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ABSTRACT. This paper reviews some recent works on impulsive delayed sys-
tems (IDSs). The prime focus is the fundamental results and recent progress
in theory and applications. After reviewing the relative literatures, this pa-
per provides a comprehensive and intuitive overview of IDSs. Five aspects of
IDSs are surveyed including basic theory, stability analysis, impulsive control,
impulsive perturbation, and delayed impulses. Then the research prospect is
given, which provides a reference for further study of IDSs theory.

1. Introduction. Time delay systems represent one of the most popular class of
systems. Time delay, whether occurs in the system state, the control input, or
the measurement, is often inevitable in practical systems and can be a source of
instability and poor performance [21, 19, 1, 61, 41, 20, 94, 95, 79, 72]. The future
evolution of the system state of a time delay system depends not only on its current
value, but also on its past values [124, 15, 88, 87, 55, 121, 111, 81, 34, 14, 117, 46].
Many processes have time delay characteristics in their dynamics. Since time de-
lays often appear in engineering, biological and economical systems, and sometimes
they may poorly affect the performance of a system. The problem of stability of
IDSs and impulsive stabilization of delay systems have been extensively investigated
[119, 108, 104, 96, 36, 98, 18, 24]. For example, [104] studied the stability of a class of
nonlinear impulsive switching systems with time-varying delays. Based on the com-
mon Lyapunov function method and Razumikhin technique, several stability criteria
are established for nonlinear impulsive switching systems with time-varying delays.
In [98], by structuring hybrid impulsive and feedback controllers, synchronization
problem of the memristive delayed neural networks is proposed. Then, based on
differential inclusions, several synchronization criteria for the memristive delayed
neural networks are obtained by impulsive control theories, special inequalities and
the Lyapunov-type functional. In literatures, the research results concerning time
delay systems can be classified into two types. One is delay-independent condi-
tions, the other is delay-dependent conditions. Delay-dependent conditions are less
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conservative compared with the delay-independent conditions because they incor-
porate the information of time delays. Various techniques have been developed in
literatures to derive delay-dependent conditions, such as the Lyapunov-Razumikhin
method and the Lyapunov-Krasovskii functional method [18]. In [24], the authors
proposed the equivalence between stability conditions for switched systems and the
Lyapunov-Krasovskii functional stability conditions for discrete-time delay systems.
This provides us another method to investigate time delay systems.

Impulsive effects exist widely in the world. As we know, the state of systems are
often subject to instantaneous disturbances and experience abrupt changes at cer-
tain instants, which might be caused by frequent changes or other suddenly noises.
These systems are called impulsive systems, which are governed by impulsive dif-
ferential equations or impulsive difference equations [42; 118, 59, 57, 2]. In the past
decades, there has been a growing interest in the theory of impulsive dynamical sys-
tems because of their applications to various problems arising in communications,
control technology, impact mechanics, electrical engineering, medicine, biology, and
so on [54, 28, 22, 17, 33, 32, 106, 3, 112, 74, 100, 75, 83, 31]. For example, [54] in-
vestigated the pth moment exponential stability of impulsive stochastic functional
differential equations. Some sufficient conditions are obtained to ensure the pth mo-
ment exponential stability of the equilibrium solution by the Razumikhin method
and Lyapunov functions. In [100], the authors proposed a IDS model for insulin
therapy for both type 1 and type 2 diabetes mellitus with time delay in insulin
production. It is shown that impulsive exogenous insulin infusions can mimic nat-
ural pancreatic insulin production. From the viewpoint of impulsive effects, the
stability analysis for impulsive time-delay systems can be generally classified into
two groups: impulsive stabilization and impulsive perturbation. The case where a
given system without impulses is unstable or stable and can be turned into uni-
formly stable, uniformly asymptotically stable, and even exponentially stable under
proper impulsive control, it is regarded as impulsive stabilization problem. Now
it has been shown that impulsive stabilization problems can be widely applied to
many fields such as orbital transfer of satellite, dosage supply in pharmacokinetics,
ecosystems management, and synchronization in chaotic secure communication sys-
tems [35, 116, 9]. Alternatively, the case where a given system without impulses is
stable and can remain stable under certain impulsive interference, it is regarded as
impulsive perturbation problem. Up to now, many interesting results dealing with
impulsive perturbations of time-delay systems have been reported [89, 91, 13].

By analyzing related literatures, this paper provides a comprehensive and intu-
itive overview for IDSs, which include the basic theory of IDSs, stability analysis
with impulsive control and impulsive perturbation, and delayed impulses. Essen-
tially, it provides an overview on the progress of stability and stabilization problem
of IDSs. The rest of this paper is organized as follows. In Section 2, some notations
and definitions of stability are presented. Section 3 covers the effects of impulses for
IDSs. Section 4 considers the impulsive control problem. Section 5 considers the
impulsive perturbation problem. Section 6 covers the delayed impulses. Section 7
concludes the paper and discuss the future research direction on this topic.

2. Impulsive delayed systems.

Notations. Let R denote the set of real numbers, R, the set of positive numbers,
Z4 the set of positive integer, N the set of nonnegative integer. R™ is the n-
dimensional real spaces equipped with the Euclidean norm || - ||. R™*™ denotes
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the n x m-dimensional real spaces. I denotes the identity matrix with appropriate
dimensions. For any interval J C R, set S C R¥(1 < k < n), C(J,9) = {¢ :
J — S is continuous} and C'(J,S) = {¢ : J — S is continuously differentiable }.
PC(J,S) ={p:J — S is continuous everywhere except at finite number of points
t, at which o(t1), p(t7) exist and p(t) = ¢(¢)}. In particular, for given 7 > 0, set
C, = C([-7,0],R™) and PC, = PC([—7,0], R™) with the norm || - ||, defined by
1ol = sup{lp(s)]| = s € [0} A= {1,2,....n}. S(p) = {x € R": [s] < p}. A
function « : [0,00) — [0, 00) is of class K if « is continuous, strictly increasing, and
a(0) = 0. In addition, if « is unbounded, then it is of class Koo

In recent years, there are many results on impulsive delayed systems (IDSs).
Roughly speaking, an impulsive dynamical system consists of three elements: a
continuous-time dynamical equation, which governs the evolution of the system
between reset (impulsive) events; a difference equation, which describes the way the
system states are instantaneously changed; and finally a criterion for determining
when the states of the system are to be reset. In addition, it is well known that time-
delays phenomena frequently appear in many practical problems, such as biological
systems, mechanical, transmissions, fluid transmissions, networked control systems
[122, 47, 123, 86, 80, 25, 45]. Therefore, it is not surprising that IDSs with time
delays have become an attractive research field. In the following, consider the
impulsive functional differential equation

{ ‘T(t) = f(ta xt)7 t> th t7étk7

1
Ax =I(t, x(t7)), t=tg, k€N, @

where f, I, : Ry x PC; — R", Ax = x(tx) — x(t, ). For each t > tg, x; € PC; is

defined by z:(s) = z(t + s),s € [-7,0]. The impulse times {t;} satisfy 0 < t7 <

Lty < e, klim tr = co. With Eq. (1), one associates an initial condition of
— 00

the form

Tty = ¢7 (2)
where o € R} and ¢ € PC,.
Definition 2.1. [85]. A function x(t) is called a solution of the initial value problem
(1) and (2) if © : [to — 7, B) — R", for some 8 (tp < 8 < o0), is continuous
for t € [to — 7.8) \ {tx, k € A}, z(t;) and z(t]) exist, and z(t}) = z(t) for
tr € [to — T, ), and satisfies (1) and (2).
Under the following hypotheses (Hy) — (Hy), the initial value problem (1) and

(2) exists with a unique solution which will be written in the form z(t, to, ¢), see
[85] for detailed information.

(Hy) f is continuous on [ty_1, t) X PC, for each k € Z, and for all ¢ € PC, and
k € Z,, the limit hm(t 6)=(tr o) f(t, ¢) = f(ty ) exists.

(H2) f is locally Lipschitzian in ¢ in each compact set in PC..

(Hs) For each k € Z4, I(t,z) € C(Ry x S(p),R™).

(Hy) There exists a p; > 0 (p1 < p) such that = € S(p1) implies that x + Iy (g, z) €
S(p) for all k € Z,..

Assume that conditions (Hy)—(H4) hold and moreover, f(t,0) = 0 and I (tx,0) =0,
then z(t) = 0 is the solution of (1), which is called the trivial solution.
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Definition 2.2. [56]. The trivial solution of system (1) is said to be

(S1) stable if for any € > 0 and ¢y € R, there exists some § = (e, ty) > 0, such
that ||¢||- < d implies ||z(t, to, @)|| <e, for all t > to;

(S2) uniformly stable if the § in (S;) is independent of ¢p;

(S3) asymptotically stable if (S7) hods and for any ¢ty € R, there exists some
1 =n(ty) > 0 such that if ¢ € PC, with ||¢||, < n, then lim;_, - x(t, to, ¢) = 0;
(S4) uniformly asymptotically stable if (S2) holds and there exists some 1 > 0 such
that for every v > 0, there exists some T' = T'(n,~) > 0 such that if ¢ € PC, with
6]l <n, then ||z(t, to, @)I| < for t > to + T}

(S5) globally stable (globally exponentially stable) if (S7) holds and for any ¢, there
exist A > 0 and k() > 0, when ||¢||, < ¢ we have
|z(t, to, ¢)|| < k(8)e 270 vt > ¢,

Definition 2.3. [38]. A map x: R; — R" is said to be an w—periodic solution of
the system (1) provided:

(i) « satisfies (1) and is a piecewise continuous map with first-class discontinuity
points;

(ii) z satisfies z(t + w) = x(t) for t # 7, and z(7p, + w') = z(r;") for k € N.
Definition 2.4. [38]. Let z* = z*(¢, to, ¢*) be an w-periodic solution of the
system (1) with initial condition (tg, ¢*). Then z* is said to be globally attractive

if for any solution x = x(-, tg, ¢) of the system (1) through (¢to, ¢), |t —2*| = 0
as t — oo.

Definition 2.5. [109]. The function V : [Ty — 7,00) x R™ — R4 belongs to class
Vo if

(1) V is continuous on each of the sets [tx_1,tx) x R4 and lim
V(ty,v);

(2) V(t,) is locally Lipschitzian in = and V (¢,0) = 0, Vt > to.

o Vi(tu) =

(tu)—= (b,

Definition 2.6. [109]. Let V € vy, the upper right-hand derivative of V' with
respect to system (1) is defined by

DV(E,6(0) = T sup 3V (E+ b, (0) + 1f(4,0)) = V (1,60,

for (¢,) € [tk—1,tr) X PC:.

3. Effects of impulses. Generally speaking, existing results on stability for IDSs
can be classified into two groups: impulsive stabilization and impulsive perturba-
tion. In the case where a given equation without impulses is unstable or stable,
it can be tended to uniformly stable, uniformly asymptotically stable even expo-
nentially stable under proper impulsive control. Such case is regarded as impulsive
stabilization. In the case where a given equation without impulses is stable, and
it can remain the stability behavior under certain impulsive interference, it is re-
garded as impulsive perturbation. At each discontinuous point ¢, suppose that
V(ty) < pV(t; ), where the constant ;o represents the impulsive strength. There
are three kinds of impulsive strength p for IDSs:

(1) When |u| < 1, the impulses are beneficial for the stability of the system.
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Hence we call them beneficial impulses when |p| < 1, which can be categorized as
impulsive controllers that would enhance the stability of the system.

(2) When |u| = 1, the impulses are neither harmful nor beneficial for the stability
of IDSs since the absolute value of the differences between the nodes states remains
unchanged. Hence, the impulses with |u| = 1 are named as inactive impulses.

(3) When || > 1, the impulses might destroy the stability of the system. Thus
we call them harmful impulses if |u| > 1, which can be regarded as the perturba-
tions that would suppress the stability of the system.

In the following, two examples are given to illustrate the effects of impulses for
the IDSs.

Example 3.1. Consider a simple IDS:
z(t) = 0.5z(t) + 0.6x(t — 1), ¢>0,
z(k) = pz(k™), keN,
where p = 0.4. Figs. 3.1 (a) and (b) show the time response of states x(¢) of (3)
with or without impulsive control, respectively. Obviously, it can be seen from
the figures that the system (3) is unstable when there is no impulsive control and

becomes stable under proper impulsive control, which can be obtained by the results
in [48]. It implies that impulses contribute to system dynamics.

(3)

< 50

0

L L L L t 0 t
0 2 4 6 8 10 0 2 4 6 8 10

Fig.3.1 (a) State trajectory of system (3) without impulse control. (b) State
trajectory of system (3) with impulsive stabilization.

Example 3.2. Consider another IDS:
#(t) = =0.7x(t) + 0.35z(t — 1), t >0,
{ x(k) = px(k™), ke N,
where p = 1.3. Figs. 3.2 (a) and (b) show the time response of states z(t) of (4)
with or without impulsive perturbation, respectively. It can be seen from the figures

that the system (4) is stable when there is no impulsive perturbation and remains
stable under proper impulsive perturbation.

(4)

The above two examples fully illustrate the different effects of impulse for stability
on the IDSs. In resent years, there are many researches on stability analysis for IDSs.
For example, in [63], criteria on uniform asymptotic stability were established for
impulsive delay differential equations by using Lyapunov functions and Raxumikhin
techniques. [44] presented some sufficient conditions for global exponential stability
for a class of delay difference equations with impulses by means of constructing an
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Fig.3.2 (a) State trajectory of system (4) without impulsive perturbation. (b)
State trajectory of system (4) with impulsive perturbation.

extended impulsive delay difference inequality. In [39], authors addressed the im-
pulsive systems with unbounded time-varying delay and introduced a new impulsive
delay inequality that involves unbounded and non-differentiable time-varying delay.
Some sufficient conditions ensuring stability and stabilization of impulsive time-
invarying and time-varying systems are derived, respectively. [115] investigated the
synchronization problem of coupled switched neural networks (SNNs) with mode-
dependent impulsive effects and time delays. The impulses considered here include
those that suppress synchronization or enhance synchronization. Based on switching
analysis techniques and the comparison principle, the exponential synchronization
criteria are derived for coupled delayed SNNs with mode-dependent impulsive ef-
fects. In addition, the concept of “average impulsive interval” was introduced in
[68] by referring to the concept of average dwell time [23] to characterize how often
or how seldom impulses occur.

Definition 3.3. [68]. The average impulsive interval (AII) of the impulsive sequence
& = {t1,ta,-- } is equal to 74, if there exist positive integer Ny and positive number
T, such that

Tt Tt
— No < Ne(T'yt) <

TO[ [e3

+ No, VT >t>0, (5)

where N¢(T,t) denotes the number of impulsive times of the impulsive sequence &
on the interval [¢t,T). The idea behind it is that there may exist some consecutive
impulse signals separated by less than or greater than 7, but the average interval
between consecutive impulse signals is 7.

For most impulsive signals, the occurrence of impulses is not uniformly dis-
tributed. Fig.3.3 presents a specific form of a non-uniformly distributed impulsive
sequence. One may observe from Fig. 3.3 that the impulses seldom occur in some
time intervals, but frequently occur in some other intervals. For such impulsive
signals, it is possible that the lower bound of the impulsive intervals is small or
the upper bound is quite large. Hence, many previous results cannot be effectively
applied to dynamical systems with the impulsive signal shown in Fig. 3.3.

In addition, note that inequality (5) can be rewritten as follows:

T—t
Ne(T,t) > — No, VT >t > 0. (6)
Ta
T—t
Ne(T,t) < + No, VT >t >0. (7)

(e



REVIEW OF STABILITY AND STABILIZATION FOR IDS 1501
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Fig.3.3 Impulsive sequence.

When the original system without impulsive perturbation is stable, and the
impulsive effects are harmful, in order to guarantee the stability, the impulses
should not occur frequently. That is, there should always exist a requirement that
ty — tx—1 > hi, where the quantity h; can be regarded as a measure to ensure
that the harmful impulses do not occur too frequently. Thus, condition (7) enforces
an upper bound on the number of impulses. Conversely, when the original system
without impulsive effects is unstable and the impulsive effects are beneficial, in or-
der to ensure the stability of the system, it is usually assumed that the frequency of
impulses should not be too low. Therefore, there should always exist a requirement
that tx — tx—1 < ho, where the quantity ho is chosen to guarantee that there will
be no overly long impulsive intervals. Thus condition (6) enforces a lower bound on
the number of impulses.

Hence, the concept of AIl is suitable for characterizing a wide range of im-
pulsive signals. In recent years, there are many results using the concept of AIl
[110, 7, 71, 68, 32]. For instance, the global exponential synchronization of delayed
complex dynamical networks with nonidentical nodes and stochastic perturbations
was studied in [110]. By combining adaptive control and impulsive control schemes,
the considered network can be synchronized onto any given goal dynamics. With
respect to impulsive control, the concept named AIl with “elasticity number” of
impulsive sequence is utilized to get less conservative synchronization criterion. [7]
investigated the problems of impulsive stabilization and impulsive synchronization
of discrete-time delayed neural networks (DDNNSs), where two types of DDNNs with
stabilizing impulses were studied. [71] established finite time stability (FTS) criteria
for the nonlinear impulsive systems, where by using AIl method, less conservative
conditions were obtained for the FTS problem on the impulsive systems.

4. Impulsive stabilization on IDSs. Impulsive control is to change the state of
a system by discontinuous control input at certain time instances. From the control
point of view, impulsive control is of distinctive advantage, since control gains are
only needed at discrete instances. Thus, there are many interesting results on
impulsive stabilization of IDSs. Considering the IDSs (1), authors in [63] established
some criteria on uniform asymptotic stability by using Lyapunov functions and
Razumikhin techniques, which is given as follows:
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Theorem 4.1. [63]. Assume that there exist functions a, b, ¢ € K, p € PC(Ry,
Ry), 9,0 € K, and V € vy, such that the following conditions hold:

(5) b(llal]) < V(t,) < alzl), for al (t,) € [to — 7, +00) x R™
(it) DTV (t,9(0)) < p(t)e(V (t,4(0))), for all t # ty, in Ry and ¢ € PC; whenever
V(t, $(0)) = g(V(t+s,4(s))) for s € [-,0];
(#2d) V (t, ¥(0) + In(tr, ¥)) < g(V(t,,1(0))), for all (ty,¢) € Ry x PCr for which
$(07) = (0);

7 ds

t+eo
(iv) 10 = sup{ty — tg—1} < 00, M = sup/ p(s)ds < oo, My = inf —_— >
keZ t>0 Jt >0 Jg(q) (8)
M.

Then the trivial solution of (1) is uniformly asymptotically stable.

It follows from the definitions M; and M in (iv) that the value of My is greater
than M7, which indicates that there may be some increasing on V' between impulses,
but the decreasing on V' at impulses are needed to guarantee the stability. Notice
from (iv) that there is a restriction on upper bound of impulse intervals due to the
effect of stabilizing impulses. In other words, the time interval without impulsive
control cannot be too long. Similar results on stability without time delay can be
found in [62].

Based on the ideas given in [63], authors in [105] and [103] further investigated ex-
ponential stability and global exponential stability of solutions for IDSs (1), respec-
tively, which play important effects on exponential stability analysis of impulsive
time-delay systems.

Theorem 4.2. [103]. Assume that there exist a function V € vy and constants
p,c,c1,c0 >0 and o > 7, A > ¢ such that

(@) allz||P < V(t,z) < callz||P, for any t € Ry x € R™;
(11) DYV (t,9(0)) < cV (¢, 9(0)), for allt € [tx_1,tx), k € N, whenever qV (¢, 1(0)) >
V(t + s,9(s)) for s € [-7,0], where ¢ > €2** is a constant;
(113) V(ti, ¥ (0) + Ir(tr, ) < diV(t, ,9(0)), where di, > 0, Vk € N, are constants;
(i’t)) T<tp —th_1 < a and ln(dk) + A < 7>\(tk+1 — tk).
Then the trivial solution of (1) is globally exponentially stable and the convergence
rate is 2.
p

For all the above studies [63, 105, 103], authors have investigated for the uniform
asymptotical stability and global exponential stability of IDSs under the assumption
that 7 < tx — tx_1, where 7 is the finite delay or some positive constant. From
this point of view, author in [36] studied the globally exponential stabilization of
impulsive functional differential equations with infinite delays or finite delays by
using Lyapunov functions and improved Razumikhin technique, where there is no
any restriction on the lower bound of the impulse interval. Hence, the obtained
results in [36] have wider applications.

Consider the following impulsive functional differential equations:

(t) = F(t, z(-)), t >to, t # tg,

Az = Ii(t, z(t)), t =tx, k€N, (8)
Tty = P(8), a < s <0.

Some detailed information can be found in [36]; here we omit it.
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Theorem 4.3. [36]. Assume that there exist a function V. € vg and constants
p>0,g>1, ¢1>0, c2 >0, m>0 and v > 0 such that

(@) allz|™ < V(t,z) < co|lz||™, for any (t,z) € [0, +00) x R™;

(ii) For anyty € Ry and+p € PCy, if 0V (t+0,1(0)) < qV (t,1(0)), 0 € [, 0], t #
ti, then DTV (t,4(0)) < pV (¢,1(0));

(ii) For all (ty, ) € Ry x PCr, V (g, ¥(0) + Li(tr, ¥)) < 1/qV (¢ ,1(0));

(iv) supgez, tk —tk—1 <1Ing/p.

Then the trivial solution of (8) is globally exponentially stable.

It should be noted that in [36], for t > to > 0 > a > —oo, f(¢t, ;) in IDSs (1)
was replaced by f(t,z(s)), where s € [t + «,t] or f(t,z(-)) be a Volterra type func-
tional. In [36], let & = —oo. Moreover, it follows from [36] that Theorem 4.3 can
be applied to systems with finite or/and infinite delays since a € [—o00, 0]. Based on
this point, [49] considered the existence, uniqueness, and global stability of periodic
solutions for a class of recurrent neural networks with discrete and continuously
distributed delays. By using contraction mapping theorem, some new sufficient
conditions ensuring the existence, uniqueness, and global stability of periodic solu-
tions were obtained. As we know, since the periodic oscillations can be presented by
systems model with periodic coefficients, the properties of periodic solution are very
important to study the dynamical behaviors of systems. With the development of
impulsive control theory, it is known that an equilibrium point can be viewed as a
special periodic solution of impulsive control systems with arbitrary period. Hence,
the analysis of periodic solutions of impulsive control systems is more general than
that of an equilibrium point.

Hence, investigation of periodic solution for system is indispensable for practi-
cal design and engineering applications of models. The periodic solution problem of
IDSs has found many applications such as associative memories, pattern recognition,
machine learning, robot motion control, and so on [76, 97, 82, 27]. For example,
in [49], a class of recurrent neural networks with discrete and continuously dis-
tributed delays was considered. Sufficient conditions for the existence, uniqueness,
and global exponential stability of a periodic solution were obtained by using con-
traction mapping theorem and stability theory on impulsive functional differential
equations. [38] dealt with the periodic solutions problem for impulsive differential
equations. By using Lyapunov’s second method and the contraction mapping prin-
ciple, some conditions ensuring the existence and global attractiveness of unique
periodic solutions were derived, and so on [37, 84, 101, 26].

In addition, the stability analysis is much more complicated because of the exis-
tence of impulsive effects and stochastic effects at the same time. In [12], based on
the Razumikhin techniques and Lyapunov functions, several criteria on the global
exponential stability and instability of impulsive stochastic functional differential
systems were obtained. The results show that impulses make contribution to the
exponential stability of stochastic differential systems with any time delay even they
are originally unstable. In [77], authors investigated the pth moment and almost
sure exponential stability of impulsive stochastic functional differential equations
with finite delay by using Lyapunov method. The obtained results do not need the
strong condition of impulsive gain |dy| < 1, which is more general than those given in
[12]. By using Lyapunov functions method [77] and stochastic analysis approaches,
stability theorems were derived in terms of linear matrix inequality (LMI), which
can overcome the effect of time-delay and impulses. Those results can guarantee
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the neural networks to be robustly exponentially stable in the mean square. [78]
studied robust stability for a class of uncertain stochastic neural networks, where
the ‘uncertainties’ mean the uncertain parameters, which take values in some in-
tervals. [6] was devoted to prove some sufficient conditions ensuring practical pth
moment exponential and almost sure exponential stability of solutions to impulsive
stochastic functional differential equations.

In what follows, an example is given to illustrate the existence and attractiveness
of the periodic solution for impulsive control system.

Example 4.4. [49]. Consider the following neural networks with discrete delays:

2
2 2
#1(t) = — [0.15 +0.05sin gt}xl(t) +3 {0.3 —0.01cos g(t +5)))
i=1

X fi(@;(t) + > 0.1+ 0.045in %”(t )] £t = 1)

j=1

2
+ cos It, t # tg,
w

2
Fo(t) = — [0.2 +0.1sin 2%75} () + > [0.17 +0.02sin %(t +9)
% fylag ) + 3 [0+ 0.01sim 2 1 4 5)] s~ 1)

J=1

2
tsin 24, ¢ #£ by,
w
subject to impulses:
1
xl(tk) = *xi(t;), k S Z+, 1= 1,2,
P

where f; = fo = tanh(z),w > 0 and p > 1 are some real constants.

In the simulations, one may observe that system (9) with w = 2 or 4 has no
periodic solution which is globally exponentially stable when there is no impulsive
effect, which can be seen from Fig.4. 2.(a-d). However, via the impulsive control
strategies that we established, system (9) may admit a unique periodic solution
which is globally exponentially stable. For instance, when w = 2 or 4, one may
choose p = 1.5 and p = 0.5 such that the conditions in [49] hold and so the periodic
solution can be guaranteed. The corresponding numerical simulations are shown in
Fig4. 3.(a—d).

5. Impulsive perturbation on IDSs. In this case where a given equation with-
out impulses is stable, and it can remain the stability behavior under certain im-
pulsive interference, it is regarded as impulsive perturbation problem. Considering
the IDSs (1), authors in [63] established a criteria on uniform asymptotic stability,
where there exists impulsive perturbation.

Theorem 5.1. [63]. Assume that there exist functions a, b, ¢ € K, p € PC(Ry,
Ry), 9, €K, and V € vy, such that the following conditions hold:

(@) b(|z]]) < V(t,z) < a(||z|]), for all (t,z) € [to — T, +00) x R™;

(it) DTV (t,4(0)) < —p(t)c(V (t,1(0))), for allt # ti, in Ry and ¢ € PC, whenever
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where s < g(s) < g(s). Then the trivial solution of (1) is uniformly asymptotically
stable.

Theorem 5.1 is in some ways the opposite of Theorem 4.1. Here the derivative
of V is always non-positive, which implies that it is nonincreasing along solutions
between impulses. In the absence of impulses, the trivial solution of system (1) is
uniformly asymptotically stable. Theorem 5.1 allows for significant increases in V,
and correspondingly the solutions themselves, at impulse times but only as long
as these are balanced sufficiently by the decrease of V' between impulses. These
techniques are based in part on earlier work in the study of boundedness properties
of solutions of impulsive differential equations without delay (see [4, 5]). Years later,
Liu et al. employed the method of Lyapunov functionals for the study of exponential
stability of impulsive systems with time delay in [66]. Several exponential stability
criteria were established as follows:

Theorem 5.2. [66]. Assume that hypotheses (Hy) — (Hs) in [66] are satisfied
and there exist Vi € vy, Vo € v{(-), p1, p2 > 0 with p1 < ps and constants
a, I, ¢, c1, ¢, c3>0,d >0, k€N, such that

() eallallPr < Valt, ) < eallal|Pr, 0 < Va(t, ) < csl 91122, for any ¢ € Ry o € R,
Y € PCr

(i1) Vi(te, x + In(ty, ) < dipV(t, ,x), where x € R, k € N;

(”l) for V(tv'(/)) = %(ta¢(0))+‘é(t?w)v D+V(t,’¢) < CV(t,’(ﬂ), Jort e [tk—l’tk)’w €
PC, keN,

(iv) For any k € N, 7 <), — t—1 <, and In(dy + z—fe(%fl)cm) < —(a+c)l.
Then the trivial solution of (1) is exponentially stable.

Based on the idea in [66], ref. [60] investigated input-to-state stability (ISS) and
integral input-to-state stability (iISS) of impulsive and switching hybrid systems
with time-delay, using the method of multiple Lyapunov-Krasovskii functionals. It
is also shown that the results in the present paper can be applied to systems with
arbitrarily large delays and, therefore, improve the results in [66]. In addition, [68]
presented a new concept AII, which can be used to describe impulsive signals with a
wider range of impulsive interval. Based on this concept, a unified synchronization
criterion was obtained for impulsive directed dynamical networks with desynchro-
nizing impulses or synchronizing impulses. However, there is no time delay in it.
[114] addressed the stability problem of a class of delayed neural networks with
time-varying impulses. Different from the results in Lu et al. [68], the impulses
considered here are time-varying, which can cover the results in Lu et al. [68].
From the obtained results in [114], we can see that even if destabilizing impulsive
effects occur frequently, the delayed neural networks can also be stable if stabilizing
impulses can prevail over the influence of destabilizing impulsive effects.

To data, impulsive perturbation problem has been widely investigated [89, 91,
13, 113, 92, 40, 65, 58, 38, 43, 73, 67, 102, 90, 69, 70, 120]. For example, in [113],
the global exponential stability of complex-valued impulsive systems was addressed.
Some new sufficient conditions were obtained to guarantee the global exponential
stability by the Lyapunov-Razumikhin theory. Authors in [92] studied the prob-
lem of impulsive effects on global exponential stability for a class of impulsive n-
dimensional neural networks with unbounded delays and supremums. The robust
exponential stability of nonlinear impulsive switched delayed systems was inves-
tigated in [67]. In [48], the stability problem of impulsive functional differential
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equations (IFDEs) was considered. Several criteria ensuring the uniform stability
of IFDEs with finite or infinite delay were derived by establishing some new Razu-
mikhin conditions. authors investigated the stability problem of time-delay systems
with persistent impulses and focused on the discussion of systems with unbounded
time-varying delays in [40]. The above results have been discussed the stability for
impulsive perturbation systems, where the impulsive perturbation exists in system
but not destroy the stability property.

Sometimes, the impulsive perturbation can change the dynamics of a time-delay
system. For example, a stable equilibrium may becomes a periodic attractor un-
der impulsive perturbation. To show this observation, we illustrate the following
example:

Example 5.3. Consider the 2D impulsive delayed neural networks

#(t) = —Aw(t) + Bf(x(t — 7)), t>to, y
2(k) = Ka(t,), ken, (10
where
0.5 -1
A= < 069 0(.)9 )’ b= ( 1 o4 > , flz(t—7)) =tanh(z(t — 7)), 7=1.
a* b .

Fig.5.3 (a) State trajectories of (10) without impulse. (b) State trajectories of
system (10) with impulsive perturbation.

One may observe that when there is no impulsive perturbation on the system
(10), i.e., K = I, the system (10) admits a stable equilibrium, see 5.3 (a). When
there is impulsive perturbation such as K = 1.2 and ¢, = 0.8, k € N, then the
system (10) admits a periodic attractor, see Fig. 5.3 (b). Hence, such example
shows that impulse can change the dynamics of time-delay systems and leads to
complex dynamics.

6. Delayed impulse. Over the past few decades, many stability criteria for IDSs
have been proposed. However, most existing results on IDSs do not consider the
effect of delayed impulses. Of current interest is the delayed impulses of dynamical
systems arising in such applications as automatic control, secure communication
and population dynamics, [64, 29, 10, 8, 30]. Delayed impulse describes a phenome-
non where impulsive transients depend on not only their current but also historical
states of the system, see [16, 107, 11, 52, 51]. For instance, in communication se-
curity systems based on impulsive synchronization [8, 30], there exist transmission
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and sampling delays during the information transmission process, where the sam-
pling delay created from sampling the impulses at some discrete instances causes
the impulsive transients depend on their historical states. Another example, in
population dynamics such as fishing industry [52, 51, 99, 50], effective impulsive
control such as harvesting and re- leasing can keep the balance of fishing, and the
quantities of every impulsive harvesting or releasing are not only measured by the
current numbers of fish but also depend on the numbers in recent history due to
the fact that the immature fish need some time to grow.

In the previous literature concerning impulsive systems, the impulses are usually
assumed to take the form:

Ax(ty) = z(tx) — x(t;;) = Bra(ty,),

which indicates the state ‘jump’ at the impulse times t; only depends on the current
state. When considering the delay effect in impulse, the impulses are updated as
follows:

Ax(ty) = z(ty) — 2(t);) = Bra(ty — 7),

where 7 is the possible time delay in impulses. It indicates that the state ‘jump’ at
the impulse times t; depends on not only the current state but also the state in his-
tory. Such impulses are regarded as a better way to model many practical problem.
In fact, many practical systems can be modeled as differential systems with delayed
impulses [64, 29, 10, 8, 30, 16, 107, 11, 52, 51, 99, 50, 53]. For example, in [64, 29],
the stability problem of impulsive systems with stabilizing delayed impulses was
studied. More exactly, the asymptotic stability in [29] was investigated for a class
of delay-free autonomous systems with linear delayed impulses of the form

x(t) =x(t”)+ Brax((t —dr)™), t=tr, k€N,

where {#;} is an impulsive time sequence and dj are impulse input delays. A
sufficient condition for asymptotic stability involving the sizes of impulse input
delays was derived. [10] studied the problem of exponential stability of nonlinear
time-delay systems with more general delayed impulses, which includes the linear
delayed impulses of the form

z(t) = C()kl’(ti) + C’lkx((t — dk)i), t=tr, k€N,

as a special case. The results in [10] dealt with both destabilizing delayed impulses
and stabilizing delayed impulses, and derived the corresponding Lyapunov-type suf-
ficient conditions for exponential stability. In the application of networked control
systems, due to the finite speed of computation, a type of delayed impulses which
are called sensor-to-controller delay and controller-to-actuator delay do exist in a
working network [107, 11]. Authors in [52] studied the delayed impulsive control
of nonlinear differential systems, where the impulsive control involves the delayed
state of the system for which the delay is state-dependent. [51] focused on stability
problem of nonlinear differential systems with impulses involving state-dependent
delay based on Lyapunov methods. Some general and applicable results for uniform
stability, uniform asymptotic stability and exponential stability of the systems were
derived in [51] by using the impulsive control theory and some comparison argu-
ments. It shows how restrictions on the change rates of states and impulses should
be imposed to achieve systems stability, in comparison with general impulsive delay
differential systems with state-dependent delay in the nonlinearity, or the differen-
tial systems with constant delays.
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With the development of impulsive control theory, some recent works have fo-
cused on input-to-state stability (ISS) property of time-delay control system under
the delayed impulsive control. For example, [116] addressed the ISS and integral
input-to-state stability (iISS) of nonlinear systems with distributed delayed im-
pulses. [53] studied the ISS property of nonlinear systems with delayed impulses
and external input affecting both the continuous dynamics and the state impulse
map. However, it seems that there have been few results that consider the effect of
delayed impulses on ISS property for nonlinear systems, which still remains as an
important direction in research fields.

7. Conclusion and future work. IDS is a very important research area with
wide applications. Stability analysis is one of the fundamental problems for IDSs.
This paper has overviewed the research area of IDSs with emphasis on the following
topics:

(i) We described the general IDSs and presented the existence and uniqueness of
solutions for IDSs. Moreover, we introduced the effects of impulses on stability for
IDSs, which includes impulsive stabilization and impulsive perturbation. Examples
were given to illustrate the effects of impulses. In addition, the concept of AIl was
introduced to characterize how often or how seldom seldom impulses occur.

(ii) We presented sufficient conditions for IDSs, where the impulses contribute to
system dynamics. In this sense, an example was illustrated to show the existence
of periodic attractor under impulsive control, where there is originally no periodic
attractor.

(iii) We presented sufficient conditions for IDSs, where the impulsive effects are
harmful. In this sense, we illustrated an example to show the effects of impulsive
perturbation for periodic solutions. It indicates that the dynamics of time-delay
systems can be changed under impulsive perturbations.

(iv) We introduced the delayed impulses. Some interesting results on stability or
ISS properties involving delayed impulse have been presented.

Although IDSs and their control theory have been developed for many years,
there are still some shortcomings and problems to be solved:

(1) Many results on delayed impulses have been derived. However, most of them
only considered the negative effect of time delay which exists in impulses. How to
study the positive effect for such time delay is still a difficult problem.

(2) In recent years, the design and optimization of impulsive controller has been
a hot and frontier problem for impulsive control theory, but there has been not
much research progress in impulsive systems involving time delays. In particular,
how to design an optimal impulsive controller under the constraints of engineering
background is a key scientific problem that needs to be solved.

(3) Since impulsive control strategy usually has simple structure in which only
discrete control are needed to achieve the desired performance, event-triggered im-
pulsive control deserves increasing attention and some related control strategies
have been proposed [93]. However, all the previous works have focused on the de-
sign of event-triggered impulsive control strategies for some specific systems, and
there is no unified research method for general nonlinear systems, which leads to
that the derived results have limitations in applications.
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