth

(2.1d)

where
Q =

P − θy
x

(2.2)

variables x and y are the prey and predator population densities (mg C/L) respectively and u and v give
the toxicant body burden, or the concentration of the toxicant in the prey and predator, respectively.
The function f (x) is the predator ingestion rate. By following the recommendation of the committee
on toxicology of the National Research Council in 1992 and tested in Miller et al. 2000 [16], we
use the power law to represent the relationship between toxicant concentrations and predator mortality
rate. Predator mortality rate as a function of v, takes the form d2(v) = h2vI + m2 where h2 and I are
positive constants for coefficient and exponent of the power function and m2 is the natural loss rate,
including both natural mortality and respiration. Parameter α1 is the prey maximal growth rate and α2

is the toxicant effect on prey reproduction. Parameters a1 and a2 are toxicant uptake rates and σ1 and
σ2 are toxicant efflux rates for the prey and predator, respectively. Parameter β1 where 0 < β1 < 1
is the growth efficiency of the prey, β2 is the toxicant effect on predator reproduction and ξ is the
predator toxicant assimilation efficiency. T is the total toxicant in the system, P is the total amount of
phosphorus in the system and θ is the constant predator P : C ratio.

The growth rates of both organisms are influenced by the respective body burdens. Toxicological
constraints appear as maximum functions in the above Model (2.1). The maximum term 0 ≤ max(0, 1−
α2u) ≤ 1 comes from a linear dose-response for the gain rate of prey. Similarly, the term max(0, 1−β2v)
represents a linear dose-response for the predator growth efficiency. Population growth dynamics are
also influence by nutrient availability. Stoichiometric constraints appear as minimum functions in the
above Model (2.1). The minimum function min

{
K, P−θy

q

}
is used to describe the prey carrying capacity.

The first input, K is the prey carrying capacity in-terms of carbon or light availability. The second
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input P−θy
q is the carrying capacity determined by phosphorus availability. The numerator here, P − θy,

is the total amount of P available for the prey. This is based on the assumption that all P is either in the
prey or the predator. The model assumes prey are extremely efficient at taking up nutrients and does
not allow free nutrients to be dissolved in the environment. The consumer growth rate is is described
by another minimum function, min

(
β1,

Q
θ

)
. The first input, β1 is used when consumer growth is limited

by carbon, the second input, Q
θ

is used when consumer growth is limited by phosphorus.
In, Peace et al. 2016 [20] they incorporate stoichiometric nutrient limitation to the toxicant mediated

predator prey model developed by Huang et al. 2014 [10]. The current models do not consider the
effects of excess nutrient conditions. Here, we develop and analyze the first model that incorporates
the impact of excess nutrients on predator-prey dynamics when subject to a toxicant.

The grazer’s ingestion rate, f (x) is a monotonic increasing and differentiable function, f ′(x) ≥
0, f (0) = 0. f (x) is saturating with lim

x→∞
f (x) = c. We assume the ingestion rate is a Holling type

II function of the form f (x) = cx
a+x where, c is the maximal grazer’s ingestion rate and a is the half

saturation constant. By following Peace et al. 2013 [18] we assume that the grazer ingests P up to
the rate required for its maximal growth but not more. This assumption is based on empirical data
from Plath and Boersma 2001[21] which leads to a new expression for the grazer ingestion rate. The
ingestion rate, f (x) is replaced by

u(x, y) =

{
f (x) f or f (x)Q < cθ

cθ
Q f or f (x)Q > cθ

}
= min

{
f (x),

cθ
Q

}
The grazer’s growth rate, g(x, y) = min

{
β1,

Q
θ

}
u(x, y), can be written as

g(x, y) =

{ Q
θ

u(x, y) f or Q
θ
< β1

β1u(x, y) f or Q
θ
> β1

}
= min

{
β1,

Q
θ

}
min

{
f (x),

cθ
Q

}
= min

{
β1 f (x), β1

cθ
Q
,

Q
θ

f (x), c
}

Since, β1 f (x) < c, we see that

g(x, y) = min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

This expression is also incorporated into the body burden equation and our system takes the following
form:

dx
dt︸︷︷︸

Change in

prey

= α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} x︸                                               ︷︷                                               ︸
gain from

growth

−min
{

f (x),
cθ
Q

}
y︸               ︷︷               ︸

loss from
predation

(2.3a)

dy
dt︸︷︷︸

Change in

predator

= min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}y︸                                                     ︷︷                                                     ︸
gain from

growth

− d2(v)y︸︷︷︸
loss from

death

(2.3b)
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du
dt︸︷︷︸

Change in tox

conc. of prey

= a1T︸︷︷︸
uptake

− σ1u︸︷︷︸
efflux

−α1 max{0, 1 − α2u}

1 − x

min
{
K, P−θy

q

} u︸                                               ︷︷                                               ︸
loss due to

growth

(2.3c)

dv
dt︸︷︷︸

Change in tox

conc. of pred.

= a2T︸︷︷︸
uptake

+ ξmin
{

f (x),
cθ
Q

}
u︸                 ︷︷                 ︸

uptake

from
prey

− σ2v︸︷︷︸
efflux

−min
{
β1

cθ
Q
, β1 f (x),

Q
θ

f (x)
}

max{0, 1 − β2v}v︸                                                     ︷︷                                                     ︸
loss due to

growth

(2.3d)

Table 1. Parameter Values

Parameter Value Source
α1 Algae maximal growth rate 1.2/day Anderson 1997[1]
α2 tox effect on algal reproduction 0.0051 mg C/µg T Vocke 1978[24]
K Algae C carrying capacity 0-3 mg C/L Anderson 1997[1]
β1 Daphnia C growth efficiency 0.8 (unitless) Anderson 1997[1]
β2 tox effect on Daphnia growth 10.13 mg C/ µg T Biesinger at al. 1982[2]
θ Daphnia constant P:C 0.03 mg P/mg C Anderson 1997[1]
q Algae minimal P:C 0.0038 mg P/mg C Anderson 1997[1]
h2 Coeff. of Daphnia mortality 0.347 mg C/µg T/day Biesinger at al. 1982[2]
I Exp. of Daphnia mortality 1.685 (unitless) Biesinger at al. 1982[2]
m2 Daphnia natural loss rate 0.25/day Anderson 1997[1]
c Daphnia max ingestion rate 0.81/day Anderson 1997[1]
a Daphnia ingest. 1/2-sat. 0.25 mgC/L Anderson 1997[1]
a1 Algae toxicant uptake coefficient 0.012 L/mg C/day Hill and Larsen 2005[9]
a2 Daphnia toxicant uptake coefficient 0.011 L/mg C/day Tsui and Wang 2004[23]
σ1 Algae toxicant efflux rate 0.048/day Hill and Larsen 2005[9]
σ2 Daphnia toxicant efflux rate 0.04/day Tsui and Wang 2004[23]
ξ Daphnia tox assimilation 0.97 (unitless) Tsui and Wang 2004[23]
T Total toxicant 0.01-0.2µg T / L assumed
P Total phosphorus 0.01-0.1 mg P/ L assumed

2.1. Model Reduction

We parameterize our toxicant-mediated stoichiometric knife edged producer-grazer Model (2.3) to
a system of algal (producer) and Daphinia (grazer), in order to investigate the effects of co-occurring
phosphorus constraints and MeHg stressors on population dynamics and MeHg bioaccumulation. All
parameter values were used in Peace et al. 2016 [20] and are listed in Table 1. For the following anal-
ysis we assume I = 1 for mathematical convenience. We non-dimensionalize system (2.3) to facilitate
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the mathematical analysis and rescale the model with the following non-dimensional parameters:

ỹ =
c
α1

y, t̃ = α1t, T̃ = α2a1σ1T, ũ = α2u, ṽ = β2v

h̃1 =
h1

α1α2
, h̃2 =

1
β2α1

h2, β̃1 =
cβ1

α1
, β̃2 =

ξcσ1

α2
β2, σ̃2 = σ1σ2

σ̃1 = σ1, m̃2 =
m2

α1
, θ̃ =

α1

c
θ, ε = α1σ1, γ =

a2β2

α2a1
, Q̃ =

P − θ̃ỹ
x

(2.4)

Dropping the tildes for simplicity, the dimensionless form of system (2.3) yields

dx
dt

= max{0, 1 − u}

1 − x

min
{
K, P−θy

q

} x −min
{

x
a + x

,
c
α1

θ

Q

}
y (2.5a)

dy
dt

= min
{
β1

c
α1

θ

Q
, β1

x
a + x

,
Q
θ

x
a + x

}
max{0, 1 − v}y − (h2v + m2)y (2.5b)

ε
du
dt

= T − σ2
1u − ε max{0, 1 − u}

1 − x

min{K, P−θy
q }

 u (2.5c)

ε
dv
dt

= γT − σ2v + β2 min
{

x
a + x

,
c
α1

θ

Q

}
u − ε min

{
β1

c
α1

θ

Q
, β1

x
a + x

,
Q
θ

x
a + x

}
max{0, 1 − v}v

(2.5d)

According to the parameterization in Table 1, ε = 0.0576. Since ε is sufficiently small the dynamics
of the body burdens u and v are on a much faster time scale than the population dynamics of x and y.
Therefore we let ε → 0 and apply a quasi-steady-state reduction in order to reduce the model to the
slow subsystem. Applying this quasi-steady-state reduction and letting ε → 0 yields

u =
T
σ2

1

, v =
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θ

Q

})
(2.6)

Now, substituting (2.6) and Q =
P−θy

x into (2.5a) and (2.5b) gives us the following quasi-steady-state
non-dimensional system

dx
dt

= max
{

0, 1 −
T
σ2

1

} 1 − x

min
{
K, P−θy

q

} x −min
{

x
a + x

,
c
α1

θx
P − θy

}
y (2.7a)

dy
dt

= min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
y

−

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

}))
+ m2

)
y (2.7b)

3. Model Analysis

Note that if T > σ2
1 then the toxicant levels are too high for the prey to reproduce and grow and

(x, y)→ (0, 0). For the following analysis we assume that T < σ2
1 and let k = min

{
K, P

q

}
.
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Theorem 3.1. Solution of the system (2.7) with the initial conditions in the set

Ω =

{
(x, y) : 0 ≤ x ≤ k = min

{
K,

P
q

}
, 0 ≤ y, qx + θy < P

}
(3.1)

will remain there for all forward time.

Proof. First we show the solutions remain in the rectangle R defined by
[
0,k

]
×

[
0, P

θ

]
, then we show

solutions are also bounded by the inequality qx + θy < P. Let S (t) = (x(t), y(t)) be a solution of System
(2.7) with S (0) ∈ R. Assume there exists a time t1 > 0 such that S (t1) touches or crosses a boundary
of R for the first time. The following cases prove solutions remain in R by contradiction.
Case 1 left boundary: x(t1) = 0
Let y = max

t∈[0,t1]
y(t) < P

θ
. Then for every t ∈ [0, t1],

dx
dt

=

max
{

0, 1 −
T
σ2

1

} 1 − x

min
{
K, P−θy

q

} −min
{

1
a + x

,
c
α1

θ

P − θy

}
y

 x

≥

max
{

0, 1 −
T
σ2

1

} 1 − x

min
{
K, P−θy

q

} −min
{

1
a + x

,
c
α1

θ

P − θy

}
y

 x

≥

max
{

0, 1 −
T
σ2

1

} 1 − k
min

{
K, P−θy

q

} −min
{

1
a
,

c
α1

θ

P − θy

}
y

 x

≡ αx

This implies that x(t1) ≥ x(0)eαt1 > 0, where α is a constant. This contradicts x(t1) = 0 and proves that
S (t1) does not reach this boundary.
Case 2 right boundary: x(t1) = k = min

{
K, P

q

}
Then for every t ∈ [0, t1],

dx
dt

=

max
{

0, 1 −
T
σ2

1

} 1 − x

min
{
K, P−θy

q

} −min
{

1
a + x

,
c
α1

θ

P − θy

}
y

 x

≤ max
{

0, 1 −
T
σ2

1

} 1 − x

min
{
K, P

q

} x

≤

(
1 −

x
k

)
x

Then x(t) < k by a standard comparison argument. This contradicts x(t1) = k and proves that the
trajectory does not cross this boundary.
Case 3 bottom boundary : y(t1) = 0
Then for every t ∈ [0, t1],

dy
dt

= min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
y
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−

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

}))
+ m2

)
y

≥ −

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

}))
+ m2

)
y

≥ −

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

k
a + k

,
c
α1

θk
P − θy

}))
+ m2

)
y

≡ αy

This implies that y(t1) ≥ y(0)eαt1 > 0, where α is a constant. This contradicts y(t1) = 0 and proves that
S (t1) does not reach this boundary.
Case 4 top boundary: y(t1) = P

θ

Then for every t ∈ [0, t1],

dy
dt

= min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
y

−

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

}))
+ m2

)
y

≤ min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
y

≤
P − θy
θ(a + x)

max
{

0, 1 −
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
y

≤
P − θy
θ(a + x)

y

≤
1
a

P − θy
θ

y =
1
a

(
P
θ
− y)y

Then y(t) < P
θ

by a standard comparison argument. This contradicts y(t1) = P
θ

and proves that the
trajectory does not cross this boundary. The above cases prove the trajectories are bounded in R. Now
assume S (0) ∈ Ω and there exists a time t1 > 0 such that S (t1) touches or crosses a boundary of Ω for
the first time. The final case proves solutions remain in Ω by contradiction.
Case 5: qx(t1) + θy(t1) = P
Then qx(t) + θy(t) < P for every t ∈ [0, t1) and qx′(t) + θy′(t) ≥ 0

x′(t) =

max
{

0, 1 −
T
σ2

1

} 1 − x(t)

min
{
K, P−θy(t)

q

} −min
{

1
a + x(t)

,
c
α1

θ

P − θy(t)

}
y(t)

 x(t)

≤

(
max

{
0, 1 −

T
σ2

1

} (
1 −

x(t)
min {K, x(t)}

)
−min

{
1

a + x(t)
,

c
α1

θ

P − θy(t)

}
y(t)

)
x(t)

≤

(
max

{
0, 1 −

T
σ2

1

} (
1 −

x(t)
x(t)

)
−min

{
1

a + x(t)
,

c
α1

θ

P − θy(t)

}
y(t)

)
x(t)

= −min
{

1
a + x(t)

,
c
α1

θ

P − θy(t)

}
y(t)x(t)
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and

y′(t) = min
{
β1

c
α1

θx(t)
P − θy(t)

, β1
x(t)

a + x(t)
,

P − θy(t)
θ(a + x(t))

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x(t)
a + x(t)

,
c
α1

θx(t)
P − θy(t)

})}
y(t)

−

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

x(t)
a + x(t)

,
c
α1

θx(t)
P − θy(t)

}))
+ m2

)
y(t)

≤ min
{
β1

c
α1

θx(t)
P − θy(t)

, β1
x(t)

a + x(t)
,

P − θy(t)
θ(a + x(t))

}
y(t)

≤ min
{
β1,

P − θy(t)
θx(t)

}
min

{
x(t)

a + x(t)
,

c
α1

θx(t)
P − θy(t)

}
y(t)

≤
P − θy(t)
θx(t)

min
{

1
a + x(t)

,
c
α1

θ

P − θy(t)

}
x(t)y(t)

=
q
θ

min
{

1
a + x(t)

,
c
α1

θ

P − θy(t)

}
x(t)y(t)

Then

qx′(t) + θy′(t)

≤ q
(
−min

{
1

a + x(t)
,

c
α1

θ

P − θy(t)

}
y(t)x(t)

)
+ θ

(
q
θ

min
{

1
a + x(t)

,
c
α1

θ

P − θy(t)

}
x(t)y(t)

)
= 0

a contradiction. �

To investigate the equilibria we first rewrite system (2.7) in the following form

dx
dt

= xF(x, y) (3.2a)

dy
dt

= yG(x, y) (3.2b)

where,

F(x, y) = max
{

0, 1 −
T
σ2

1

} 1 − x

min
{
K, P−θy

q

} −min
{

1
a + x

,
cθ

α1(P − θy)

}
y (3.3a)

G(x, y) = min
{
β1

c
α1

θx
P − θy

, β1
x

a + x
,

P − θy
θ(a + x)

}
max

{
0, 1 −

T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

})}
−

(
h2

(
T
σ2

(
γ +

β2

σ2
1

min
{

x
a + x

,
c
α1

θx
P − θy

}))
+ m2

)
(3.3b)

The Jacobian takes the following forms

J =

(
F(x, y) + xFx(x, y) xFy(x, y)

yGx(x, y) G(x, y) + yGy(x, y)

)
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3.1. Boundary Equilibria

We investigate the equilibria
E0 = (0, 0)
E1 = (x∗, 0)

The local stability of E0 = (0, 0) is determined by the Jacobian in the following form,

J(E0) =

(
F(0, 0) 0

0 G(0, 0)

)
=

max
{
0, 1 − T

σ2
1

}
0

0 −
(
h2

T
σ2
γ + m2

)
Jacobian, J(E0) has the eigenvalues with opposite signs, thus E0 is saddle point. In the absence of
grazer, the carrying capacity of the producer depends only on the light and phosphorus availability,
which we denote as

k = min
(
K,

P
q

)
So, x∗ = k. The local stability of E1 = (k, 0) is determined by the Jacobian in the following form,

J(E1) =

(
F(k, 0) + kFx(k, 0) kFy(k, 0)

0 G(k, 0)

)
=

−max
{
0, 1 − T

σ2
1

}
kFy(k, 0)

0 G(k, 0)


The stability of E1(k, 0) depends on the sign of G(k, 0). E1 is locally asymptotically stable if G(k, 0) <
0 and E1 is saddle point if G(k, 0) > 0.

3.2. Interior Euilibria

In this subsection, we analyze the existence and stability of the interior equilibrium numerically
with phase plane analysis, Figure 1. The solution of the system are bounded by the trapezoidal region
shown below. The phase plane is divided into three biologically significant regions by the two lines
β1 =

Q
θ

and f (x) = cθ
Q . Region I is defined by β1 <

Q
θ

and f (x) < cθ
Q . This represent the case where P is

neither limiting nor in excess. Region II is defined by β1 >
Q
θ

; here, growth is limited by the deficiency
of P. Region III is defined by β1 <

Q
θ

and f (x) > cθ
Q , where P is in excess and reduces grazer growth

rate. Note that these same regions are described in Peace et al. 2013 [18] in the absence of toxicants.

4. Numerical Analysis

Peace et al. 2016 [20] investigate the effect of toxicant under stoichiometric constraints on the
population dynamics for different light level. In this section we are comparing our result with [20]. We
use the non-dimensionalized system of both models for simulations. The Black color will represent
the results of Peace et al. 2016 [20] and the red color will represent our proposed model. Some
instances the models agree and the red line is pllotted on top of the black line. These simulations use
the parameter listed in Table 1 with K=1.5mg C/L for varying Phosphorus level. All simulations used
the Holling type II function f (x) = cx

a+x for the ingestion rate.
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4.1. Numerical Simulations

Numerical simulations of the reduced model, System (2.7) are presented for the producer in Figure
2 and the grazer in Figure 3 for varying values of P. The red simulations presented in figures 2 and 3
correspond to the phase planes presented in Figure 1.

(a) (b)

(c) (d)

Figure 1. Phase planes for the reduced system (2.7) using parameters found in Table 1 and
varying values for P: (a) low total phosphorus P=0.035 mg P/L, (b) P=0.04 mg P/L, (c)
P=0.07 mg P/L, (d) excess phosphorus P=0.1 mg P/L. Dashed curves are producer nullclines
and solid curves are grazer nullclines. Open circles denote unstable equilibria and filled
circles denote stable equilibria. The dotted curve in (b) shows a stable periodic orbit.

For low P values we got the similar results as Peace et al. 2016 [20], see figures 2(a) and 3(a). As
P increases, we start to see the differences between these two models. Figures 2(b) and 3(b) show the
bistability for our proposed model, with a stable equilibria and a stable limit cycle. Under these same
conditions, the populations oscillate for the Peace et al. 2016 [20] model. As we continue to increase P,
the Peace et al. 2016 [20] model predicts similar oscillatory dynamics for moderate and high P values,
however in the proposed model System (2.7), the oscillations collapse for higher P values, Figures
2(c,d) and 3(c,d). Very large values of P causes the extinction of grazer population, Figure 3(d).
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Figure 2. Numerical simulations for producer densities using parameter found in Table 1
and varying values for P: (a) low total phosphorus P=0.035 mg P/L, (b) P=0.04 mg P/L, (c)
P=0.07 mg P/L, (d) excess phosphorus P=0.1 mg P/L. Black curves are solutions of System
(2.1) Peace et al. 2016 [20] and red curves are solutions of our reduced model System (2.7).

Mathematical Biosciences and Engineering Volume 16, Issue 1, 150–167



162

4.2. Bifurcation Analysis

Here we perform a bifurcation analysis of the full model, System (2.3) using K mg C/L as the
bifurcation parameter for both low and high P mg P/L, see Figure 4.

Qualitatively, the bifurcation diagrams for low P (Figures 4ab) and high P (Figures 4cd) are similar
for both models. For low light levels, the grazer is at a stable equilibrium of a low density. As K
increases this interior equilibrium loses stability and stable limit cycles emerge at a Hopf bifurcation.
The limit cycles start off with small amplitudes, but as K continues to increase the amplitudes get
bigger. Eventually for higher levels of K these limit cycles collapse and another interior equilibrium
point gains stability. This occurs at a saddle node bifurcation. As K increases further to very high values
the grazer density begins to decrease. Here, the grazer is limited by food quality, or P-limitation.
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/L
)
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Figure 3. Numerical simulations for grazer densities using parameter found in Table 1 and
varying values for P: (a) low total phosphorus P=0.035 mg P/L, (b) P=0.04 mg P/L, (c)
P=0.07 mg P/L, (d) excess phosphorus P=0.1 mg P/L. Black curves are solutions of System
(2.1) Peace et al. 2016 [20] red curves are solutions of our reduced model System (2.7).

Under low P conditions we see differences between the two models for low K conditions (Figures
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4ab). First, under very low K, there is region where the previous model predicts a stable grazer pop-
ulation at a low density, whereas our model predicts grazer extinction (Figure 4a). Under low light
conditions Q, the algae P:C ratio, is large. In both models, there is a low quantity of food available
for the grazers. In the previous model, the grazer is limited by food quantity. However, our model
incorporates consequences of high P content, and the grazer is limited by food quality, This is the in-
fluence of the stoichiometric knife edge. It is important to note the differences in the predicted grazer
body burdens at low K levels (Figure 4b). Here, there is range of low K values, where the previous
models predicts lower body burdens than our model. We also observe a shift in the location of the
Hopf bifurcation and the amplitude of the cycles. The previous model exhibits limit cycles at a lower
value of light than our model, and the cycles have larger amplitude. For high light levels, the two
models predict qualitatively similar dynamics. Indeed, here the low P and high K conditions yield low
Q values. Here the grazer is limited by P in both models.

The differences between the predictions of the model are more significant under high P levels,
where effects of the stoichiometric knife edge are more likely to be occur (Figures 4cd). Here, the
entire bifurcation diagram is shift significantly to the right for our model, note the bifurcation diagram
takes K from 0 to 5 mg C/L, in these figures. Light levels above 5 mg C/L are unrealistic in natural
and laboratory settings. The Hopf bifurcation occurs at much higher light levels. Consequently, the
dynamics of the two models are qualitatively different even for high light levels.

5. Conclusion

Elemental mismatches between trophic levels often leads to consequences on population growth.
Food resources are rarely optimally suited for grazers in terms of their nutrient content. Daphnia
grazers are often faced with P limitation, when their diet consists of algae with low P:C [22]. On
the other hand, when their diet consists of algae with high P:C they have to deal with this P excess
and can become limited by C [21, 18, 19]. These types of nutritional constraints influence life-history
traits, such as growth rates and conversion efficiencies. Toxicants can have similar impacts on these
life-history traits. We developed and analyzed the first model that incorporates the impact of both low
and excess nutrients on the producer-grazer dynamics when subject to a toxicant. Previous models that
consider concurrent nutrient and toxicological constraints consider only nutrient limited conditions
[20]. Here, we expanded the model by Peace et al. 2016 [20] to incorporate the effects of nutrient
excess conditions on population dynamics, a phenomenon called the stoichiometric knife edge. Peace
et al. 2013 [18] modeled this phenomenon without the presence of toxicants. The proposed model
(2.3) yields additional insights for risk assessment compared to previous work, especially under excess
food nutrient conditions.

To facilitate the analysis of the model we assumed population metabolism occurs on a faster time
scale than population growth dynamics. Considering the fast and slow systems in the model and
a quasi-steady-state assumption we were able to reduce system (2.3) down to the two dimensional
system (2.7). We showed the boundedness of the reduced system (2.7) analytically. We investigated
the existence and local stability of boundary equilibria analytically. We numerically observed the
existence and stability of interior equilibria and limit cycles.

We compared the proposed model (2.7) results with those of system (2.1) developed by Peace et
al. 2016 [20]. For low values of P the population dynamics are similar (Figure2a,Figure3a), however
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(a) (b)

(c) (d)

Figure 4. Bifurcation diagrams of System (2.3) for the grazer biomass (y mg C/L) and body
burden (v µg MeHg/mg C) using K as bifurcation parameter between for (a,b) low P = 0.03
mg P/L and (c,d) high P = 0.07 mg P/L. Black corresponds to model (2.1), developed by
Peace et al. 2016 [20] and red corresponds to our full model, System (2.3). Solid curves are
stable equilibria and the maximum and minimum of stable limit cycles. Dashed curves are
unstable branches.

they begin to deviate for moderate and high P loads (Figure2b-d,Figure3b-d). The Peace et al. 2016
[20] model predicts periodic cycles for moderate and high P loads, however our models captures the
effects of excess P content on the populations and predicts extinction of the grazer population for
high P value. The most important differences between the two model predictions can be seen in the
bifurcation diagrams (Figure 4). In particular see Figure 4(b,d), under low light levels K near 0.5 mg
C/L our model predicts a high body burden for the grazer. Under these conditions previous models may
be under predicting the effects of toxicants which can have important implications on risk assessment
protocols developed using these models.

In order to incorporate the stoichiometric knife edge phenomenon we following the assumption of
Peace et al. 2013 [18] and considered a reduction in grazer ingestion rate under high P food conditions.
However, the mechanisms underlying this phenomenon is likely more complicated than a simple re-
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duction in foraging behaviors [7]. For example nutrient and carbon absorption rates of ingested food,
gut passage time, and other metabolic processes such as respiration rates may play a role. It is possi-
ble that these processes are also influences in the presence of a toxicant. Additional experiments on
metabolic rates under multiple constraints can help us modify the models presented here to consider
these extensions.

While these models are parameterized for a system of Daphnia and algal under varying P and
MeHg conditions, the models have broader applicability. Reduction in growth rates when exposed
to high nutrient conditions has been observed for a variety of species [21, 4, 17]. At the same time
many system experience exposure to a multitude of anthropogenic and natural toxicants [25]. Re-
parameterization of these models can yield additional insight into other ecological producer-grazer
systems subject to concurrent stoichiometric and toxicological constraints.

Acknowledgements

This material is based upon work supported by the NSF under Grant No 1615697

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. T. Andersen, Pelagic nutrient cycles: herbivores as sources and sinks, 129 (2013), Springer Sci-
ence & Business Media.

2. K.E. Biesinger, L.E. Anderson and J.G. Eaton, Chronic effects of inorganic and organic mercury
ondaphnia magna: Toxicity, accumulation, and loss, Arc. Environment. Contamin. Toxico., 11
(1982), 769–774.

3. M. Boersma and J.J. Elser, Too much of a good thing: on stoichiometrically balanced diets and
maximal growth, Ecology, 87 (2006), 1325–1330.

4. A.J. Cease, J.J. Elser, C.F. Ford, S. Hao, L. Kang and J.F. Harrison, Heavy livestock grazing
promotes locust outbreaks by lowering plant nitrogen content, Science, 335 (2012), 467–469.

5. M. Danger and F. Maunoury-Danger, Ecological stoichiometry. In: Encyclopedia of Aquatic Eco-
toxicology, Springer, (2013), 317–326.

6. J.J. Elser, J. Watts, J.J. Schampell and J. Farmer, Early Cambrian food webs on a trophic knife-
edge? a hypothesis and preliminary data from a modern stromatolite-based ecosystem, Ecol. Lett.,
9 (2006), 295–303.

7. J.J. Elser, M. Kyle, J. Learned, M.L. McCrackin, A. Peace and L. Steger, Life on the stoichiometric
knife-edge: effects of high and low food c: P ratio on growth, feeding, and respiration in three
daphnia species, Inland Water., 6 (2006), 136–146.

8. L.K. Hansen, P.C. Fros, J.H. Larson and C.D. Metcalfe, Poor elemental food quality reduces the
toxicity of fluoxetine on daphnia magna, Aquat. Toxicol., 86 (2008), 99–103.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 150–167



166

9. W.R. Hill and I.L. Larsen, Growth dilution of metals in microalgal biofilms, Environment. Sci.
Technol., 39 (2005), 1513–1518.

10. Q. Huang, H. Wang and M. Lewis, Development of a toxin-mediated predator-prey model appli-
cable to aquatic environments in the athabasca oil sands region, Osrin Rep. Tech. Rep., 59 (2014),
55. http://hdl. handle. net/10402/era. 40140.

11. O. Ieromina, W.J. Peijnenburg, G. de Snoo, J. Müller, T.P. Knepper and M.G. Vijver, Impact
of imidacloprid on daphnia magna under different food quality regimes, Environment. Toxicol.
Chem., 33 (2014), 621–631.

12. R. Karimi, C. Chen, P. Pickhardt, N. Fisher and C. Folt, Stoichiometric controls of mercury dilution
by growth, Proceed. Nati. Acad. Sci., 104 (2014), 7477–7482.

13. C.R. Lessard, P.C. Frost, Phosphorus nutrition alters herbicide toxicity on Daphnia magna, Sci.
Total Environ., 421 (2012), 124–128.

14. I. Loladze, Y. Kuang and J.J. Elser, Stoichiometry in producer-grazer systems: Linking energy
flow with element cycling, Bull Math. Bio., 62L (2000), 1137–1162.

15. D. Mergler, H.A. Anderson, L.H.M. Chan, K.R. Mahaffey, M. Murray, M. Sakamoto and A.H.
Stern, Methylmercury exposure and health effects in humans: a worldwide concern, AMBIO J.
Human Environ., 36 (2007),3–11.

16. F.J. Miller, P.M. Schlosser and D.B. Janszen, Habers rule: a special case in a family of curves
relating concentration and duration of exposure to a fixed level of response for a given endpoint,
Toxicology, 149 (2000), 21–34.

17. R.L. Morehouse, A.R. Dzialowski and P.D. Jeyasingh, Impacts of excessive dietary phosphorus
on zebra mussels, Hydrobiologia, 707 (2013), 73–80.

18. A. Peace, Y. Zhao, I. Loladze, J.J. Elser and Y. Kuang, A stoichiometric producer-grazer model
incorporating the effects of excess food-nutrient content on consumer dynamics, Math. Biosci.,
244 (2013), 107–115.

19. A. Peace, H. Wang and Y. Kuang, Dynamics of a producer–grazer model incorporating the effects
of excess food nutrient content on grazers growth, Bull. Math. Biol., 76 (2013), 2175–2197.

20. A. Peace, M. Poteat and H Wang, Somatic growth dilution of a toxicant in a predator–prey model
under stoichiometric constraints, J. Theo. Biol., 407 (2013), 198–211.

21. K. Plath, M. Boersma, Mineral limitation of zooplankton: stoichiometric constraints and optimal
foraging, Ecology, 82 (2013), 1260–1269.

22. R.W. Sterner and J.J. Elser, Ecological stoichiometry: the biology of elements from molecules to
the biosphere, Princeton University Press.

23. M.T. Tsui, W.X. Wang, Uptake and elimination routes of inorganic mercury and methylmercury
in daphnia magna, Environ. Sci. Technol., 38 (2004), 808–816.

24. R.W. Vocke, Growth responses of selected freshwater algae to trace elements and scrubber ash
slurry generated by coal-fired power plants, 1978.

25. C. Walker, R. Sibly, S. Hopkin and D. Peakall, Fates of organic pollutants in individuals and
organisms, Principl. Fcotoxicol., 2012 (2012), 63–93.

Mathematical Biosciences and Engineering Volume 16, Issue 1, 150–167



167

c© 2018 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 150–167

http://creativecommons.org/licenses/by/4.0

	Introduction
	Model Formulation
	Model Reduction

	Model Analysis
	Boundary Equilibria
	Interior Euilibria

	Numerical Analysis
	Numerical Simulations
	Bifurcation Analysis

	Conclusion

