
http://www.aimspress.com/journal/MBE

Mathematical Biosciences and Engineering, 16(1): 119–138
DOI: 10.3934/mbe.2019006
Received: 9 September 2018
Accepted: 14 September 2018
Published: 7 December 2018

Research article

Dynamics of a periodic stoichiometric model with application in predicting
and controlling algal bloom in Bohai Sea off China

Da Song1, Meng Fan1, Ming Chen2 and Hao Wang3,∗

1 School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street,
Changchun, Jilin, 130024, P. R. China

2 School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning, 116026, P. R.
China

3 Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta,
T6G 2G1, Canada

* Correspondence: hao8@ualberta.ca

Abstract: We develop a nonautonomous stoichiometric algal growth model incorporating a season-
driven light intensity. We characterize the model dynamics by showing positive invariance, dissipativ-
ity, boundary dynamics, and internal dynamics. We use numerical simulations to uncover the impacts
of the seasonal light intensity and the nutrient availability on the algal dynamics. We discuss two
control methods, removing algae (RA) periodically and blocking nutrient (BN) input from rivers con-
stantly, via our modeling approach. By comparison, the BN method is a more effective way to terminate
algal bloom in Yellow Sea off China. The model dynamics can fit the Bohai Sea data well. Our model
and analysis provide a possible explanation of seasonal algal bloom and give some measurements for
controlling algal bloom in China’s coastal regions.
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1. Introduction

Reported from China’s Xinhua news service in July 2011, “Almost 200 square miles of the Yellow
Sea off China are covered by a massive bloom of green algae.” The algal bloom was first seen in the
Yellow Sea in 2007. However, researchers do not know what causes the massive algal blooms. One
main culprit for algal bloom is the increase of nitrogen. Compared to the Yellow Sea, Bohai Sea is more
severe in algal bloom, while East China Sea is in much better situation because nitrogen is difficult to
accumulate in such an open sea [5].
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The algal bloom is a sudden increase of algae in an aquatic ecosystem. It results in hypoxic condi-
tions which greatly threatens marine life. The algal bloom can cause negative impacts to other living
organisms via toxin production. The harmful algal bloom (HAB) can have large and varied impacts on
marine ecosystems although only 2% of algal species are harmful [2]. HAB has been increasing and
spreading along the coast of China in the past two decades [4, 6, 7]. To protect the Seas off China, it is
urgent to take action now.

In this paper, we apply and modify a recently developed stoichiometric model [3] to study the algal
bloom event. Our modeling framework suggests that blocking nutrient input from rivers may be a more
effective way than the commonly used control method — removing algae periodically. In addition, our
mathematical model fits 2007 Bohai Sea data well, validating the model and its findings.

The remainder of this paper is organized as follows. In section 2, we develop a stoichiometric
algal growth model incorporating a season-driven light intensity. In section 3, we characterize the
model dynamics, via the method of qualitative analysis, coincidence degree theory and Liapunov direct
method, such as the positive invariance, dissipativity, boundary and internal dynamics. Section 4
includes some numerical simulations to confirm the theoretical results and further explore the impacts
of the seasonal light intensity and the nutrient availability on the algal dynamics. We discuss two
control methods including removing algae (RA) periodically and blocking nutrient (BN) input from
rivers constantly via our modeling approach in section 5. By comparison, the BN method is a more
effective way to terminate algal bloom in Yellow Sea off China. In section 6, We fit our model to the
Bohai Sea data for validation.

2. Model formulation

Similar to the stoichiometrically derived algal growth model in [3], we define the variables: x - the
algal carbon concentration, n - the algal nitrogen concentration. The model is provided by

dx
dt

= (µ − d)x
(
1 −max

{
x
K
,

µ

µ − d
x

n/q

})
, (2.1)

dn
dt

= g(T − n)x − dn, (2.2)

where g(T − n) = c(T − n)/[a + (T − n)]. The parameters and their biological significance are listed
in Table 1. The algal growth model captures key biological features of light- and nutrient- dependent
algal growth and characterizes both carbon and phosphorus limitations.

Letting r := µ − d and q̄ := µq/(µ − d) > q leads to

dx
dt

= rx
(
1 −

x
min{K, n/q̄}

)
, (2.3)

dn
dt

= g(T − n)x − dn. (2.4)

The key mathematical findings are listed as follows [3].
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• The open trapezoid domain Ω = {(x, n) ∈ R2
+ : 0 < x < k, qx < n < T }, where k = min{K,T/q̄}, is

positively invariant for the system (2.3)-(2.4).

• When K ≥ T/q̄ and g(T ) ≤ dq̄, the origin E0 = (0, 0) is globally asymptotically stable.

• When K ≥ T/q̄ and g(T ) > dq̄, the internal equilibrium E1 = (x̄, n̄) with n̄ = q̄x̄ and g(T − n̄) = dq̄
is globally asymptotically stable.

• When n∗/q̄ < K ≤ T/q̄ and g(T ) ≤ dq̄ where g(T − n∗)k = dn∗, the origin E0 is globally
asymptotically stable.

• When n∗/q̄ < K ≤ T/q̄ and g(T ) > dq̄, the internal equilibrium E1 is globally asymptotically
stable.

• When K ≤ n∗/q̄, the boundary equilibrium E2 = (K, n∗) is globally asymptotically stable.

Given that g(T − n) = c(T − n)/(a + (T − n)), we have

x̄ =
cT − adq̄ − dq̄T

cq̄ − dq̄2 , n̄ =
cT − adq̄ − dq̄T

c − dq̄
,

n∗ =
[
cK + ad + Td −

√
(cK + ad + Td)2 − 4dcKT

]
/2d.

Table 1. The parameters of the system (2.1)-(2.2) and their values used for numerical simu-
lations.

Parameter Description Value Unit
K Light-dependent carrying capacity of algae 0 − 2 (mg C)/l
T Total N in the system 0 − 0.5 (mg N)/l
µ Maximum growth rate of algae 1.2 day−1

q Minimum N:C ratio of algae 0.064 (mg N)/(mg C)
d N loss/recycling rate of algae 0.05 day−1

c Maximum N uptake rate of algae 3.2 (mg N)/(mg C)/day
a N-dependent half-saturation constant of algae 0.128 (mg N)/l

Note: Parameter values are converted from [3] using the Redfield N:P ratio 16:1 in algae.

Assume that light is sufficient (i.e., K is large enough) and g(T ) > dq̄ (i.e., T > adq̄/(c − dq̄)), then

x̄ =
cT − adq̄ − dq̄T

cq̄ − dq̄2 =
T
q̄
−

ad
c − dq̄

provides the algal density (measured by carbon biomass). Plot x̄ versus T (nutrient level) to indicate
how nutrient richness enhances the algal bloom. The slope, indicating how fast algal density increases
with respect to increasing nutrient density, is 1/q̄ = (µ − d)/µq = 1/q − d/µq, which depends on
algal species. It is less likely for algal bloom to occur when the algal species has smaller µ (maximum
growth rate), larger d (recycling rate), or larger q (minimum structural N:C ratio). Since there is no
officially defined threshold level for algal bloom, we assume the algal bloom level xb (some threshold
of algal density) in this simulation, then we can compute the threshold of nutrient availability

Tb = q̄xb +
adq̄

c − dq̄
, (2.5)
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Figure 1. The threshold of nutrient availability Tb versus maximum algal growth rate µ and
the structural algal N:C ratio q.

over which algal bloom occurs. The threshold is an increasing function of q̄, thus the larger q̄ (i.e.,
smaller 1/q̄) increases Tb such that algal bloom is less likely to occur. Figure 1 shows that the Tb can
have a large variation for different algal species. This explains the biological phenomenon that typically
only one or a small number of algal species are involved in algal bloom. The algal species on the left-up
corner of Figure 1 is difficult to have outbreak since the higher threshold the lower probability of algal
bloom. This result may explain algal bloom rarely occurs in some coasts or some lakes. The nutrient
density in algae is given by

n̄ =
cT − adq̄ − dq̄T

c − dq̄
= T −

adq̄
c − dq̄

.

When algal density reaches the carrying capacity in the case K ≤ n∗/q̄, its internal nutrient density is
given by

n∗ =
[
cK + ad + Td −

√
(cK + ad + Td)2 − 4dcKT

]
/2d.

The environmental variation is time-dependent and is one of the processes that the autonomous
model ignores. Natural environment is physically highly variable, and in response, some vital rates of
populations, are usually subject to seasonal fluctuations and vary greatly in time, which is more bio-
logically practical. Therefore, realistic models should take into account the seasonal effect. A desired
model taking into account such environmental fluctuations must be nonautonomous in mathematics.
In order to study the resulting dynamics, one must ascribe some properties to the time dependence of
parameters in the models, for example, one might assume they are periodic.

The more realistic model incorporating the season-driven light intensity is represented by

dx
dt

= rx
(
1 −

x
min{K(t), n/q̄}

)
, (2.6)

dn
dt

= g(T − n)x − dn, (2.7)
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where the carrying capacity K(t) is a periodic function with period one year and peak at summer
time. Assume g(x) is a smooth function that satisfies

g(x) ≥ 0 for x ≥ 0, g(0) = 0, g′(x) > 0, and g′′(x) < 0 for x ≥ 0.

3. Dynamics of system (2.6)-(2.7)

In this section, we explore the dynamics of (2.6)-(2.7) and present some results on the positive
invariance, the boundary and internal dynamics. For convenience, we introduce the following notations

K̄ =
1
ω

∫ ω

0
K(t)dt, Kmax = max

t∈[0,ω]
K(t), Kmin = min

t∈[0,ω]
K(t).

3.1. Positive invariance and dissipativity

Theorem 3.1. The set defined by

Γ :=
{
(x, n) ∈ R2

+ : 0 < x < min{Kmax,T/q̄}, qx < n < T
}

(3.1)

is positively invariant with respect to (2.6)-(2.7).

Proof. To prove the positive invariance of Γ, we only need to examine the direction fields on the

boundary of Γ. On the upper boundary of Γ, one has n = T , x ∈ [0, k],
dn
dt

= −dT < 0, where

k = min{Kmax,T/q̄}. On the right boundary of Γ, x = k, n ∈ (0,T ),
dx
dt

= rk(1 −
k

min{K(t), n/q̄}
) ≤ 0

hold. Therefore, all orbits starting from Γ cannot escape from these two boundaries.
On the bottom boundary {(x, n) : 0 < x < k, n = qx} of Γ. We claim if n(0)/x(0) > q, then n(t)/x(t) >

q for all t > 0. Otherwise, there exists a t2 > 0 such that Q(t2) = n(t2)/x(t2) = q and Q(t) = n(t)/x(t) > q

for t ∈ [0, t2). It is obvious that
dQ(t2)

dt
≤ 0. When n(t)/q̄ ≥ Kmax, min{K(t), n(t)/q̄} = K(t), one has

dQ(t)
dt

=
d
dt

(
n(t)
x(t)

)
=

dn(t)
dt

1
x(t)
−

Q(t)
x(t)

dx(t)
dt

= g(T − n(t)) − dQ(t) − Q(t)(µ − d)(1 −
x(t)
K(t)

)

= g(T − n(t)) − µQ(t)(1 −
µ − d
µK(t)

x(t)).

It follows that
dQ(t2)

dt
≥ g(T − n(t2)) > 0,

which contradicts
dQ(t2)

dt
≤ 0.

It remains to show that all orbits starting from Γ cannot leave from the left boundary of Γ, we assume
x(t1) = 0 and then

dx
dt

= rx
(
1 −

x
min{K(t), n/q̄}

)
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= rx
(
1 −max

{
x

K(t)
,

q̄x
n

})
≥ rx

(
1 −max

{
k

Kmin
,

q̄
q

})
≡ αx,

where α is a constant. Thus, x(t1) ≥ x(0) exp{αt1} > 0, which contradicts x(t1) = 0. Therefore, no
trajectory can touch the left boundary of Γ. This completes the proof. �

Theorem 3.2. (2.6)-(2.7) is ultimately bounded with respect to Γ ∪ ∂Γ, i.e. (2.6)-(2.7) is dissipative.

Proof. Let (x(t), n(t)) be a solution of (2.6)-(2.7) through x(t0) > 0 and n(t0) > 0. It is not difficult to
verify that lim inft→∞ x(t) ≥ 0, lim inft→∞ n(t) ≥ 0, lim supt→∞ x(t) ≤ k, lim supt→∞ n(t) ≤ T .

From the proof of Theorem 3.1, we have

dQ(t)
dt

= g(T − n(t)) − µQ(t)
(
1 −

µ − d
µmin{K(t), n(t)/q̄}

x(t)
)

= g(T − n(t)) − µQ(t)
(
1 −

µ − d
µmin{K(t)/x(t),Q(t)/q̄}

)
≥ g(T − n(t)) − µQ(t)

(
1 −

µ − d
µQ(t)/q̄

)
= g(T − n(t)) − µQ(t)

(
1 −

q
Q(t)

)
= g(T − n(t)) − µ(Q(t) − q).

It follows that lim inft→∞ Q(t) = lim inft→∞
n(t)
x(t)
≥ q. Therefore, (2.6)-(2.7) is ultimately bounded with

respect to Γ ∪ ∂Γ, i.e. (2.6)-(2.7) is dissipative. The proof is complete. �

3.2. Boundary dynamics.

In this subsection, we explore the boundary dynamics of (2.6)-(2.7) and prove that all orbits tend to
the origin E0 = (0, 0), i.e., algae go extinct. Actually, the origin is not a steady state but plays a similar
role as a steady state.

Theorem 3.3. Assume g(T ) ≤ dq̄ and T < q̄Kmin, all solutions in Ω tend to the origin E0, i.e., E0 is
globally asymptotically stable.

Proof. we introduce the transformation

Φ : Ω→ Φ(Ω), (x, n) 7→ (u = x/n, n),

which converts the system (2.6)-(2.7) in Ω into the new system

du
dt

= u(d + r − (q̄r + g(T − n))u), (3.2)

dn
dt

= n(g(T − n)u − d). (3.3)
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Here,
Φ(Ω) = {(u, n) ∈ R2

+ : 0 < u < 1/q, 0 < n < T }

This system has two equilibria (0, 0) and (u0, 0) with u0 =
d + r

q̄r + g(T )
. Note that g(T ) ≤ dq̄, then

u0 < 1/q̄ < 1/q, and the equilibrium (u0, 0) lies on the left boundary of Φ(Ω).

The u-nullcline is l1 : u = 0 and u = u1(n) =
d + r

q̄r + g(T − n)
, 0 ≤ n < T . The p-nullcline is l2 : n = 0

and u = u2(n) =
d

g(T − n)
, 0 ≤ n < T. Since 1/q >

d
g(T − n)

>
d + r

q̄r + g(T − n)
, l2 is above l1.

Define the regions

D1 = {(u, n) : 0 < n < T, 0 < u < u1(n)},
D2 = {(u, n) : 0 < n < T, u1(n) < u < u2(n)},
D3 = {(u, n) : 0 < n < T, u2(n) < u < 1/q}.

In D1,
du
dt

> 0,
dn
dt

< 0. In D2,
du
dt

< 0,
dn
dt

< 0. In D3,
du
dt

< 0,
dn
dt

> 0. Thus, any solution starting
from the region D1 tends to the equilibrium (u0, 0). Any solution starting from the region D3 first enters
the region D2, and then either directly tends to the equilibrium (u0, 0) or passes through the region D1

and then tends to the equilibrium (u0, 0). Thus, any solution (u(t), n(t)) of the system (3.2)-(3.3) tends
to the equilibrium (u0, 0), i.e.,

lim
t→∞

u(t) = u0 =
d + r

q̄r + g(T )
, lim

t→∞
n(t) = 0.

Thus,
lim
t→∞

x(t) = lim
t→∞

u(t)n(t) = 0, lim
t→∞

n(t) = 0,

which implies the origin of the system (2.6)-(2.7) is globally asymptotically stable. �

3.3. Internal dynamics

In this subsection, we investigate the internal dynamics of (2.6)-(2.7) by establishing some sufficient
criteria for the existence and GAS of internal equilibrium and positive periodic solution of (2.6)-(2.7).

Theorem 3.4. When g(T ) > dq̄ and T < q̄Kmin, there exists a unique internal equilibrium E1 = (x̄, n̄)
satisfying n̄ = q̄x̄ and g(T − n̄) = dq̄. Furthermore, E1 is globally asymptotically stable.

The proof of this theorem is similar to the proof of Theorem 3. in [3], so we omit it here.
Next we explore the existence and GAS of positive periodic solution of (2.6)-(2.7). For the reader’s

convenience, we shall summarize below a few concepts and results from [8] that will be essential for
the following discussion.

Let X,Z be normed vector spaces, L : Dom L ⊂ X → Z be a linear mapping, and N : X → Z be a
continuous mapping. The mapping L will be called a Fredholm mapping of index zero if dim Ker L =

codim Im L < +∞ and Im L is closed in Z. If L is a Fredholm mapping of index zero, then there exist
continuous projectors P : X → X and Q : Z → Z such that Im P = Ker L, Im L = Ker Q = Im(I − Q).
It follows that L|Dom L ∩ Ker P : (I − P)X → Im L is invertible. We denote the inverse of that map
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by KP. If Ω is an open bounded subset of X, the mapping N will be called L-compact on Ω if QN(Ω)
is bounded and KP(I − Q)N : Ω → X is compact. Since Im Q is isomorphic to Ker L, there exist
isomorphisms J : Im Q→ Ker L.

Lemma 3.5 (Continuation theorem [8]). Let L be a Fredholm mapping of index zero and let N be
L-compact on Ω. Suppose

(a) for each λ ∈ (0, 1), every solution x of Lx = λNx is such that x < ∂Ω;
(b) QNx , 0 for each x ∈ ∂Ω ∩ KerL and deg{JQN,Ω ∩ KerL, 0} , 0. Then the equation Lx = Nx

has at least one solution lying in Dom L ∩Ω.

Theorem 3.6. Assume that g(T ) > 2dq̄, then (2.6)-(2.7) has at least one strictly positive ω-periodic
solution.

Proof. Considering the biological significance of (2.6)-(2.7), we specify x(0) > 0 and n(0) > 0. Let
x(t) = exp{y1(t)} and n(t) = exp{y2(t)}, then (2.6)-(2.7) turns into

dy1(t)
dt

= r
(
1 −

exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

)
, (3.4)

dy2(t)
dt

=
g(T − exp{y2(t)})

exp{y2(t)}
exp{y1(t)} − d. (3.5)

Define
X = Z = {y(t) = (y1(t), y2(t))T ∈ C(R,R2), y(t + ω) = y(t)},

and ‖y‖ = ‖(y1, y2)T ‖ = maxt∈[0,ω] |y1(t)|+maxt∈[0,ω] |y2(t)| for any y ∈ X(or Z). Then X and Z are Banach
spaces endowed with the norm ‖ · ‖. Let

Ny =


r
(
1 −

exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

)
g(T − exp{y2(t)})

exp{y2(t)}
exp{y1(t)} − d

 , y ∈ X,

Ly =
dy(t)

dt
, Py =

1
ω

∫ ω

0
y(t)dt, y ∈ X; Qz =

1
ω

∫ ω

0
z(t)dt, z ∈ Z.

Then, it is not difficult to show that Ker L = R2, Im L = {z ∈ Z :
∫ ω

0
z(t)dt = 0} is closed in Z,

dim Ker L = 2 = codim Im L, and P, Q are continuous projectors such that Im P = Ker L, Ker Q =

Im L = Im(I − Q). Therefore, L is a Fredholm mapping of index zero. Furthermore, the generalized
inverse (to L)KP : Im L → Ker P ∩ Dom L is given by KP(z) =

∫ t

0
z(s)ds − 1/ω

∫ ω

0

∫ t

0
z(s)dsdt. By the

Arzela-Ascoli theorem, it is not difficult to show that N is L-compact on Ω with any open bounded set
Ω ∈ X.

Now we are right here to search for an appropriate open bounded subset Ω for the application of the
continuation theorem. Corresponding to the operator equation Ly = λNy, λ ∈ (0, 1), one has

dy1(t)
dt

= λ{r
(
1 −

exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

)
},

dy2(t)
dt

= λ{
g(T − exp{y2(t)})

exp{y2(t)}
exp{y1(t)} − d}.

(3.6)
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Let y = y(t) ∈ X be a solution of (3.6) for some certain λ ∈ (0, 1). Integrating (3.6) from 0 to ω

produces ∫ ω

0

{
r
(
1 −

exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

)}
dt = 0, (3.7)∫ ω

0

{
g(T − exp{y2(t)})

exp{y2(t)}
exp{y1(t)} − d

}
dt = 0, (3.8)

then ∫ ω

0
{r}dt =

∫ ω

0

r exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

dt = rω, (3.9)∫ ω

0
{d}dt =

∫ ω

0

{
g(T − exp{y2(t)})

exp{y2(t)}
exp{y1(t)}

}
dt = dω. (3.10)

From (3.6)-(3.10), it follows that∫ ω

0
|ẏ1(t)|dt = λ

∫ ω

0

∣∣∣∣∣∣r
(
1 −

exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

)∣∣∣∣∣∣dt

<

∫ ω

0
|r|dt +

∫ ω

0

∣∣∣∣∣∣ r exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

∣∣∣∣∣∣ dt = 2rω,

and ∫ ω

0
|ẏ2(t)|dt = λ

∫ ω

0

∣∣∣∣∣∣g(T − exp{y2(t)})
exp{y2(t)}

exp{y1(t)} − d

∣∣∣∣∣∣dt

<

∫ ω

0
|d|dt +

∫ ω

0

∣∣∣∣∣∣g(T − exp{y2(t)})
exp{y2(t)}

exp{y1(t)}

∣∣∣∣∣∣ dt = 2dω.

Since y(t) = (y1(t), y2(t))T ∈ X, there exist ξi, ηi ∈ [0, ω] such that

yi(ξi) = min
t∈[0,ω]

yi(t), yi(ηi) = max
t∈[0,ω]

yi(t), i = 1, 2.

By (3.9), one has ∫ ω

0

r exp{y1(ξ1)}
Kmax

dt ≤
∫ ω

0

r exp{y1(t)}
min{K(t), exp{y2(t)}/q̄}

dt = rω,

that is, y1(ξ1) ≤ ln[Kmax], then

y1(t) ≤ y1(ξ1) +

∫ ω

0
|ẏ1(t)|dt ≤ ln[Kmax] + 2rω := K1.

Let F(x) =
g(T − x)

x
, it is easy to verify that F(x) is decreasing when x > 0. By (3.10), one has

dω =

∫ ω

0
F(exp{y2(t)}) exp{y1(t)}dt ≤

∫ ω

0
F(exp{y2(ξ2)}) exp{K1}dt,

then
F(exp{y2(ξ2)}) ≥ d exp{−K1}.
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Since F(0) = ∞ > d exp{−K1}, F(T ) = 0 < d exp{−K1}, therefore F−1(d exp{−K1}) exists within
(0,T ). Then one can verify that y2(ξ2) ≤ F−1(d exp{−K1}), then

y2(t) ≤ y2(ξ2) +

∫ ω

0
|ẏ2(t)|dt ≤ ln[F−1(d exp{−K1}] + 2dω := K2.

Moreover, when exp{y2(t)} ≥ 2q̄ exp{y1(t)}, it follows from (3.9) that

1 ≤
exp{y1(t)}

K(t)
+

q̄ exp{y1(t)}
exp{y2(t)}

≤
exp{y1(η1)}

Kmin
+

1
2

which implies

y1(η1) ≥ ln
[
1
2

Kmin

]
.

When exp{y2(t)} < 2q̄ exp{y1(t)}, it follows from (3.10) that

dω =

∫ ω

0

{
g(T − exp{y2(t)})

exp{y2(t)}
exp{y1(t)}

}
dt

≥

∫ ω

0
F(2q̄ exp{y1(t)}) exp{y1(t)}dt

=

∫ ω

0

g(T − 2q̄ exp{y1(t)})
2q̄

dt

≥

∫ ω

0

g(T − 2q̄ exp{y1(η1)})
2q̄

dt,

which implies

y1(η1) ≥ ln
[
T − g−1(2dq̄)

2q̄

]
.

Thus,

y1(η1) ≥ min
{

ln
[
1
2

Kmin

]
, ln

[
T − g−1(2dq̄)

2q̄

]}
.

Whence,

y1(t) ≥ y1(η1) −
∫ ω

0
|ẏ1(t)|dt ≥ min

{
ln

[
1
2

Kmin

]
, ln

[
T − g−1(2dq̄)

2q̄

]}
− 2rω := K3.

Therefore, maxt∈[0,ω] |y1(t)| ≤ max{|K1|, |K3|} := K5.

On the other hand, by (3.10),

dω =

∫ ω

0
F(exp{y2(t)}) exp{y1(t)}}dt ≥

∫ ω

0
F(exp{y2(η2)}) exp{K3}dt.

It is not difficult to show F−1(d exp{−K3}) exists within (0,T ). Thus,

y2(η2) ≥ ln[F−1(d exp{−K3})],
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then,

y2(t) ≥ y2(η2) −
∫ ω

0
|ẏ2(t)|dt ≥ ln[F−1(d exp{−K3})] − 2dω := K4.

Therefore, maxt∈[0,ω] |y2(t)| ≤ max{|K2|, |K4|} := K6. Clearly, Ki(i = 1, ..., 6) are independent of λ.
Considering the following algebraic equations∫ ω

0
r
(
1 −

v1

min{K(t), v2/q̄}

)
dt = 0,

g(T − v2)
v2

v1 − d = 0.

Under the assumption of g(T ) > 2dq̄ > dq̄, we will divide the discussion into the following three cases:

• If T ≤ q̄Kmin, there exists a unique solution (v∗1, v
∗
2) satisfying 0 < v∗1 ≤ Kmin, 0 < v∗2 ≤ q̄Kmin.

• If T > q̄Kmin and F(q̄Kmax) < K̃, where K̃ =
1
ω

∫ ω

0

1
K(t)

dt, there exist at least one solution. We

denote the largest one as (v′1, v
′
2), which satisfies Kmin ≤ v′1 ≤ 1/K̃, q̄Kmin ≤ v′2 < T .

• If T > q̄Kmin and F(q̄Kmax) > K̃, there exists a largest solution (v∗∗1 , v
∗∗
2 ) satisfying v∗∗1 =

1
K̃
, q̄Kmax ≤ v∗∗2 < T .

Hence, the solutions of the system of algebraic equations (ṽ1, ṽ2), satisfy v∗1 ≤ ṽ1 ≤ v∗∗1 , v∗2 ≤ ṽ2 ≤ v∗∗2 ,
thus there exists a sufficiently large number K7 such that ‖(ln(ṽ1), ln(ṽ2))T ‖ = | ln(ṽ1)| + | ln(ṽ2)| ≤
max{| ln v∗1|, | ln v∗∗1 |} + max{| ln v∗2|, | ln v∗∗2 |} ≤ K7. Denote K = K5 + K6 + K7 and take Ω = {y(t) =

(y1(t), y2(t))T ∈ X : ‖y‖ < K}, then Ω verifies the requirement (a) in Lemma 3.5. When x ∈ ∂Ω∩Ker L =

∂Ω ∩ R2, x is a constant vector in R2 with ‖y‖ = K. Then

QNy =


1
ω

∫ ω

0
r
(
1 −

exp{y1}

min{K(t), exp{y2}/q̄}

)
dt

1
ω

∫ ω

0

(
g(T − exp{y2})

exp{y2}
exp{y1} − d

)
dt

 , 0.

Define Hν(y1, y2) = νQN(y1, y2) + (1 − ν)G(y1, y2), where ν ∈ [0, 1] and G(y1, y2) = (1 −
q̄ exp{y1}/ exp{y2}, d exp{y2} − g(T − exp{y2}) exp{y1})T . Obviously, Hν(y1, y2) is homotopic map-
ping, here H0(y1, y2) = QN(y1, y2), H1(y1, y2) = G(y1, y2) and 0 < Hν(∂Ω ∩ Ker L). Furthermore,
in view of the assumptions in Theorem 3.6, direct calculations show that deg{JQNy,Ω ∩ Ker L, 0} =

deg{G,Ω ∩Ker L, 0} , 0 when g(T ) > dq̄. Here J can be the identity mapping since Im P = Ker L. By
now we have proved that Ω verifies all the requirements in Lemma 3.5. Hence, (3.4) has at least one
solution y∗(t) = (y∗1(t), y∗2(t))T in Dom L∩Ω. Set x∗(t) = exp{y∗1(t)}, n∗(t) = exp{y∗2(t)}, then (x∗(t), n∗(t))T

is an ω-periodic solution of system (2.6)-(2.7) with strictly positive components. Thus, there exists an
ω-periodic solution of system (2.6)-(2.7). The proof of Theorem 3.6 is complete. �

Lemma 3.7. Let h be a real number and f be a nonnegative function defined on [h,+∞) such that f is
integrable on [h,+∞) and is uniformly continuous on [h,+∞). Then limt→+∞ f (t) = 0.

Theorem 3.8. Let (x∗(t), n∗(t)) be the positive periodic solution of (2.6)-(2.7). If

rT > dq̄k, g(T ) < rT/k, sup
t∈R+

{min{Kmin, n∗(t)/q̄}} >
rT

dq̄ max{k/Kmin, µ/r}
,

then (x∗(t), n∗(t)) is globally asymptotically stable.
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Proof. Let (x(t), n(t)) be any solution of (2.6)-(2.7) with positive initial value. Since Γ ∪ ∂Γ is an
ultimately bounded region of (2.6)-(2.7), there exists T1 > 0 such that (x(t), n(t)) ∈ Γ ∪ ∂Γ and
(x∗(t), n∗(t)) ∈ Γ ∪ ∂Γ for t ≥ t0 + T1. Consider the Liapunov function defined by

V(t) = T | ln{x(t)} − ln{x∗(t)}| + |n(t) − n∗(t)|.

A direct calculation of the right derivative of V(t) along the solution of (2.6)-(2.7) leads to

D+V(t) = rT sgn{x(t) − x∗(t)}
(

x∗(t)
min{K(t), n∗(t)/q̄}

−
x(t)

min{K(t), n(t)/q̄}

)
+sgn{n(t) − n∗(t)}[g(T − n(t))x(t) − g(T − n∗(t))x∗(t)] − d|n(t) − n∗(t)|

≤ (g(T ) −
rT
k

)|x(t) − x∗(t)| − d|n(t) − n∗(t)|

+rT x(t)
∣∣∣∣∣ 1
min{K(t), n∗(t)/q̄}

−
1

min{K(t), n(t)/q̄}

∣∣∣∣∣
≤ (g(T ) −

rT
k

)|x(t) − x∗(t)| − d|n(t) − n∗(t)|

+
rT x(t)

q̄ min{Kmin, n∗(t)/q̄}
1

min{K(t), n(t)/q̄}
|n(t) − n∗(t)|

≤ (g(T ) −
rT
k

)|x(t) − x∗(t)| − d|n(t) − n∗(t)|

+
rT

q̄ max{k/Kmin, µ/r}
1

min{Kmin, n∗(t)/q̄}
|n(t) − n∗(t)|

=

(
rT

q̄ max{k/Kmin, µ/r}
1

min{Kmin, n∗(t)/q̄}
− d

)
|n(t) − n∗(t)|

+(g(T ) −
rT
k

)|x(t) − x∗(t)|

≤ −θ(|x(t) − x∗(t)| + |n(t) − n∗(t)|, t ≥ t0 + T1,

where θ is a positive constant. Integrating both sides of above inequality from t0 + T1 to t produces

V(t) + θ

∫ t

t0+T1

(|x(s) − x∗(s)| + |n(s) − n∗(s)|)ds ≤ V(t0 + T ) < ∞. (3.11)

It follows from (3.11)∫ t

t0+T1

(|x(s) − x∗(s)|+|n(s) − n∗(s)|)ds ≤ V(t0 + T )/θ < ∞, t ≥ t0 + T1.

Therefore, |x(s) − x∗(s)| + |n(s) − n∗(s)| ∈ L1([t0 + T1,+∞)).
The boundedness of x∗(t) and n∗(t) and the ultimate boundedness of x(t) and n(t) imply that

x(t), n(t), x∗(t), n∗(t) all have bounded derivatives for t > t0 + T1 (from the equations satisfied by them).
Then it follows that |x(t) − x∗(t)| + |n(t) − n∗(t)| is uniformly continuous on [t0 + T1,+∞). By Lemma
3.7, one has

lim
t→+∞

(|x(t) − x∗(t)| + |n(t) − n∗(t)|) = 0.

The proof is complete. �
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Figure 2. Time-series plot of algal density or its nitrogen concentration in (2.6)-(2.7). The
light blue line in (c)-(f) denotes x∗(t). It reveals that the conditions in Theorems 3.3, 3.4, 3.6
and 3.8 are sufficient.
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In summary, we have established some sufficient criteria for the dynamics of (2.6)-(2.7). Figure 2
shows such scenarios, where the parameter values are deliberately specified such that Theorems 3.3,
3.4, 3.6 and 3.8 are satisfied. Figure 2 (a) and (b) show that the algal density tends to 0 and a positive
steady state under the conditions of Theorems 3.3 and 3.4, respectively. In Figure 2 (c), there exists a
positive periodic solution that is globally asymptotically stable when Theorems 3.6 and 3.8 hold. The
solution curves in Figure 2 (c) converges rapidly, and these solutions in the early time window are
exhibited in Figure 2 (d). Of course, these results can be improved. For instance, Figure 2 (e) and (f)
illustrates that (2.6)-(2.7) still admits a positive periodic solution that is globally asymptotically stable,
even when the conditions in Theorem 3.8 are not satisfied.

4. Numerical analysis and applications.

In this section, based on the above theoretical analysis, numerical simulations show that the ecolog-
ical impact and consequence of the seasonal light intensity and the nutrient availability on the model
variables. Here we choose

g(x) =
cx

a + x
, K(t) = 1.25 − 0.75 cos(2π(t − 30)/365).

Figure 3 (a) shows the season-dependent function K(t) that reaches maximum in summer time and
minimum in winter time. Figure 3 (b) illustrates the solution of the nonautonomous system (2.6)-(2.7)
with T = 0.03, 0.08, 0.11, 0.3 and other parameters chosen in Table 1. The seasonal carrying capacity
leads to periodic fluctuations of algae.

In summer time, algal density is over the algal bloom level, and during this period, algal nutrient
content reaches the maximum while N:C ratio of algae reaches the minimum, due to the fact that
the speed of algal growth is faster than that of the algal nutrient content. Algal density reaches the
minimum in winter time, during which algal nutrient content is lowest and N:C ratio of algae is highest.
When there exists an cyclic oscillation (T = 0.08, 0.11, 0.3), Figure 3 (b) also shows that the maximum
of the algal density is positively related to the nutrient availability (T ), while the minimum remains
unchanged with varying T . In other words, T may influence the peak value of the algal density, thus
decreasing T in summer time can be an effective measure to reduce the algal density under the algal
bloom level. When T = 0.03, the solutions system (2.6)-(2.7) tend to a positive steady state with a low
level. In order to further understand the continuous variation of the algal density with respect to T , we
draw a bifurcation diagram (Figure 4 (a)). One can see that there exists a unique internal equilibrium
at the beginning, and then a positive periodic solution appears. The minimum of the cyclic oscillation
keeps constant with respect to T , while the maximum increases as T increases until a certain value of
T1 and stays unchanged beyond this value. It reveals that algal growth is restricted not only by light
intensity and nutrient availability but also its own stoichiometry when the nutrient availability beyond
T1. The amplitude of the cyclic oscillation of algae increases first and stay constant with the increase
in the strength of cyclic forcing of T as shown in Figure 4 (b).
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Figure 3. The numerical simulations of the system (2.6)-(2.7) with the seasonal carrying
capacity. Here K(t) = 1.25 − 0.75 cos(2π(t − 30)/365), T = 0.03, 0.08, 0.11, 0.3 and other
parameters are chosen as Table 1 shows.

There is another question: what is the threshold of T for the occurrence of algae bloom? We
consider the autonomous system (2.3)-(2.4) and the nonautonomous system (2.6)-(2.7) to give the
thresholds of T , respectively. As mentioned above, one can compute T 1

b = 0.1003 from (2.5) for
system (2.3)-(2.4). For system (2.6)-(2.7), we find the threshold T 2

b through

max
t∈[0,365]

x(t,T 2
b ) = xb.

By simple calculations, T 2
b = 0.1010 > T 1

b . That is to say, if we consider the seasonal changing
light intensity, there is a higher threshold than the autonomous system (2.3)-(2.4), but the difference is
relatively small.
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Figure 4. (a) The bifurcation diagram of minimum and maximum of periodic oscillation of
algae in the system (2.6)-(2.7) with respect to nutrient availability (T). (b) The bifurcation
diagram for amplitude of algal periodic oscillation with respect to T. Here K(t) = 1.25 −
0.75 cos(2π(t − 30)/365).

There is another question: what is the threshold of T for the occurrence of algae bloom? We
consider the autonomous system (2.3)-(2.4) and the nonautonomous system (2.6)-(2.7) to give the
thresholds of T , respectively. As mentioned above, one can compute T 1

b = 0.1003 from (2.5) for
system (2.3)-(2.4). For system (2.6)-(2.7), we find the threshold T 2

b through

max
t∈[0,365]

x(t,T 2
b ) = xb.

By simple calculations, T 2
b = 0.1010 > T 1

b . That is to say, if we consider the seasonal changing
light intensity, there is a higher threshold than the autonomous system (2.3)-(2.4), but the difference is
relatively small.

5. Control of algal bloom

The control method of the Chinese government is to remove algae (RA) periodically. Here we
propose the other control method: to block nutrient (BN) input from rivers constantly. For the RA
method, the model becomes

dx
dt

= rx
(
1 −

x
min{K(t), n/q̄}

)
− δ(t)x, (5.1)

dn
dt

= g(T − n)x − dn, (5.2)

where δ(t) is a Haar (step) function, which is a positive constant in summer time (July and August) and
zero in other seasons. Figure 5 shows that the algal bloom can never be controlled by removing algae
periodically. Every year algal bloom occurs no matter how high summer removal rate is. Hence, the
RA method is not an effective way to inhibit algal bloom in Yellow Sea off China. For the BN method,
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the model becomes

dx
dt

= rx
(
1 −

x
min{K(t), n/q̄}

)
, (5.3)

dn
dt

= g(T (1 − σ) − n)x − dn, (5.4)

where σ is the percentage of nutrient block rate from input rivers. Figure 6 shows that the algal bloom
can potentially be controlled by reducing N concentration. The reduction of N concentration leads to
lower peaks in summer time. Algal bloom clearly disappears when N is reduced by 70% or a higher
percentage. Sufficiently N reduction excludes fluctuations, and algal density will almost stay in a very
low constant (steady state) level, which is good for the control of algal bloom. Obviously the BN
method is an effective way to terminate algal bloom in Yellow Sea off China.
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Figure 5. The test of RA method with different summer removal rates to show its effective-
ness.
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Figure 6. The test of BN method with different nitrogen reduction percentages to show its
effectiveness.

6. Application to Bohai Sea

Primary production in Bohai Sea exhibited an annual cycle with a large peak occurring in May or
June. In the recent few years the cycle only had one peak, while during the years 1998-2006 the annual
cycle had two clear peaks with a large one occurring in May or June and a small one occurring in
August, September or October [5]. The small peak almost disappeared in the recent years, thus it is
not as robust as the large peak. For this reason, we fit 2007 primary production data of Bohai Sea that
clearly has one peak (see the data in Table 2).

Table 2. Bohai Sea data.
Time (day) Data (mgC m−2d−1)

30 780.006
58 975.007
89 1141.471
119 1648.797
150 2132.320
180 2330.495
211 2068.897
242 1846.945
272 1664.639
303 1545.728
333 1347.553
364 998.784
395 772.119
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We assume primary production is proportional to algal density and justify the light-dependent car-
rying capacity accordingly for Bohai Sea. We apply our model to fit the Bohai Sea data in Figure 7
using the least square method. The simulation time series fits the real data well with tiny mean relative
error about 0.094.
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Figure 7. Our model can fit the Bohai Sea data in Table 2 with the mean relative error about
0.094.

Because the nitrogen concentration in Bohai Sea is usually increased by industrial pollution, we
suggest the Chinese government to control pollution from industry to rivers, such as Yellow River,
merging to Bohai Sea, and to control direct pollution in Bohai Sea such as production of oil and gas.
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