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Abstract: In this contribution, the dynamic behaviors of a turbidostat model with Contois growth
rate and delay are investigated. The qualitative properties of the system are carried out including the
stability of the equilibria and the bifurcations. More concretely, we exhibit the transcritical bifurcation
by reducing the system without delay to a 1-dimensional system on a center manifold and find that
Hopf bifurcation occurs by choosing the delay as bifurcation parameter. Also, using the normal form
theory and the center manifold theorem we determine the direction and stability of the bifurcating
periodic solutions induced by the Hopf bifurcation. Finally, numerical simulations are presented to
support our theoretical results.
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1. Introduction

The chemostat is a laboratory bio-reactor used for the continuous culture of microorganism (Figure
1). The apparatus is of both ecological and mathematical interest since it can be used to represent a
lot of microorganism systems, such as the simple lake and the waste-water treatment, and plays an
important role in micrology and population [8, 9, 30].

Recently, a large of research devoted to modifying the chemostat for higher economical values by
controlling the dilution rate of the chemostat. The chemostat with the feedback control of the dilution
rate is established, which is referred to as turbidostat by biologists [14] (Figure 1). In the turbidostat,
the optical sensor measures the concentration of the microorganism and the signal feedback control
the dilution rate. For example, Flegr [5] analyzed the coexistence of two species in the turbidostat by
numerical analysis, and later Leenheer and Smith [13] also demonstrated results of Flegr by
theoretical analysis. They showed that a turbidostat with monotone response functions permits a
unique coexistence equilibrium and if it is locally asymptotically stable then it is globally attracting.
Furthermore, they also obtained that coexistence is not achievable in the turbidostat with more than
two competing organisms. Li [14] established a mathematical model of competition in a turbidostat
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Figure 1. The sketch map of chemostat and turbidostat: 1. Reservoir of sterile medium; 2.
Valve controlling flowofmedium; 3. Outletforspentmedium; 4. Photocell; 5. Lightsource.

for an inhibitory nutrient and achieved the stability of the equilibrium and the existence of limit
cycles. Li and Chen [16] studied a mathematical model of the turbidostat with impulsive state
feedback control and obtained the existence and the stability of periodic solutions of order one.

The uptake function in the model of microorganism continuous culture is the growth rate of the
microorganism including many forms, such as, Monod [19], Moser [20] and Contois [4]. The most
classical and common uptake function is Monod one, which is the function of concentration of
microorganism and the constant half saturation term. However, Contois [4] presented experimental
results to show that it is not necessarily a constant. Thus, the uptake function of Contois was
introduced, which depends on the ratio substrate to microorganism. Jost [24] explored the relation of
the Contois growth rate in microbiology and the ratio-dependent functional response in population
ecology introduced by Arditi and Ginzburg [1]. As such, many researchers also call it ratio-dependent
growth rate just as in population ecology [10, 11, 17, 34]. Especially, Hu et al. [11] investigated the
existence and the stability of the periodic solution of order one for the turbidostat system with
ratio-dependent growth rate and impulsive state feedback control. The Contois model gave
predictions that were in excellent agreement with experiment measurement. Especially, the Contois
model was found to accurately describe the processing of industrial wastewaters. Nelson investigated
a series of chemostat models with Contois growth rate. For example, Nelson and Sidhu [21]
investigated the Hopf bifurcation and degenerate Hopf bifurcation of the chemostat model with
Contois growth rate and the variable yield. Alqahtani et al. [22] studied the chemostat model with
variable yield and contois growth kinetics with substrate inhibition and showed the Hopf bifurcation,
degenerate Hopf bifurcation and Bogdanov-Takens bifurcation.

Researchers recognized that time delays are natural in the ecological systems [12, 27, 29]. Smith
and Waltman [30] showed that there are two obvious sources of delays in the cultivation of
microorganism, one of which is the possibility that the microorganism stores the nutrient. Caperon [3]
first introduced the delay into the chemostat model by some experiments. Bush and Cook [2]
corrected Caperon’s model and established a chemostat model with delay in the growth rate of
microorganism. The time delays yield some complex impacts to the chemostat model and biologists
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gave the reasonable explanations for the observations and experimental datas by investigating the
chemostat model with delays [18, 15, 23, 26, 31]. For example, Li et al. [15] considered the global
dynamics of the chemostat model with two populations of microorganisms competing for two
perfectly complementary nutrients when distributed delays are involved. Ruan and Wolkowicz [26]
studied the existence and the stability of the Hopf bifurcation of the chemostat model with a
distributed delay and found that the periodic solutions become unstable if the dilution rate is
increased. Wang and Wolkowicz [31] analyzed the local stability of the equilibria and the globally
asymptotical stability of the single species survival equilibrium when n species compete in the
chemostat with time delay for a single resource, hence the competitive exclusion principle holds. Yao
et al. [32] discussed the delayed turbidostat model with Monod growth rate and obtained the
phenomenon of oscillation. In the turbidostat, additional factor causing delay is due to the process
that the sensor controls the dilution, for example, Tagashira and Hara [28] and Yuan et al. [33]
considered the turbidostat models of the dilution rate with delayed feedback control.

Li and Xu [17] investigated the following chemostat system with Contois growth rate and time delay

 dS (t)
dt = d(S 0 − S (t)) − 1

α+βS (t)
mS (t)x(t)
ax(t)+S (t) ,

dx(t)
dt = x(t){ mS (t−τ)

ax(t−τ)+S (t−τ) − d},
(1.1)

where S (t) and x(t) present the concentration of substrate and the concentration of microorganism at
time t, respectively, S 0 > 0 stands for the input concentration of the nutrient, α + βS (t) (α > 0, β > 0)
is variable yield, m > 0 and a > 0 are growth parameters of the microorganism, τ > 0 is the time delay
of the growth response of the microorganism, and d > 0 presents the flow volume. They considered
the local and global stability of the equilibria and Hopf bifurcation.

In this paper, motivated by the works of Bush and Cook ([2]), Contois ([4]) and Li and Xu ([17]),
one focuses on the dynamics of a turbidostat model with Contois growth rate and time delay which
follows as

 dS (t)
dt = (d + kx(t))(S 0 − S (t)) − 1

γ
mS (t)x(t)
ax(t)+S (t) ,

dx(t)
dt = x(t){ mS (t−τ)

ax(t−τ)+S (t−τ) − d − kx(t)},
(1.2)

where S (t), x(t) and parameters S 0, m, a, τ are defined as in (1.1), γ > 0 is yield constant and d + kx(t)
(d > 0, k > 0) presents the dilution rate of the turbidostat.

The aim of this paper is to investigate the qualitative properties of system (1.2) including the stability
of the equilibria and the bifurcations. The outline of this paper is as follows. In Section 2, I analyze
the existence and local stability of the equilibria, and the transcritical bifurcation at the boundary
equilibrium and the Hopf bifurcation at the positive equilibrium. In Section 3 mostly focuses on the
stability and type of the bifurcating periodic solutions induced by Hopf bifurcation to system (1.2). I
in Section 4 further illustrate our main results by numerical simulations.

2. Stability of the equilibria and bifurcations

In this section, we investigate the existence and stability of the equilibria and the bifurcations at
equilibria including the transcritical bifurcation and Hopf bifurcation of system (1.2).
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It is convenient to introduce dimensionless variables. In particular, we set

S = S̃ S 0, x = x̃γS 0, k =
dk̃
γS 0

, a =
ã
γ
, m = dm̃, t =

t̃
d
.

System (1.2) becomes  dS (t)
dt = (1 + kx(t))(1 − S (t)) − mS (t)x(t)

ax(t)+S (t) ,
dx(t)

dt = x(t)( mS (t−τ)
ax(t−τ)+S (t−τ) − 1 − kx(t)),

(2.1)

where we still denote S̃ , x̃, k̃, ã, m̃, t̃ with S , x, k, a,m, t, respectively. First of all, we discuss the
existence of the equilibria of system (2.1) and have the following result.

Lemma 2.1. System (2.1) always has a boundary equilibrium E0 : (1, 0); If m > 1, then system (2.1)
has a unique positive equilibrium E1 : (S ∗, x∗), where S ∗ = 1+k

m+k when a = 1,

S ∗ =
−(2ak + a − k + m − 1) +

√
(2ak + a − k + m − 1)2 + 4ak(1 − a)(1 + k)

2k(1 − a)
,

when a , 1 and x∗ = 1 − S ∗.

Proof. From the right part of system (2.1), we can obtain the boundary equilibrium easily, which we
denote as E0 : (1, 0). In order to get the positive equilibrium, we need to discuss the roots of the
equation mS

a+(1−a)S − 1 − k(1 − S ) = 0 on the interval (0, 1). We define

f (S ) := (1 − a)kS 2 + (2ak + a − k + m − 1)S − a(1 + k). (2.2)

Therefore, we just need to discuss the zeros of the function f (S ) on the interval (0, 1), which need to
be discussed in the following three cases.

(i). If a = 1, then we have f (S ) = (k + m)S − 1 − K and f (S ) has a zero S = 1+k
m+k on the interval

(0, 1) when m > 1, and f (S ) has no zero on the interval (0, 1) when m ≤ 1. Thus, we obtain S ∗ = 1+k
m+k

when a = 1 and m > 1.
(ii). If 0 < a < 1, then f (S ) is a quadratic function of S . Since the coefficient of quadratic term

k(1 − a) > 0 and f (0) = −a(1 + k) < 0, f (S ) = 0 has two roots

S 1 := −(2ak+a−k+m−1)−
√

(2ak+a−k+m−1)2+4ak(1−a)(1+k)
2k(1−a) ,

S 2 := −(2ak+a−k+m−1)+
√

(2ak+a−k+m−1)2+4ak(1−a)(1+k)
2k(1−a) ,

(2.3)

and it is obvious that S 1 < 0, S 2 > 0. By simplifying the inequality S 2 < 1, we can get that S 2 < 1 if
and only if m > 1. Thus, we have S ∗ = S 2 when 0 < a < 1 and m > 1.

(iii). If a > 1, then f (S ) still is a quadratic function of S with the coefficient of quadratic term
k(1 − a) < 0 and f (0) = −a(1 + k) < 0. The discriminant of f (S ) is

∆ := a2 + 2(2km − k + m − 1)a + (k − m + 1)2.

We can take ∆ as the function of a. Therefore, the discriminant of ∆ is ∆̃ := km(m − 1)(1 + k). For this
case we need further discussion in the following three cases.
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(a). If m = 1, then ∆̃ = 0 and the double root of ∆ = 0 is −k. Therefore, ∆ > 0 holds when a > 1.
We have f (S ) = 0 has two roots S 1 =

a(1+k)
k(a−1) > 1 and S 2 = 1. Thus, f (S ) has no zero on the interval

(0, 1) when a > 1 and m = 1.
(b). If m < 1, then ∆̃ < 0, which implies ∆ > 0. We have f (S ) has two roots S 1 and S 2 presented in

(2.3) and S 2 < S 1. By simplifying S 2 > 1, we can get that S 2 > 1 if and only if m < 1. Thus, f (S ) has
no zero on the interval (0, 1) when a > 1 and m < 1.

(c). If m > 1, then ∆̃ > 0. Since 4km− 2k + 2m− 2 > 0 and (k −m + 1)2 ≥ 0, the two roots of ∆ = 0
denoted by a1 and a2 satisfy a1 < a2 ≤ 0. Therefore, ∆ > 0 holds when a > 1 and m > 1. We obtain
f (S ) has two roots presented in (2.3) and S 1 > S 2. Further, we can get 0 < S 2 < 1 if and only if m > 1
and a > 1. Suppose that S 1 < 1, then we get m > 1, which is a contradiction. Thus, we have S ∗ = S 2

when a > 1 and m > 1.
This completes the proof. �

From the above analysis we have the existence of equilibria of system (2.1). In the following, we
consider qualitative properties of system (2.1) including stability of the equilibria and the bifurcations.
We discuss system (2.1) in two cases: (i) τ = 0 and (ii) τ > 0.

Case (i): τ = 0, i.e. there is no time delay in system (2.1), then system (2.1) becomes

 dS (t)
dt = (1 + kx(t))(1 − S (t)) − mS (t)x(t)

ax(t)+S (t) ,
dx(t)

dt = x(t)( mS (t)
ax(t)+S (t) − 1 − kx(t)).

(2.4)

We first investigate the stability of the equilibria E0 and E1 and have the following result.

Theorem 2.2. If m < 1, then E0 is a stable node; If m > 1, then E0 is a saddle and E1 is a stable node;
If m = 1, then E0 is a saddle-node.

Proof. The Jacobian matrix at E0 is

J0 :=
(
−1 −m
0 m − 1

)
.

The determinant, trace and discriminant are respectively

D0 := 1 − m, T0 := m − 2, ∆0 := T 2
0 − 4D0 = m2 > 0.

If m < 1, then D0 > 0 and T0 < 0. Thus, E0 is a stable node. If m > 1, then D0 < 0. Thus, E0

is a saddle. If m = 1, then D0 = 0 and T0 = −1. This is the degenerate case, which needs further
discussion.

Translating the equilibrium E0 to the origin by S̃ = S − 1, system (2.4) becomes the following
system  dS (t)

dt = −S (t)(1 + kx(t)) − (S (t)+1)x(t)
ax(t)+S (t)+1 ,

dx(t)
dt = x(t)( S (t)+1

ax(t)+S (t)+1 − 1 − kx(t)),
(2.5)

where we still use S to present S̃ . Using the linear transformation u = x, v = S + x and time-rescaling
t1 = −t to normalize the linear part of system (2.5), we can change system (2.5) into the following{ du

dt = (a + k)u2 + a(1 − a)u3 − au2v + · · · := Φ(u, v),
dv
dt = v + kuv := Ψ(u, v),

(2.6)
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where we still denote t1 as t. By the implicit function theorem, there is a unique function v = φ(u)
such that Ψ(u, v) = 0. We can obtain v = φ(u) = 0 by solving Ψ(u, v) = 0. Substituting v = 0 into
Φ(u, v) = 0, we get

Φ(u, v) = (a + k)u2 + a(1 − a)u3 + · · · .

Thus E0 is a saddle-node when m = 1 by Theorem 7.1 in Zhang et al. ([35]). Moreover, the parabolic
sector of the saddle-node lies on the right-hand plane in the (u, v)-coordinates and the two hyperbolic
sectors lie on the left-hand plane since a + k > 0.

We continue to prove the properties of E1.
The Jacobian matrix at E1 is

J1 :=

 −1 − kx∗ − ma(x∗)2

(ax∗+S ∗)2 kx∗ − m(S ∗)2

(ax∗+S ∗)2

ma(x∗)2

(ax∗+S ∗)2 −1 − 2kx∗ +
m(S ∗)2

(ax∗+S ∗)2

 .
The determinant, trace and discriminant of J1 are respectively

D1 := (1 + kx∗){maS ∗x∗+kx∗(ax∗+S ∗)2+max∗

(ax∗+S ∗)2 } > 0,

T1 := −2 − 3kx∗ +
m(S ∗)2

(ax∗+S ∗)2 −
ma(x∗)2

(ax∗+S ∗)2

= −{1 + 2k∗ + maS ∗x∗
(ax∗+S ∗)2 +

ma(x∗)2

(ax∗+S ∗)2 } < 0,

∆1 := T 2
1 − 4D1 = {−kx∗ +

m(S ∗)2

(ax∗+S ∗)2 −
ma(x∗)2

(ax∗+S ∗)2 }
2 ≥ 0.

Thus, E1 is a stable node if it exists.
We complete the proof. �

It is indicated in Lemma 2.1 that system (2.4) has either exact one equilibrium E0 when m ≤ 1 or
exact two equilibria E0 and E1 when m > 1. In the following we reduce the system to a 1-dimensional
system on a center manifold and display the mechanism for E1 to arise.

Theorem 2.3. System (2.4) experiences a transcritical bifurcation at E0 when m = 1.

Proof. Let ε = m−1 and translate the equilibrium E0 to the origin by S̃ = S −1, system (2.4) becomes
the following system { dS

dt = −(1 + kx)S − (1+ε)(S +1)
ax+S +1 x,

dx
dt = x{ (1+ε)(S +1)

ax+S +1 − 1 − kx},
(2.7)

where we still denote S̃ as S .
Applying the transformation S = −u + v and x = u to diagonalize the linear part of system (2.7), we

can change system (2.7) into the suspended system
du
dt = εu − (a + k)u2 − aεu2 + au2v + a(a − 1)u3 + · · · ,
dv
dt = −v − kuv,
dε
dt = 0.

(2.8)

By the center manifold theory, system (2.8) has a two-dimensional center manifold Wc : v = h(u, ε)
near O, which is tangent to the plane v = 0 at O in the (u, v, ε)-space. In order to obtain the second-order
approximation of function h, we set

v = h(u, ε) = a1u2 + b1uε + c1ε
2 + o(|u, ε|2). (2.9)
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Substituting (2.9) into the equality v̇ = huu̇ and comparing the coefficient of u2, ε2 and uε, we have
a1 = b1 = c1 = 0. Hence the center manifold is v = o(|u, ε|2) and the restricted system of (2.8) on the
center manifold (2.9) is

du
dt

= εu − (a + k + aε)u2 + a(a − 1)u3 + · · · . (2.10)

The expression (2.10) shows that a transcritical bifurcation occurs at E0 as ε varies through the
bifurcation value ε = 0 ([6]). More concretely, when ε < 0, E0 is stable and the other equilibrium
appears on the negative u-axis; when ε = 0, the two equilibria coincide at E0, which is a saddle-node;
when ε > 0, E0 remains an equilibrium but is unstable while a stable equilibrium E1 arises.

We complete the proof. �

Case (ii): τ > 0.
In this case we will investigate the effect of time delay on the system. The time delay can cause the

loss of stability of E1 and can induce periodic solutions. Note that if m > 1, then system (2.1) has a
unique positive equilibrium E1. To further consider the local stability of E1 and the Hopf bifurcations
induced by the delay, we set x̃(t) = x(t)− x∗, S̃ (t) = S (t)− S ∗ and still denote x̃, S̃ as x, S . Then system
(2.1) can be changed into the following system



dS (t)
dt = a11S (t) + a12x(t) + a13S 2(t) + a14x2(t) + a15S (t)x(t)

+ a16x3(t) + a17S (t)x2(t) + a18S 2(t)x(t) + a19S 3(t) + · · · ,
dx(t)

dt
= b11S (t − τ) + b12x(t) + b13x(t − τ) + b14S 2(t − τ) + b15x2(t)

+ b16x2(t − τ) + b17S (t − τ)x(t) + b18x(t)x(t − τ)
+ b19S (t − τ)x(t − τ) + b20x(t)x2(t − τ) + b21x3(t − τ)
+ b22x(t)x(t − τ)S (t − τ) + b23S (t − τ)x2(t − τ)
+ b24S 2(t − τ)x(t) + b25x(t − τ)S 2(t − τ) + b26S 3(t − τ) + · · · ,

(2.11)

where
a11 = −1 − kx∗ − ma(x∗)2

(ax∗+S ∗)2 , a12 = kx∗ − m(S ∗)2

(ax∗+S ∗)2 , a13 =
ma(x∗)2

(ax∗+S ∗)3 ,

a14 =
ma(S ∗)2

(ax∗+S ∗)3 , a15 = −k − 2maS ∗x∗
(ax∗+S ∗)3 , a16 = −

ma2(S ∗)2

(ax∗+S ∗)4 ,

a17 =
maS ∗(2ax∗−S ∗)

(ax∗+S ∗)4 , a18 = −
max∗(ax∗−2S ∗)

(ax∗+S ∗)4 , a19 = −
ma(x∗)2

(ax∗+S ∗)4 ,

b11 =
ma(x∗)2

(ax∗+S ∗)2 , b12 = −1 − 2kx∗ + mS ∗
ax∗+S ∗ , b13 = − maS ∗x∗

(ax∗+S ∗)2 ,

b14 = −
ma(x∗)2

(ax∗+S ∗)3 , b15 = −k, b16 = ma2S ∗x∗
(ax∗+S ∗)2 , b17 = max∗

(ax∗+S ∗)2 ,

b18 = − maS ∗
(ax∗+S ∗)2 , b19 = −

max∗(ax∗−S ∗)
(ax∗+S ∗)3 , b20 = ma2S ∗

(ax∗+S ∗)3 ,

b21 = − ma3S ∗x∗
(ax∗+S ∗)4 , b22 = −

ma(ax∗−S ∗)
(ax∗+S ∗)3 , b23 =

ma2 x∗(ax∗−2S ∗)
(ax∗+S ∗)4 ,

b24 = − max∗
(ax∗+S ∗)3 , b25 =

max∗(2ax∗−S ∗)
(ax∗+S ∗)4 , b26 =

ma(x∗)2

(ax∗+S ∗)4 .

The following characteristic equation can be achieved from the linear system of system (2.11)

λ2 − (a11 + b12)λ + e−λτ(−b13λ + a11b13 − a12b11) + a11b12 = 0. (2.12)

To investigate the stability of the equilibrium E1 and Hopf bifurcation of (2.1), we must study the
distribution of the roots of (2.12).
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Lemma 2.4. If a11b12 + a12b11 − a11b13 < 0, then ±iw0(w0 > 0) are the eigenvalues of (2.12) when
τ = τ j. The values of w0 and τ j can be presented as follows

w0 =

√
2a11b12+b2

13−(a11+b12)2+
√
{−2a11b12−b2

13+(a11+b12)2}2−4{a2
11b2

12−(a11b13−a12b11)2}

2 ,

τ j = 1
w0
{arccos( (w2

0−a11b12)(a11b13−a12b11)−b13(a11+b12)w2
0

(a11b13−a12b11)2+b2
13w2

0
) + 2 jπ}, j = 0, 1, 2 · · · .

Proof. If λ = iw (w > 0) is a root of (2.12), then we have

−w2 − iw(a11 + b12) + (cos wτ − i sin wτ)(−ib13w + a11b13 − a12b11) + a11b12 = 0.

Separating the real and imaginary parts, we obtain

(a11b13 − a12b11) cos wτ − b13w sin wτ = w2 − a11b12,

(a11b13 − a12b11) sin wτ + b13w cos wτ = −w(a11 + b12),
(2.13)

which implies the following equation

w4 + {−2a11b12 + (a11 + b12)2 − b2
13}w

2 + a2
11b2

12 − (a11b13 − a12b11)2 = 0.

Denote
h(w) := w4 + (a2

11 + b2
12 − b2

13)w2 + a2
11b2

12 − (a11b13 − a12b11)2.

Since

a11b12 + a11b13 − a12b11 = (1 + kx∗){kx∗ + maS ∗x∗
(ax∗+S ∗)2 } +

m2aS ∗(x∗)2(ax∗+S ∗)
(ax∗+S ∗)4 > 0

and the condition a11b12+a12b11−a11b13 < 0, we have the constant term of h(w) is negative. In addition,
we can obtain the coefficient of quadratic term of h(w) is positive. In fact,

a2
11 + b2

12 − b2
13 = {1 + kx∗ +

ma(x∗)2

(ax∗+S ∗)2 }
2 + (1 + 2kx∗ − mS ∗

ax∗+S ∗ )
2 −

(maS ∗x∗)2

(ax∗+S ∗)4

= { mS ∗
ax∗+S ∗ +

ma(x∗)2

(ax∗+S ∗)2 }
2 + (kx∗)2 −

(maS ∗x∗)2

(ax∗+S ∗)4

=
m2{(S ∗)2+a(x∗)2}2+2m2aS ∗x∗{(S ∗)2+a(x∗)2}

(ax∗+S ∗)4 + (kx∗)2 > 0.

Thus, h(w) has a unique positive real root

w0 =
√

2
2 {2a11b12 + b2

13 − (a11 + b12)2

+

√
(−2a11b12 − b2

13 + (a11 + b12)2)2 − 4(a2
11b2

12 − (a11b13 − a12b11)2)}
1
2 .

(2.14)

Substituting w0 into (2.13), we conclude that

τ j = 1
w0
{arccos( (w2

0−a11b12)(a11b13−a12b11)−b13(a11+b12)w2
0

(a11b13−a12b11)2+b2
13w2

0
) + 2 jπ},

j = 0, 1, 2 · · · .
(2.15)

Hence, (2.12) has a pair of purely imaginary roots ±iw0 as τ = τ j, j = 0, 1, 2 · · · .
This completes the proof. �
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Let λ(τ) = α(τ) + iβ(τ) denote the root of (2.12) near τ = τ j satisfying α(τ j) = 0 and β(τ j) = w0.
Then we have the following transversality condition.

Lemma 2.5. The following transversality condition holds

dRe(λ(τ j))
dτ

> 0, j = 0, 1, 2 · · · .

Proof. Differentiating (2.12) with respect to τ yields that(
dλ
dτ

)−1

=
(2λ − a11 − b12)eλτ − b13

λ(−b13λ + a11b13 − a12b11)
−
τ

λ
.

Thus,

Re
{(dλ(τ j)

dτ

)−1
}

= Re
{

(2iw0 − a11 − b12)(cos w0τ + i sin w0τ) − b13

w2
0b13 + iw0(a11b13 − a12b11)

}
=

h′(w0)
2w3

0b2
13 + 2w0(a11b13 − a12b11)2

.

Since h(w) is a quartic function of w and the leading coefficient of which is positive, furthermore,
from the analysis of Lemma 2.4, we obtain that the four roots of equation h(w) = 0 are a pair of
conjugate complex roots, a negative real root and a positive real root w0, respectively. Hence h(w) is
monotonically increasing at w0, i.e., h′(w0) > 0, which implies h′(w0)/{2w3

0b2
13+2w0(a11b13−a12b11)2} >

0. Thus, we have

sign
{

Re
(
dλ(τ j)

dτ

)}
= sign

Re
(
dλ(τ j)

dτ

)−1
 = 1.

The proof is completed. �

Now we have the following result about the distribution of the roots of the exponential polynomial
(2.12) by Corollary 2.4 in [25].

Lemma 2.6. Suppose that w0 and τ j ( j = 0, 1, 2 · · · ) are defined by (2.14) and (2.15), respectively. We
have the following results

(i) If a11b12 + a12b11 − a11b13 ≥ 0, then all the roots of (2.12) have negative real parts for all τ > 0.
(ii) If a11b12 + a12b11 − a11b13 < 0 and τ = τ j, then (2.12) has a pair of simple imaginary roots ±iw0.

Furthermore, if τ ∈ [0, τ0), then all the roots of (2.12) have negative real parts; if τ ∈ (τ j, τ j+1), j =

0, 1, 2 · · · , then (2.12) has at least one root with positive real parts.

From Lemma 2.4, Lemma 2.5, Lemma 2.6 and the Hopf bifurcation theorem, we have the following
result of E1.

Theorem 2.7. For system (2.1), we have
(i) if a11b12 + a12b11 − a11b13 ≥ 0, then the unique positive equilibrium E1 is asymptotically stable

for all τ ≥ 0.
(ii) if a11b12 + a12b11 − a11b13 < 0, then the equilibrium E1 is asymptotically stable for τ ∈ [0, τ0)

and unstable for τ > τ0. Hopf bifurcation occurs when τ = τ j, j = 0, 1, 2 · · · .
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3. Direction and stability of the hopf bifurcation

In this section, we consider the direction and stability of the bifurcating periodic solutions of system
(2.1) induced by the Hopf bifurcation by using the normal form theory and the center manifold theorem
by Hassard et al. ([7]). We compute (see Appendix for details of the computation)

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · ,

where the first four coefficients g20, g11, g02 and g21 that we need for determining the properties of the
Hopf bifurcation are of the following forms

g20 = 2τ jD̄{a14q2
1 + a15q1 + a13 + q̄∗1

(
b15q2

1 + (b18q2
1 + b17q1)e−iw0τ j + (b16q2

1
+ b19q1 + b14)e−2iw0τ j

)
},

g11 = τ jD̄{a15q1 + a15q̄1 + 2a13 + 2a14q̄1q1 + q̄∗1
(
2b14 + b19q1 + b19q̄1 + 2b15q̄1q1

+ 2b16q̄1q1 + (b17q̄1 + b18q1q̄1)e−iw0τ j + (b17q1 + b18q̄1q1)eiw0τ j
)
},

g02 = 2τ jD̄{a13 + a14q̄2
1 + a15q̄1 + q̄∗1

(
b15q̄2

1 + (b16q̄2
1 + b19q̄1 + b14)e2iw0τ j + (b18q̄2

1
+ b17q̄1)eiw0τ j

)
},

g21 = τ jD̄{3a16q2
1q̄1 + a17q2

1 + 2a17q1q̄1 + 2a18q1 + a18q̄1 + 3a19 + (1
2a15

+ a14q̄1)W (2)
20 (0) + (a15 + 2a14q1)W (2)

11 (0) + (a15q1 + 2a13)W (1)
11 (0) + ( 1

2a15q̄1

+ a13)W (1)
20 (0) + q̄∗1

(
2b24q1 + (b22q1 + b22q̄1)q1 + (3b26 + 2b23q̄1q1 + 3b21q̄1q2

1
+ b23q2

1 + b25q̄1 + 2b25q1)e−iw0τ j + (b24q̄1 + b20q2
1q̄1 + b22q1q̄1)e−2iw0τ j

+ 2b20q̄1q2
1 + ((b19q1 + 2b14)e−iw0τ j + b17q1)W (1)

11 (−1) + (( 1
2b19q̄1 + b14)eiw0τ j

+ 1
2b17q̄1)W (1)

20 (−1) + ((b18q1 + b17)e−iw0τ j + 2b15q1)W (2)
11 (0) + (1

2 (b18q̄1

+ b17)eiw0τ j + b15q̄1)W (2)
20 (0) + ((2b16q1 + b19)e−iw0τ j + b18q1)W (2)

11 (−1)
+ ((b16q̄1 + 1

2b19)eiw0τ j + 1
2b18q̄1)W (2)

20 (−1)
)
},

in which the terms W (1)
11 (0), W (2)

11 (0), W (1)
11 (−1), W (2)

11 (−1), W (1)
20 (0), W (2)

20 (0), W (1)
20 (−1), W (2)

20 (−1), q1, q∗1
and D̄ are calculated in Appendix.

Now using the four coefficients we obtain the values of the parameters µ2, β2 and T2

c1(0) =
i

2w0τ j
(g11g20 − 2|g11|

2 −
1
3
|g02|

2) +
g21

2
, µ2 =

−Re(c1(0))
Re(λ′(τ j))

,

β2 = 2Re(c1(0)), T2 = −
Im(c1(0)) + µ2Im(λ′(τ j))

w0τ j
.

Thus, using the quantities above, the properties of the Hopf bifurcation are determined by the following
theorem.

Theorem 3.1. The properties of the Hopf bifurcation are determined by the parameters µ2, β2 and T2,
where µ2 determines the direction of the Hopf bifurcation: if µ2 > 0 (< 0), then the Hopf bifurcation
is supercritical (subcritical); β2 determines the stability of the bifurcating periodic solutions: if β2 < 0
(> 0), the bifurcating periodic solutions are stable (unstable); and T2 determines the period of the
bifurcating periodic solutions: if T2 > 0 (< 0), the period increases (decreases).
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4. Numerical simulation and discussion

We discussed a turbidostat system with Contois growth rate and time delay in this paper. We
investigated the qualitative properties of system (1.2) including the existence and the stability of the
equilibria and the bifurcations. In the case of no time delay, the boundary equilibrium E0 is globally
asymptotically stable if it is the unique equilibrium, and the positive equilibrium E1 arising from a
transcritical bifurcation is globally asymptotically stable if it exists. In the case of system with delay,
the stability of E1 is changed and the Hopf bifurcation occurs by choosing the delay as the bifurcation
parameter. Furthermore, the stability and direction of the bifurcating periodic solutions are discussed
by using the normal form and center manifold theorem. More concretely, when the delay is greater
than the critical value τ0, the positive equilibrium E1 loses its stability and the stable periodic solution
appears. The qualitative analysis and theoretical results show that the delay can change the topological
structures of the system and produces more complicated dynamic behaviors.

We next offer an example to illustrate the feasibility of our results. When system (2.1) without
delay, i.e. τ = 0, we set a = 1 and k = 0.6, the system has the unique equilibrium E0, which is a
stable node as m = 0.5; the system has a saddle E0 and a stable node E1 = (0.76, 0.24) as m = 1.5;
the system has the unique equilibrium E0, which is a saddle-node as m = 1 (Figure 2). However, when
m = 1.5, a = 1 and k = 0.6, by choosing the time delay τ as the bifurcation parameter, we obtained the
critical value of bifurcation τ0 ≈ 7. Thus, the positive equilibrium E1 is asymptotically stable when
τ = 6 < τ0, which is supported by Figure 3. The positive equilibrium E1 is unstable and a stable
bifurcating periodic solution occurs from E1 when τ = 8 > τ0, which can be seen clearly in Figure 4.
According to (4.10) we can compute

g20 ≈ −4.25 − 9.16i, g11 ≈ 0.21 + 1.3i, g02 ≈ 11.79 − 0.01i, g21 ≈ −47.16 − 5.86i.

Further, we can get
c1(0) ≈ −21.71 − 12.63i.

Then, in accordance with (4.22), we can obtain

µ2 ≈ 2131.70 > 0, β2 ≈ −43.42 < 0, T2 ≈ 38.7 > 0.

Therefore, when τ = 8, µ2 > 0 and β2 < 0, then the Hopf bifurcation for system (2.1) is supercritical
and the stable bifurcating periodic solutions occur from the positive equilibrium E1. From Figure 3 and
Figure 4, we can find that the dynamics of system (2.1) change when τ locates near τ0. The bifurcation
diagram of x−τ is presented in Figure 5, from which we find that even for parameter values not chosen,
the stable periodic solutions occur in a large region of time delay.

Remark 1. This is a remark about Figure 2. In fact, considering the biological background, the set
Ω = {(S , x) : 0 ≤ S ≤ 1, x ≥ 0} is positively invariant with respect to system (2.4). Further, E0 is
globally asymptotically stable with respect to Ω if m < 1; E0 is globally attractive with respect to Ω if
m = 1; and E1 is globally asymptotically stable with respect to Ω if m > 1. These results can be proved
easily by Liapunov-LaSalle invariant principle and Poincare-Bendixson Theorem respectively.
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Figure 2. (a) When m = 0.5, a = 1 and k = 0.6, E0 is the unique equilibrium and is a stable
node; (b) When m = 1.5, a = 1 and k = 0.6, E0 is a saddle and E1 = (0.76, 0.24) is a stable
node; (c) When m = 1, a = 1 and k = 0.6, E0 is the unique equilibrium and is a saddle-node.
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Figure 3. The positive equilibrium E1 = (0.76, 0.24) of system (2.1) is asymptotically stable
when m = 1.5, a = 1, k = 0.6 and τ = 6 < τ0 ≈ 7. Here (S (0), x(0)) = (0.5, 0.8).
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Figure 4. The positive equilibrium E1 = (0.76, 0.24) of system (2.1) is unstable and a
bifurcating stable periodic solution occurs from E1 when m = 1.5, a = 1, k = 0.6 and
τ = 8 > τ0 ≈ 7. Here (S (0), x(0)) = (0.5, 0.8).
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Figure 5. The bifurcation diagram of x − τ with m = 1.5, a = 1, k = 0.6 and (S (0), x(0)) =

(0.5, 0.8).
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Appendix

We obtained in Section 2 that system (2.1) undergoes the Hopf bifurcation at the positive
equilibrium E1 when τ = τ j. In the following the properties of the Hopf bifurcation are determined.
We first consider system (2.1) by the transformation ỹ1(t) = S (τt), ỹ2(t) = x(τt), τ = τ j + µ and still
denote ỹ1(t), ỹ2(t) as y1(t), y2(t). Then system (2.1) is equivalent to a functional differential equation
defined in C = C([−1, 0],R2)

ẏ(t) = Lµ(yt) + h(µ, yt), (4.1)

where y(t) = (y1(t), y2(t))T ∈ R2, and Lµ : C → R2 and h : R × C → R2 are given respectively by

Lµϕ = (τ j + µ)
(

a11 a12

0 b12

) (
ϕ1(0)
ϕ2(0)

)
+ (τ j + µ)

(
0 0

b11 b13

) (
ϕ1(−1)
ϕ2(−1)

)
and

h(µ, ϕ) = (τ j + µ)
(

h1

h2

)
,

where
h1 = a13ϕ

2
1(0) + a14ϕ

2
2(0) + a15ϕ1(0)ϕ2(0) + a16ϕ

3
2(0) + a17ϕ1(0)ϕ2

2(0)
+ a18ϕ

2
1(0)ϕ2(0) + a19ϕ

3
1(0) + · · · ,

h2 = b14ϕ
2
1(−1) + b15ϕ

2
2(0) + b16ϕ

2
2(−1) + b17ϕ1(−1)ϕ2(0) + b18ϕ2(0)ϕ2(−1)

+ b19ϕ1(−1)ϕ2(−1) + b20ϕ
2
2(−1)ϕ2(0) + b21ϕ

3
2(−1)

+ b22ϕ2(0)ϕ2(−1)ϕ1(−1) + b23ϕ1(−1)ϕ2
2(−1) + b24ϕ

2
1(−1)ϕ2(0)

+ b25ϕ
2
1(−1)ϕ2(−1) + b26ϕ

3
1(−1) + · · · ,

and ϕ = (ϕ1, ϕ2)T ∈ C.

By the Riesz representation theorem, there exists a matrix whose components are bounded variation
functions η(θ, µ) for θ ∈ [−1, 0] such that

Lµϕ =

∫ 0

−1
dη(θ, µ)ϕ(θ) for ϕ ∈ C.

Indeed, we may choose

η(θ, µ) = (τ j + µ)
(

a11 a12

0 b12

)
δ(θ) − (τ j + µ)

(
0 0

b11 b13

)
δ(θ + 1),

where δ is the Dirac delta function.
For ϕ ∈ C1([−1, 0],R2), we further define the operators A and B as

A(µ)ϕ =

 dϕ(θ)
dθ , θ ∈ [−1, 0),∫ 0

−1
dη(θ, µ)ϕ(θ), θ = 0,

B(µ)ϕ =

{
0, θ ∈ [−1, 0),
h(µ, ϕ), θ = 0.
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Then system (4.1) is equivalent to

ẏt = A(µ)yt + B(µ)yt, (4.2)

where yt(θ) = y(t + θ) for θ ∈ [−1, 0].
For ψ ∈ C1([0, 1], (R2)∗), we define A∗ of A as

A∗ψ =


−dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0.

In order to normalize the eigenvectors of A and A∗, we define a bilinear inner product

〈ψ(s), ϕ(θ)〉 = ψ̄T (0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄T (ξ − θ)dη(θ)ϕ(ξ)dξ, (4.3)

where η(θ) = η(θ, 0).
From the above discussion we assume q(θ) and q∗(s) are eigenvectors of A and A∗ corresponding

to iw0τ j and −iw0τ j. Suppose that q(θ) = (1, q1)T eiw0τ jθ is the eigenvector of A(0) corresponding to
iw0τ j, then Aq(0) = iw0τ jq(0). On the basis of the definitions of A(0), Lµϕ and η(θ, µ), the following
conclusion can be achieved

τ j

(
a11 − iw0 a12

b11e−iw0τ j b12 − b13e−iw0τ j − iw0

) (
1
q1

)
=

(
0
0

)
.

We can get

q1 =
iw0 − a11

a12
. (4.4)

Similarly, by the definition of A∗, we have

τ j

(
a11 + iw0 b11eiw0τ j

a12 b12 + b13eiw0τ j + iw0

) (
1
q∗1

)
=

(
0
0

)
and

q∗1 =
iw0 − a11

b11eiw0τ j
. (4.5)

We can then obtain the value of D by 〈q∗, q〉 = 1. Further it holds from (4.3) that

〈q∗(s), q(θ)〉 = D̄(1, q̄∗1)(1, q1)T

−
∫ 0

−1

∫ θ

ξ=0
D̄(1, q̄∗1)e−iw0τ j(ξ−θ)dη(θ)(1, q1)T eiξw0τ jdξ

= D̄{1 + q̄∗1q1 −
∫ 0

−1
(1, q̄∗1)θeiθw0τ jdη(θ)(1, q1)T }

= D̄{1 + q̄∗1q1 + τ je−iw0τ j q̄∗1(b11 + b13q1)}.

Hence

D =
1

1 + q∗1q̄1 + τ jeiw0τ jq∗1(b11 + b13q̄1)
. (4.6)

Mathematical Biosciences and Engineering Volume 16, Issue 1, 56–77.



74

In the following part, we compute the coordinates describing center manifold C0 at µ = 0 by using
the theory in [7]. Define

z(t) = 〈q∗(s), yt(θ)〉, W(t, θ) = yt(θ) − 2Re{z(t)q(θ)}. (4.7)

Then on the center manifold C0, we have

W(t, θ) = W(z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02(θ)

z̄2

2
+ · · · ,

where z and z̄ are local coordinates for center manifold C0 in the direction of q∗ and q̄∗. It is easy to
see that W is real if yt is real. Thereby, we next only consider real solutions of (4.2). If yt ∈ C0 is the
solution of (4.2), since µ = 0, which implies that

ż(t) =< q∗, ẏt >=< q∗, Aẏt + Bẏt >=< A∗q∗, ẏt > + < q∗, Bẏt >

= iw0τ jz + q̄∗(0)h(0,W(z, z̄, 0) + 2Re{zq(0)})
def
= iw0τ jz + q̄∗(0)h0(z, z̄) = iw0τ jz + g(z, z̄),

where

g(z, z̄) = q̄∗(0)h0(z, z̄) = g20
z2

2 + g11zz̄ + g02
z̄2

2 + g21
z2 z̄
2 + · · · . (4.8)

In the following we need to compute the coefficients g20, g11, g02 and g21. Note that
yt(θ) = (y1t(θ), y2t(θ))T = W(t, θ) + zq(θ) + zq(θ) and q(θ) = (1, q1)T eiw0τ jθ. It then follows that

y1t(0) = z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

y2t(0) = q1z + q̄1z̄ + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

y1t(−1) = ze−iw0τ j + z̄eiw0τ j + W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄

+ W (1)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3),

y2t(−1) = q1ze−iw0τ j + q̄1z̄eiw0τ j + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄

+ W (2)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3).

(4.9)

It follows together with the definition h(µ, ϕ) that

g(z, z̄) = q̄∗(0)h0(z, z̄)
= τ jD̄{a13ϕ

2
1(0) + a14ϕ

2
2(0) + a15ϕ1(0)ϕ2(0) + a16ϕ

3
2(0) + a17ϕ1(0)ϕ2

2(0)
+ a18ϕ

2
1(0)ϕ2(0) + a19ϕ

3
1(0) + · · · + q̄∗1

(
b14ϕ

2
1(−1) + b15ϕ

2
2(0)

+ b16ϕ
2
2(−1) + b17ϕ1(−1)ϕ2(0) + b18ϕ2(0)ϕ2(−1) + b19ϕ1(−1)ϕ2(−1)

+ b20ϕ
2
2(−1)ϕ2(0) + b21ϕ

3
2(−1) + b22ϕ2(0)ϕ2(−1)ϕ1(−1)

+ b23ϕ1(−1)ϕ2
2(−1) + b24ϕ

2
1(−1)ϕ2(0) + b25ϕ

2
1(−1)ϕ2(−1)

+ b26ϕ
3
1(−1) + · · ·

)
}.
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By substituting (4.9) into the above equation and comparing the coefficients with (4.8) we have

g20 = 2τ jD̄{a14q2
1 + a15q1 + a13 + q̄∗1

(
b15q2

1 + (b18q2
1 + b17q1)e−iw0τ j

+ (b16q2
1 + b19q1 + b14)e−2iw0τ j

)
},

g11 = τ jD̄{a15q1 + a15q̄1 + 2a13 + 2a14q̄1q1 + q̄∗1
(
2b14 + b19q1 + b19q̄1

+ 2b15q̄1q1 + 2b16q̄1q1 + (b17q̄1 + b18q1q̄1)e−iw0τ j

+ (b17q1 + b18q̄1q1)eiw0τ j
)
},

g02 = 2τ jD̄{a13 + a14q̄2
1 + a15q̄1 + q̄∗1

(
b15q̄2

1 + (b16q̄2
1 + b19q̄1

+ b14)e2iw0τ j + (b18q̄2
1 + b17q̄1)eiw0τ j

)
},

g21 = τ jD̄{3a16q2
1q̄1 + a17q2

1 + 2a17q1q̄1 + 2a18q1 + a18q̄1 + 3a19

+ (1
2a15 + a14q̄1)W (2)

20 (0) + (a15 + 2a14q1)W (2)
11 (0)

+ (a15q1 + 2a13)W (1)
11 (0) + (1

2a15q̄1 + a13)W (1)
20 (0)

+ q̄∗1
(
2b24q1 + (b22q1 + b22q̄1)q1 + (3b26 + 2b23q̄1q1 + 3b21q̄1q2

1
+ b23q2

1 + b25q̄1 + 2b25q1)e−iw0τ j + (b24q̄1 + b20q2
1q̄1

+ b22q1q̄1)e−2iw0τ j + 2b20q̄1q2
1 + ((b19q1 + 2b14)e−iw0τ j

+ b17q1)W (1)
11 (−1) + (( 1

2b19q̄1 + b14)eiw0τ j + 1
2b17q̄1)W (1)

20 (−1)
+ ((b18q1 + b17)e−iw0τ j + 2b15q1)W (2)

11 (0) + (1
2 (b18q̄1 + b17)eiw0τ j

+ b15q̄1)W (2)
20 (0) + ((2b16q1 + b19)e−iw0τ j + b18q1)W (2)

11 (−1)
+ ((b16q̄1 + 1

2b19)eiw0τ j + 1
2b18q̄1)W (2)

20 (−1)
)
}.

(4.10)

In order to determine g21 we need to compute W20(θ) and W11(θ). In the light of (4.2) and (4.7), we
obtain

Ẇ = ẏt − żq − ˙̄zq̄

=

{
AW − 2Re{q̄∗(0)h0(z, z̄)q(θ)}, θ ∈ [−1, 0),
AW − 2Re{q̄∗(0)h0(z, z̄)q(θ)} + h0(z, z̄), θ = 0,

def
= AW + H(z, z̄, θ),

(4.11)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ H20(θ)

z3

6
+ · · · . (4.12)

Expanding the previous series and comparing the coefficients, we obtain that{
(A − 2iw0τ jI)W20(θ) = −H20(θ),
AW11(θ) = −H11(θ), · · · .

(4.13)

Case 1: We first consider the case θ ∈ [−1, 0), it follows from (4.11) that

H(z, z̄, θ) = −q̄∗(0)h0(z, z̄)q(θ) − q∗(0)h̄0(z, z̄)q̄(θ)
= −g(z, z̄)q(θ) − ḡ(z, z̄)q̄(θ).

(4.14)

Comparing the coefficients with (4.8), we obtain{
H20(θ) = −g20q(θ) − ḡ02q̄(θ),
H11(θ) = −g11q(θ) − ḡ11q̄(θ).

(4.15)
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It follows from (4.13), (4.15) and the definition of A that{
Ẇ20(θ) = 2iw0τ jW20(θ) + g20q(θ) + ḡ02q̄(θ),
Ẇ11(θ) = g11q(θ) + ḡ11q̄(θ).

(4.16)

Note that q(θ) = (1, q1)T eiw0τ jθ, then we have
W20(θ) =

ig20

w0τ j
q(0)eiw0τ jθ +

iḡ02

3w0τ j
q̄(0)e−iw0τ jθ + e2iw0τ jθE,

W11(θ) =
−ig11

w0τ j
q(0)eiw0τ jθ +

iḡ11

w0τ j
q̄(0)e−iw0τ jθ + F,

(4.17)

where E = (E(1), E(2))T ∈ R2 and F = (F(1), F(2))T ∈ R2 are all constant vectors. In what follows, we
will seek appropriate E and F.

Case 2: We now consider the case θ = 0. From (4.11), we have

H(z, z̄, θ) = −2Re{q̄∗(0)h0(z, z̄)q(θ)} + h0(z, z̄).

It then follows from H(z, z̄, θ) and (4.12) that
H20(0) = −g20q(0) − ḡ02q̄(0) + τ j

(
d1

d2

)
,

H11(0) = −g11q(0) − ḡ11q̄(0) + τ j

(
d3

d4

)
,

(4.18)

where
d1 = 2(a13 + a14q2

1 + a15q1),
d2 = 2{b15q2

1 + (b14 + b16q2
1 + b19q1)e−2iw0τ j + (b17q1 + b18q2

1)e−iw0τ j},

d3 = 2a13 + 2a14q1q̄1 + a15(q1 + q̄1),
d4 = 2b14 + 2q1q̄1(a15 + b16) + b19(q1 + q̄1) + b17(q1eiw0τ j + q̄1e−iw0τ j)

+ b18q1q̄1(eiw0τ j + e−iw0τ j).

From (4.13) and the definition of A, we obtain
∫ 0

−1
dη(θ)W20(θ) = 2iw0τ jW20(0) − H20(0),∫ 0

−1
dη(θ)W11(θ) = −H11(0),

(4.19)

where η(θ) = η(0, θ).
Substituting (4.17), (4.18) into (4.19) and noting that

(
iw0τ jI −

∫ 0

−1
eiw0τ jθdη(θ)

)
q(0) = 0,

and (
− iw0τ jI −

∫ 0

−1
e−iw0τ jθdη(θ)

)
q̄(0) = 0.

We conclude that (
2iw0τ jI −

∫ 0

−1
e2iw0τ jθdη(θ)

)
E1 = τ j

(
d1

d2

)
,
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that is (
2iw0 − a11 −a12

−b11e−2iw0τ j 2iw0 − b12 − b13e−2iw0τ j

)
E1 =

(
d1

d2

)
.

Thus

E1 =

(
2iw0 − a11 −a12

−b11e−2iw0τ j 2iw0 − b12 − b13e−2iw0τ j

)−1 (
d1

d2

)
. (4.20)

Similarly, we have (
a11 a12

b11 b12 + b13

)
E2 = −

(
d3

d4

)
,

which enables us to assert that

E2 = −

(
a11 a12

b11 b12 + b13

)−1 (
d3

d4

)
. (4.21)

Still now we can determine W20(θ) and W11(θ) from (4.17). Therefore, all gi j in (4.10) can be
determined. Furthermore, we can compute the following values

c1(0) =
i

2w0τ j
(g11g20 − 2|g11|

2 −
1
3
|g02|

2) +
g21

2
,

µ2 =
−Re(c1(0))
Re(λ′(τ j))

,

β2 = 2Re(c1(0)),

T2 = −
Im(c1(0)) + µ2Im(λ′(τ j))

w0τ j
.

(4.22)
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