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Abstract. This paper is concerned with a strongly-coupled elliptic system,

which describes a West Nile virus (WNv) model with cross-diffusion in a het-
erogeneous environment. The basic reproduction number is introduced through

the next generation infection operator and some related eigenvalue problems.
The existence of coexistence states is presented by using a method of upper and

lower solutions. The true positive solutions are obtained by monotone iterative

schemes. Our results show that a cross-diffusive WNv model possesses at least
one coexistence solution if the basic reproduction number is greater than one

and the cross-diffusion rates are small enough, while if the basic reproduction

number is less than or equal to one, the model has no positive solution. To
illustrate the impact of cross-diffusion and environmental heterogeneity on the

transmission of WNv, some numerical simulations are given.

1. Introduction. Infectious diseases have been attracting considerable attention
in recent years, and various epidemic models have been proposed and analyzed
for prevention and control strategies, especially for vector borne diseases [15, 39].
For example, a West Nile virus (WNv) is an arbovirus of the Flavivirus kind in
the family Flaviviridae that causes the epidemics of febrile illness and sporadic
encephalitis [7]. WNv is found in temperate and tropical regions of the world, it
was first isolated and identified from the blood of a febrile Ugandan woman during
research on yellow fever virus in 1937 [3].

2010 Mathematics Subject Classification. Primary: 35K57, 92B05; Secondary: 35J60.
Key words and phrases. West Nile virus, strongly-coupled elliptic systems, heterogeneous en-

vironment, basic reproduction number, coexistence.
The second author is supported by the NNSF of China (Grant No. 11701206) and the third

author is supported by the NNSF of China (Grant No. 11771381).
∗ Corresponding author: zglin68@hotmail.com (Z. G. Lin).

1479

http://dx.doi.org/10.3934/mbe.2018068


1480 ABDELRAZIG K. TARBOUSH, JING GE AND ZHIGUI LIN

Although WNv is widely distributed in Africa, the Middle East, Asia and south-
ern Europe, in North America, the first infected case was detected in 1999 during
an outbreak of encephalitis in New York city [3, 21, 26, 39]. Since 1999 this virus
has spread spatially and prevail in much of North America [8, 21], it is evident
that the spread of WNv comes from the interplay of disease dynamics and bird and
mosquito movement.

To the best of our knowledge, currently there are no effective vaccine or medicine
for WNv. To reduce the rates of WNv infection, anti-WNv efforts are primarily
based on personal protective measures like insect repellent and protective clothing,
and public heath measures [4].

Many mathematical models for WNv have been proposed and analyzed, however
most of the models are focused on the non-spatial transmission dynamics [4, 36, 39].
In fact, the spatial spreading is an important factor to affect the persistence and
eradication of WNv. In 2006, Lewis et al. [21] investigated the spatial spread of
WNv to describe the movement of birds and mosquitoes. The reaction-diffusion
model was extended from the non-spatial model for cross infection between birds
and mosquitoes that was proposed and developed by Wonham et al. in [39].

To utilize the cooperative characteristic of cross-infection dynamics and estimate
the spatial spread rate of infection, Lewis et al. in [21] proposed the following
simplified WNv model{

∂Ib
∂t = D1∆Ib + αbβb

(Nb−Ib)
Nb

Im − γbIb, (x, t) ∈ Ω× (0,+∞),
∂Im
∂t = D2∆Im + αmβb

(Am−Im)
Nb

Ib − dmIm, (x, t) ∈ Ω× (0,+∞),
(1)

where the positive constants Nb and Am denote the total population of birds and
adult mosquitos; Ib(x, t) and Im(x, t) represent the populations of infected birds and
mosquitos at the location x in the habitat Ω ⊂ RN and at time t ≥ 0, respectively,
and Ib(x, 0) + Im(x, 0) > 0. The parameters in the above system are defined as
follows:
• αm, αb : WNv transmission probability per bite to mosquitoes and birds,

respectively;
• βb : biting rate of mosquitoes on birds;
• dm : adult mosquitos death rate;
• γb : bird recovery rate from WNv.
Here, the positive constants D1 and D2 are diffusion coefficients for birds and

mosquitoes, respectively.
Considering the spatially-independent model{

dIb(t)
dt = −γbIb(t) + αbβb

(Nb−Ib(t))
Nb

Im(t), t > 0,
dIm(t)
dt = −dmIm(t) + αmβb

(Am−Im(t))
Nb

Ib(t), t > 0,
(2)

one can see that if R0(:=
√

αmαbβ2
bAm

dmγbNb
) < 1, the virus will vanish eventually, while

for R0 > 1, a nontrivial epidemic level appears and is globally asymptotically stable
in the positive quadrant [21].

For the diffusive model (1), Lewis et al. proved the existence of traveling wave
and calculated the spatial spread rate of infection [21]. The corresponding free
boundary problem describing the expanding process has been discussed in [34]. It
is worth mentioning that WNv usually spreads from one area to another because of
the diffusions of birds and mosquitoes, so that its transmission is affected not only
by the characteristics of pathogens, but also by the spatial difference of environment
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in which birds or mosquitoes reside. Considering the complexity of diffusions and
the heterogeneity of environment, the system (1) can be extended to the following
strongly-coupled parabolic system

∂Ib
∂t −∆[(d1 + α1Ib + β1Ib

γ1+Im
)Ib] =

αb(x)βb(x) (Nb−Ib)
Nb

Im − γb(x)Ib, (x, t) ∈ Ω× (0,+∞),
∂Im
∂t −∆[(d2 + β2Im

γ2+Ib
+ α2Im)Im] =

αm(x)βb(x) (Am−Im)
Nb

Ib − dm(x)Im, (x, t) ∈ Ω× (0,+∞),

Ib(x, t) = Im(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞),
0 ≤ Ib(x, 0) ≤ Nb, 0 ≤ Im(x, 0) ≤ Am, x ∈ Ω,

(3)

and the corresponding elliptic problem with Dirichlet boundary conditions becomes
−∆[(d1 + α1Ib + β1Ib

γ1+Im
)Ib] = f1(x, Ib, Im), x ∈ Ω,

−∆[(d2 + β2Im
γ2+Ib

+ α2Im)Im] = f2(x, Ib, Im), x ∈ Ω,

Ib(x) = Im(x) = 0, x ∈ ∂∂Ω,

(4)

where

f1(x, Ib, Im) = αb(x)βb(x) (Nb−Ib)
Nb

Im − γb(x)Ib,

f2(x, Ib, Im) = αm(x)βb(x) (Am−Im)
Nb

Ib − dm(x)Im,

and the parameters αb(x), βb(x), γb(x), αm(x) and dm(x) are all sufficiently smooth
and strictly positive functions defined on Ω. di (i = 1, 2) is positive constants
represent the free-diffusion coefficients of population Ib(x) and Im(x), respectively.
αi, βi and γi (i = 1, 2) are nonnegative constants; αi, βi and γi are the self-diffusion
coefficients, the cross-diffusion rates and cross-diffusion pressures, respectively. The
homogeneous Dirichlet boundary condition in (4) means that there is no infection
on the boundary and outside of the domain Ω. More specifically, the diffusion terms
can be written as

div{(d1 + 2α1Ib +
2β1Ib
γ1 + Im

)∇Ib +
−β1I

2
b

(γ1 + Im)2
∇Im},

div{ −β2I
2
m

(γ2 + Ib)2
∇Ib + (d2 +

2β2Im
γ2 + Ib

+ 2α2Im)∇Im}.

The terms

d1 + 2α1Ib +
2β1Ib
γ1 + Im

, d2 +
2β2Im
γ2 + Ib

+ 2α2Im

represent the self-diffusions and the terms

−β1I
2
b

(γ1 + Im)2
,

−β2I
2
m

(γ2 + Ib)2

represent the cross-diffusions. Here the term
−β1I

2
b

(γ1+Im)2∇Im is due to the moving of

the population of birds Ib toward the location of increasing population of mosquitoes

Im with rate (− β1I
2
b

(γ1+Im)2 < 0). Similarly, the term
−β2I

2
m

(γ2+Ib)2
∇Ib is due to the moving

of the population of mosquitoes Im toward the location of increasing population of

birds Ib with rate (− β2I
2
m

(γ2+Ib)2
< 0). The solution (Ib(x), Im(x)) to problem (4) is

called a coexistence if Ib(x) > 0 and Im(x) > 0 for every x ∈ Ω.
Problem (1) is weakly-coupled parabolic system which only consider the random

diffusion in a homogeneous environment. However, problem (4) implies that, in ad-
dition to the dispersive force, the diffusion also depends on population pressure from
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other population. This means that the population in (4) are not homogeneously
distributed due to the consideration of self and cross diffusion terms. Moreover, the
diffusive behavior in different populations also affect the distribution of resources.
Thus, the consideration of diffusion and cross-diffusion effect is very reasonable
and more close to reality, see for example, [29] for mixed-culture biofilm model,
[17] for the tumor-growth model and [14, 16, 31, 40] for the competition model.
There are some valuable results about the roles of diffusion and cross-diffusion
in the modeling of the dynamics of strongly coupled reaction-diffusion systems
[5, 11, 13, 16, 19, 22, 25, 31, 30, 38, 40]. For instance, Shigesada et al. [31] proposed
the strongly coupled elliptic system describing two species Lotka-Volterra compe-
tition model. Ko and Ryu studied a predator-prey system with cross-diffusion,
representing the tendency of prey to keep away from its predators, under the ho-
mogeneous Dirichlet boundary conditions in [19]. Fu et al. investigated the global
behavior of solutions for a Lotka-Volterra predator-prey system with prey-stage
structure, under the homogeneous Neumann boundary conditions [11]. In 2014, Jia
et al. [16] discussed a Lotka-Volterra competition reaction-diffusion system with
nonlinear diffusion effects. In 2016, Braverman and Kamrujjaman [5] introduced
a competitive-cooperative models with various diffusion strategies. More recently,
Li et al. studied an effect of cross-diffusion on the stationary problem of a Leslie
prey-predator model with a protection zone [22].

In recent years, researches on the existence and non-existence of the positive
solutions for the dynamics of strongly-coupled elliptic systems have received com-
prehensive attention [16, 19, 20, 28]. There are many standard approaches to derive
the coexistence for the standard semi-linear parabolic system in mathematical mod-
els, such as construction of upper and lower solutions [12, 16, 18, 28], bifurcation
theory [6], fixed point theorem [19, 42], ect. The upper and lower solutions method
developed by Pao [27] is concise and effective to derive the coexistence. Based on
the method, the coexistence for a general strongly-coupled system has been given
in [28]. In [18], Kim and Lin studied the coexistence of three species in strongly
coupled elliptic system. Gan and Lin in [12] considered the competitor-competitor-
mutualist three species Lotka-Volterra model. Recently, Jia et al. [16] investigated
the existence of the positive steady state solution of a Lotka-Volterra competition
model with cross-diffusion.

Motivated by above problems, in this paper we are more interested in the non-
negative steady state solutions, that is, the coexistence of problem (4) describing a
cross-diffusive WNv model in a heterogenous environment.

The plan of this paper is as follows: Section 2 is devoted to the basic reproduction
number of problem (4) and its properties. The existence and non-existence of
coexistence to (4) are discussed in Section 3. Finally, some numerical simulations
and a brief discussion are given in Section 4.

2. Basic reproduction numbers. In this section, we first present the basic re-
production number for problem (4) and its properties for the corresponding system
in Ω. According to [10], the basic reproduction number is an expected number of
secondary cases produced by a typical infected individual during its entire period
of infectiousness in a completely susceptible population, and mathematically was
defined as the dominant eigenvalue of a positive linear operator. Usually the ba-
sic reproduction numbers for the spatially homogenous models were calculated by
the next generation matrix method [35], while for the spatially-dependent models,
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the numbers could be presented in the term of the principal eigenvalue of related
eigenvalue problem [1] or the spectral radius of next infection operator [37, 41].

Considering the linearized problem of (3), we have
∂Ib
∂t − d1∆Ib = αb(x)βb(x)Im − γb(x)Ib, x ∈ Ω, t > 0,
∂Im
∂t − d2∆Im = Amαm(x)βb(x)

Nb
Ib − dm(x)Im, x ∈ Ω, t > 0,

Ib(x) = Im(x) = 0, x ∈ ∂Ω.

(5)

We now consider the following linear reaction-diffusion system{
∂u
∂t −D∆u = F (x)u− V (x)u, x ∈ Ω, t > 0,
u(x) = 0, x ∈ ∂Ω,

(6)

where

u =

(
Ib
Im

)
, D =

(
d1 0
0 d2

)
,

F (x) =

(
0 αb(x)βb(x)

Amαm(x)βb(x)
Nb

0

)
, V (x) =

(
γb(x) 0

0 dm(x)

)
.

In addition, the interval evolution of individuals in the infectious compartments is
governed by the following linear system{

∂u
∂t −D∆u = −V (x)u, x ∈ Ω, t > 0,
u(x) = 0, x ∈ ∂Ω.

(7)

Let X1 := C(Ω,R2) and X+
1 := C(Ω,R2

+). Set T (t) be the solution semigroup on
X1 associated with system (7). We let Ψ = (φ, ψ) is the density distribution of u
at the spatial location x ∈ Ω, we then see that T (t)Ψ := (T (t)φ, T (t)ψ) represents
the remaining distribution of infective birds and mosquitoes at time t. Therefore,
the distribution of total new infective members is∫ ∞

0

F (x)[T (t)Ψ](x)dt.

Following the idea of [37, 41], we define the linear operator

L(Ψ)(x) :=

∫ ∞
0

F (x)[T (t)Ψ](x)dt.

It follows from the definition, we know that L is a continuous and positive operator
which maps the initial infection distribution Ψ to the distribution of the total mem-
bers produced during the infection period. Consequently, we define the spectral
radius of L as the basic reproduction number of system (5), that is,

RD0 = ρ(L).

As in [23], to ensure the existence of the basic reproduction numbers we consider
the following linear eigenvalue problem:

−d1∆φ = αb(x)βb(x)
R ψ − γb(x)φ+ µφ, x ∈ Ω,

−d2∆ψ = Amαm(x)βb(x)
NbR

φ− dm(x)ψ + µψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(8)

For any R > 0, the system is strongly cooperative, that is, αb(x)βb(x) > 0 and
αm(x)βb(x)AmNb > 0 for all x ∈ Ω. According to [2, 9, 33], for any R > 0, there

exists a unique value µ := µ1(R), and called the principal eigenvalue, such that
problem (8) admits a unique solution pair (φR, ψR) (subject to constant multiples)
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with φR > 0 and ψR > 0 in Ω. Moreover, µ1(R) is algebraically simple and
dominant, and the following properties hold.

Lemma 2.1. µ1(R) is continuous and strictly increasing.

With the above definition, we have the following relation between the two prin-
cipal eigenvalues.

Theorem 2.2. sign(1 − RD0 )= sign(λ0), where RD0 = RD0 (Ω, γb(x), dm(x)) is the
principal eigenvalue of the eigenvalue problem

−d1∆φ = αb(x)βb(x)

RD0
ψ − γb(x)φ, x ∈ Ω,

−d2∆ψ = Amαm(x)βb(x)

NbRD0
φ− dm(x)ψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω

(9)

and λ0 is the principal eigenvalue of the eigenvalue problem
−d1∆φ = αb(x)βb(x)ψ − γb(x)φ+ λ0φ, x ∈ Ω,

−d2∆ψ = Amαm(x)βb(x)
Nb

φ− dm(x)ψ + λ0ψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(10)

Proof. In fact, λ0 = µ1(1). On the other hand, one can easily deduce from the
monotonicity with respect to the coefficients in (8) that limR→0+ µ1(R) < 0 and
limR→+∞ µ1(R) > 0, therefore RD0 is the unique positive root of the equation
µ1(R) = 0. The result follows from the monotonicity of µ1(R) with respect to
R.

Remark 1. Recalling that µ1 is monotonically increasing with respect to βb(x), in
the sense that µ1(βb,1(x)) < µ1(βb,2(x)) if βb,1(x) ≥ βb,2(x) and βb,1(x)) 6≡ βb,2(x)
in Ω, we deduce from Lemma 2.1 that RD0 is monotonically increasing with respect
to βb(x), and RD0 > 1 if βb(x) is sufficiently large.

If all coefficients are constant, we can provide an explicit formula for RD0 , which
is known as the basic reproduction number for the corresponding diffusive WNv
model.

Theorem 2.3. If αb(x) = α∗b , αm(x) = α∗m, βb(x) = β∗b , γb(x) = γ∗b and dm(x) =
d∗m, then the principal eigenvalue RD0 for (9), or the basic reproduction number for
model (4), is expressed by

RD0 (Ω) =

√
Amα∗b(β

∗
b )2α∗m

Nb[d1λ∗ + γ∗m][d2λ∗ + d∗m]
, (11)

where λ∗ is the principal eigenvalue of −∆ in Ω with null Dirichlet boundary con-
dition.

Proof. Let ψ∗ be the eigenfunction corresponding to the principal eigenvalue (λ∗)
of −∆ in Ω with null Dirichlet boundary condition and

P ∗ =
Amα

∗
b(β
∗
b )2α∗m

Nb[d1λ∗ + γ∗b ][d2λ∗ + d∗m]
,

φ∗ =
α∗bβ

∗
b√

R∗[d1λ∗ + γ∗b ]
ψ∗.

Then we know that (φ∗, ψ∗) is a positive solution of problem (9) with RD0 =
√
P ∗,

and (11) follows directly from the uniqueness of the principal eigenvalue of (9).



COEXISTENCE OF A CROSS-DIFFUSIVE WEST NILE VIRUS MODEL 1485

3. Coexistence. In this section, inspired by [16, 18, 20, 28], we first study the
existence of a coexistence solution to problem (4) by constructing upper and lower
solutions and then we establish the non-existence of the coexistence solution to
problem (4). For the convenience, we let

S = {(Ib, Im) ∈ C(Ω)× C(Ω); (Îb, Îm) ≤ (Ib, Im) ≤ (Ĩb, Ĩm), x ∈ Ω)},

where (Îb, Îm) and (Ĩb, Ĩm) are given in the following definition.
Next we are going to give a sufficient condition for problem (4) to possess a

positive solution by constructing upper and lower solutions as in [28]. To achieve
this, we first give an equivalent form of problem (4): −∆[H1(Ib, Im)] = f1(x, Ib, Im), x ∈ Ω,

−∆[H2(Ib, Im)] = f2(x, Ib, Im), x ∈ Ω,
Ib(x) = Im(x) = 0, x ∈ ∂Ω.

(12)

where

H1(Ib, Im) = (d1 + α1Ib +
β1Ib

γ1 + Im
)Ib,

H2(Ib, Im) = (d2 +
β2Im
γ2 + Ib

+ α2Im)Im.

Taking
u = H1(Ib, Im), v = H2(Ib, Im),

then the Jacobian J of the transformation (Ib, Im)→ (u, v) is given by

J = ∂(u,v)
∂(Ib,Im) =

∣∣∣∣∣ d1 + 2α1Ib + 2β1Ib
γ1+Im

−β1I
2
b

(γ1+Im)2

−β2I
2
m

(γ2+Ib)2
d2 + 2β2Im

γ2+Ib
+ 2α2Im

∣∣∣∣∣
= (d1 + 2α1Ib + 2β1Ib

γ1+Im
)(d2 + 2β2Im

γ2+Ib
+ 2α2Im)− β1β2I

2
b I

2
m

(γ1+Im)2(γ2+Ib)2

≥ d1d2 + 4β1β2IbIm
(γ1+Im)(γ2+Ib)

− β1β2I
2
b I

2
m

(γ1+Im)2(γ2+Ib)2

≥ d1d2 > 0 for (Ib, Im) ≥ (0, 0).

Therefore, the inverse Ib = g1(u, v), Im = g2(u, v) exist whenever (Ib, Im) ≥ (0, 0).
Hence, problem (4) reduces to the following equivalent form

−∆u+ k1u = F1(x, Ib, Im), x ∈ Ω,
−∆v + k2v = F2(x, Ib, Im), x ∈ Ω,
Ib = g1(u, v), Im = g2(u, v), x ∈ Ω,
u(x) = v(x) = 0, x ∈ ∂Ω,

(13)

where Fi(x, Ib, Im) = kiHi(Ib, Im) + fi(x, Ib, Im) (i = 1, 2) with ki > 0 (i = 1, 2)
chosen later.

In addition, from an elementary computations one can check that

∂Ib
∂u

=
d2 + 2α2Im + 2β2Im

γ2+Ib

J
,

∂Ib
∂v

=

β1I
2
b

(γ1+Im)2

J
,

∂Im
∂u

=

β2I
2
m

(γ2+Ib)2

J
,

∂Im
∂v

=
d1 + 2α1Ib + 2β1Ib

γ1+Im

J
,

which shows that Ib = g1(u, v) is nondecreasing in both u and v, while Im = g2(u, v)
is also nondecreasing in both u and v for all (Ib, Im) ≥ (0, 0).

For the later analysis, we present the definition of upper and lower solutions to
problem (13) as follows.
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Definition 3.1. Assume that F1 and F2 are nondecreasing with respect to Ib and
Im. A pair of 4- nonnegative functions (Ĩb, Ĩm, ũ, ṽ), (Îb, Îm, û, v̂) in C2(Ω) ∩ C(Ω)
are called ordered upper and lower solutions of (13), if

(0, 0) ≤ (Îb, Îm) ≤ (Ĩb, Ĩm) ≤ (Nb, Am), (û, v̂) ≤ (ũ, ṽ)

and 

−∆ũ+ k1ũ ≥ F1(x, Ĩb, Ĩm), x ∈ Ω,

−∆ṽ + k2ṽ ≥ F2(x, Ĩb, Ĩm), x ∈ Ω,

−∆û+ k1û ≤ F1(x, Îb, Îm), x ∈ Ω,

−∆v̂ + k2v̂ ≤ F2(x, Îb, Îm), x ∈ Ω,

Ĩb ≥ g1(ũ, ṽ), Îb ≤ g1(û, v̂), x ∈ Ω,

Ĩm ≥ g2(ũ, ṽ), Îm ≤ g2(û, v̂), x ∈ Ω,
ũ(x) ≥ 0 ≥ û(x), ṽ(x) ≥ 0 ≥ v̂(x), x ∈ ∂Ω.

(14)

For definiteness, we select

Ĩb = g1(ũ, ṽ), Ĩm = g2(ũ, ṽ);

Îb = g1(û, v̂), Îm = g2(û, v̂),

which is equivalent to

ũ = H1(Ĩb, Ĩm), ṽ = H2(Ĩb, Ĩm);

û = H1(Îb, Îm), v̂ = H2(Îb, Îm).

Then the requirements of (Ĩb, Ĩm) and (Îb, Îm) in (14) are satisfied and those of
(ũ, ṽ), (û, v̂) are reduced to

−∆[H1(Ĩb, Ĩm)] + k1H1(Ĩb, Ĩm) ≥ F1(x, Ĩb, Ĩm), x ∈ Ω,

−∆[H2(Ĩb, Ĩm)] + k2H2(Ĩb, Ĩm) ≥ F2(x, Ĩb, Ĩm), x ∈ Ω,

−∆[H1(Îb, Îm)] + k1H1(Îb, Îm) ≤ F1(x, Îb, Îm), x ∈ Ω,

−∆[H2(Îb, Îm)] + k2H2(Îb, Îm) ≤ F2(x, Îb, Îm), x ∈ Ω,

Ĩb(x) ≥ 0 ≥ Îb(x), Ĩm(x) ≥ 0 ≥ Îm(x), x ∈ ∂Ω.

(15)

Now we consider the monotonicity of Fi (i = 1, 2). From direct computations it
is easy to see that

∂F1

∂Ib
= k1(d1 + 2α1Ib +

2β1Ib
γ1 + Im

)− αb(x)βb(x)
Im
Nb
− γb(x),

∂F2

∂Im
= k2(d2 +

2β2Im
γ2 + Ib

+ 2α2Im)− αm(x)βb(x)
Ib
Nb
− dm(x).

If we choose

k1 = max
x∈Ω
{αbβbAm +Nbγb

Nbd1
}(x), k2 = max

x∈Ω
{αmβb + dm

d2
}(x),

then F1 and F2 are increasing with respect to Ib and Im, respectively, as long as
(0.0) ≤ (Ib, Im) ≤ (Nb, Am). On the other hand, the direct calculations show that

∂F1

∂Im
= −k1

β1

(γ1 + Im)2
I2
b + αb(x)βb(x)

Nb − Ib
Nb

,

∂F2

∂Ib
= −k2

β2

(γ2 + Ib)2
I2
m − αm(x)βb(x)

Am − Im
Nb

.
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Note ∂F1

∂Im
(Nb, Am) ≤ 0 and ∂F2

∂Ib
(Nb, Am) ≤ 0 for any β1

γ1
and β2

γ2
, respectively. To

ensure that ∂F1

∂Im
≥ 0, ∂F2

∂Ib
≥ 0, we have to modify the upper solution and we seek

((1− δ0)Nb, (1− δ0)Am) as a new upper solution, where

δ0 ≤ min
x∈Ω
{1

2
,

γb
αbβbAm

,
dm
αbβb

}

from the first and second inequalities of (15). Let

β∗1 = min
x∈Ω

δ0αbβbγ
2
1

N2
b k1

(x), β∗2 = min
x∈Ω

δ0αmβbγ
2
2

NbAmk2
(x),

then for β1 ≤ β∗1 and β2 ≤ β∗2 , Fi (i = 1, 2) is monotone nondecreasing with respect

to Ib and Im. Consequently, (Ĩb, Ĩm, ũ, ṽ), (Îb, Îm, û, v̂) are a pair of ordered upper
and lower solutions of problem (13).

To present the existence of a positive solution to (4), it suffices to find a pair of

upper and lower solutions of (4). We seek such as in the form (Ĩb, Ĩm) = (M1, M2),

(Îb, Îm) = (g1(δd1φ, δd2ψ), g2(δd1φ, δd2ψ)) where Mi (i = 1, 2) and δ are some pos-
itive constants with δ small enough, (φ, ψ) ≡ (φ(x), ψ(x)) is (normalized) positive
eigenfunction corresponding to λ0, and λ0 is the principal eigenvalue of eigenvalue
problem (10).

Indeed, (M1, M2) and (g1(δd1φ, δd2ψ), g2(δd1φ, δd2ψ)) satisfy the inequalities
in (15) if

−∆[(d1 + α1M1 + β1M1
γ1+M2

)M1] ≥ αb(x)βb(x) (Nb−M1)
Nb

M2 − γb(x)M1,

−∆[(d2 + β2M2
γ2+M1

+ α2M2)M2] ≥ αm(x)βb(x) (Am−M2)
Nb

M1 − dm(x)M2,

−∆[d1φ] ≤ αb(x)βb(x) (Nb−Îb)
Nb

d2ψ/(d2 + α2Îm + β2 Îm
γ2+Îb

)

−γb(x)d1φ/(d1 + α1Îb + β1 Îb
γ1+Îm

),

−∆[d2ψ] ≤ αm(x)βb(x) (Am−Îm)
Nb

d1φ/(d1 + α1Îb + β1 Îb
γ1+Îm

)

−dm(x)d2ψ/(d2 + α2Îm + β2 Îm
γ2+Îb

).

(16)

The first two inequalities in (16) hold if we set

(M1, M2) = ((1− δ0)Nb, (1− δ0)Am). (17)

Next, we notice that the relations

δd1φ = (d1 + α1Îb +
β1Îb

γ1 + Îm
)Îb, δd2ψ = (d2 + α2Îm +

β2Îm

γ2 + Îb
)Îm

imply that 0 < Îb ≤ δφ and 0 < Îm ≤ δψ.
If RD0 > 1, the principal eigenvalue of problem (10) is λ0 < 0, therefore we can

choose δ sufficiently small such that the last two inequalities in (16) hold. Conse-

quently, the pair (Ĩb, Ĩm) = (M1,M2), (Îb, Îm) = (g1(δd1φ, δd2ψ), g2(δd1φ, δd2ψ))
are ordered upper and lower solutions of problem (4), respectively.

Using Theorem 2.1 of [28] leads to the following existence result :

Theorem 3.2. If RD0 > 1, problem (4) admits at least one coexistence solution
(Ib(x), Im(x)) provided that β1 and β2 are sufficiently small.

To establish the non-existence of the coexistence solution to problem (4), we have
the following result.

Theorem 3.3. If RD0 (Ω, γb(x) 1

1+(
α1
d1

+
β1
γ1d1

)Nb
, dm(x) 1

1+(
α2
d2

+
β2
γ2d2

)Am
) ≤ 1, problem

(4) has no positive solution.
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Proof. Suppose (I∗b (x), I∗m(x)) is a coexistence solution of problem (4), that is,
(I∗b (x), I∗m(x)) > (0, 0) in Ω and satisfies

−∆[(d1 + α1I
∗
b +

β1I
∗
b

γ1+I∗m
)I∗b ] = αb(x)βb(x)

(Nb−I∗b )
Nb

I∗m − γb(x)I∗b , x ∈ Ω,

−∆[(d2 +
β2I

∗
m

γ2+I
∗
b

+ α2I
∗
m)I∗m] = αm(x)βb(x)

(Am−I∗b )
Nb

I∗b − dm(x)I∗m, x ∈ Ω,

I∗b (x) = I∗m(x) = 0, x ∈ ∂Ω.

(18)

First by the upper and lower solution method we know that (I∗b , I
∗
m) ≤ (Nb, Am).

Second, letting w = (d1 +α1I
∗
b +

β1I
∗
b

γ1+I∗m
)I∗b /d1 and z = (d2 +

β2I
∗
m

γ2+I∗b
+α2I

∗
m)I∗m/d2,

we have 

−d1∆w = αb(x)βb(x)
(Nb−I∗b )
Nb

d2z

d2+
β2I

∗
m

γ2+I∗
b

+α2I∗m

−γb(x) d1w

d1+α1I∗b+
β1I

∗
b

γ1+I∗m

, x ∈ Ω,

−d2∆z = αm(x)βb(x)
(Am−I∗b )

Nb
d1w

d1+α1I∗b+
β1I

∗
b

γ1+I∗m

−dm(x) d2z

d2+
β2I

∗
m

γ2+I∗
b

+α2I∗m
, x ∈ Ω,

w = I∗b (x) = 0, x ∈ ∂Ω,
z = I∗m(x) = 0, x ∈ ∂Ω,

(19)

which means that
−d1∆w < αb(x)βb(x)z − γb(x)

1+(
α1
d1

+
β1
γ1d1

)Nb
w, x ∈ Ω,

−d2∆z < αm(x)βb(x)AmNb w −
dm(x)

1+(
α2
d2

+
β2
γ2d2

)Am
z, x ∈ Ω,

w = z = 0, x ∈ ∂Ω.

(20)

On the other hand, the principal eigenvalue λ0 in problem (10) meets
−d1∆φ = αb(x)βb(x)ψ − γb(x)

1+(
α1
d1

+
β1
γ1d1

)Nb
φ+ λ0φ, x ∈ Ω,

−d2∆ψ = αm(x)βb(x)AmNb φ−
dm(x)

1+(
α2
d2

+
β2
γ2d2

)Am
ψ + λ0ψ, x ∈ Ω,

φ(x) = ψ(x) = 0, x ∈ ∂Ω.

(21)

Comparing (20) with (21), we can easily deduce from the monotonicity with
respect to the coefficients in (21) that λ0 is monotone decreasing with respect to
βb(x), which implies that λ0 < 0. Recalling Theorem 2.2 we can get that RD0 > 1,
which is contrary to RD0 ≤ 1.

Remark 2. Assume that all coefficients of (4) are spatially-independent. RD0 is
represented by (11). If α∗b , α

∗
m or β∗b is big, then RD0 > 1 and problem (4) admits

at least one coexistence solution provided that β1 and β2 are sufficiently small. On
the other hand, if α∗b , α

∗
m or β∗b is small enough, then RD0 ≤ 1 and problem (4) has

no positive solution.

Next we apply the monotone iterative schemes to construct the true solutions of
(4). It follows from RD0 > 1, we know that (M1,M2) and

(g1(δd1φ, δd2ψ), g2(δd1φ, δd2ψ))

are ordered upper and lower solution of problem (4), respectively. Using (Ī
(0)
b , Ī

(0)
m ) =

((1− δ0)Nb, (1− δ0)Am) and (I
(0)
b , I(0)

m ) = (g1(δd1φ, δd2ψ), g2(δd1φ, δd2ψ)) as two
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initial iterations, we can construct two sequences {(ū(n), v̄(n))} and {(u(n), v(n))}
from the iteration process

−∆ū(n) + k1ū
(n) = F1(x, Ī

(n−1)
b , Ī

(n−1)
m ), x ∈ Ω,

−∆v̄(n) + k2v̄
(n) = F2(x, Ī

(n−1)
b , Ī

(n−1)
m ), x ∈ Ω,

−∆u(n) + k1u
(n) = F1(x, I

(n−1)
b , I(n−1)

m ), x ∈ Ω,

−∆v(n) + k2v
(n) = F2(x, I

(n−1)
b , I(n−1)

m ), x ∈ Ω,

Ī
(n)
b = g1(ū(n), v̄(n)), I

(n)
b = g1(u(n), v(n)), x ∈ Ω,

Ī
(n)
m = g2(ū(n), v̄(n)), I(n)

m = g2(u(n), v(n)), x ∈ Ω,
ū(n)(x) = u(n)(x) = 0, v̄(n)(x) = v(n)(x) = 0, x ∈ ∂Ω,

(22)

where n = 1, 2, · · · .
As in Lemma 3.1 of [28], the sequences {(ū(n), v̄(n))} and {(u(n), v(n))} governed

by (22) are well-defined and possess the monotone property

(û, v̂) ≤ (u(n−1), v(n−1)) ≤ (u(n), v(n)) ≤ (ū(n), v̄(n))

≤ (ū(n−1), v̄(n−1)) ≤ (ũ, ṽ) for n = 1, 2, · · · .
Hence, the pointwise limits

lim
n→∞

(ū(n), v̄(n))) = (ū, v̄), lim
n→∞

(u(n), u(n)) = (u, v)

exist and their limits possess the relation

(û, v̂) ≤ (u(n), v(n)) ≤ (u, v) ≤ (ū, v̄) ≤ (ū(n), v̄(n)) ≤ (ũ, ṽ) (23)

for every n = 1, 2, · · · .
The last three equations of (22) give

Ī
(n)
b = g1(ū(n), v̄(n)), I

(n)
b = g1(u(n), v(n)),

Ī(n)
m = g2(ū(n), v̄(n)), I(n)

m = g2(u(n), v(n)),

which is equivalent to

ū(n) = H1(Ī
(n)
b , Ī

(n)
m ), u(n) = H1(I

(n)
b , I(n)

m ),

v̄(n) = H2(Ī
(n)
b , Ī

(n)
m ), v(n) = H2(I

(n)
b , I(n)

m ).
(24)

Now, by the above relation, letting n → ∞ and applying the standard regular-
ity argument for elliptic boundary problems, we derive that (Īb, Īm) and (Ib, Im)
satisfy 

−∆[H1(Īb, Īm)] + k1H1(Īb, Īm) = F1(x, Īb, Īm), x ∈ Ω,
−∆[H2(Īb, Īm)] + k2H2(Īb, Īm) = F2(x, Īb, Īm), x ∈ Ω,
−∆[H1(Ib, Im)] + k1H1(Ib, Im) = F1(x, Ib, Im), x ∈ Ω,
−∆[H2(Ib, Im)] + k2H2(Ib, Im) = F2(x, Ib, Im), x ∈ Ω,
Īb(x) = Ib(x) = 0, Īm(x) = Im(x) = 0, x ∈ ∂Ω,

(25)

which is equivalent to
−∆[H1(Īb, Īm)] = f1(x, Īb, Īm), x ∈ Ω,
−∆[H2(Īb, Īm)] = f2(x, Īb, Īm), x ∈ Ω,
−∆[H1(Ib, Im)] = f1(x, Ib, Im), x ∈ Ω,
−∆[H2(Ib, Im)] = f2(x, Ib, Im), x ∈ Ω,
Īb(x) = Ib(x) = 0, Īm(x) = Im(x) = 0, x ∈ ∂Ω.

(26)
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Therefore (Īb, Īm) and (Ib, Im) are true solutions of (4). Moreover, (Īb, Īm) and
(Ib, Im) are maximal and minimal solutions in the sense that (Ib, Im) is any other
solution of (4) in the sector

< (Îb, Îm), (Ĩb, Ĩm) >:= {(Ib, Im) ∈ C(Ω); (Îb, Îm) ≤ (Ib, Im) ≤ (Ĩb, Ĩm) on Ω},

then (Ib, Im) ≤ (Ib, Im) ≤ (Īb, Īm) on Ω. Furthermore, if Īb = Ib or Īm = Im, then
(Īb, Īm) = (Ib, Im) := (I∗b , I

∗
m) and (I∗b , I

∗
m) is the unique solution of (4) in Ω. To

achieve this, in fact, a subtraction of the third equation from the first equation in
(26) yields that

−∆[
β1(I∗b )2(Īm − Im)

(γ1 + Īm)(γ1 + Im)
] = αb(x)βb(x)

(Nb − I∗b )

Nb
(Īm − Im)

In light of β1 > 0, I∗b > 0, αb(x)βb(x) > 0, Nb − I∗b > 0 and (Īm − Im) = 0 on
∂Ω, the above equation gives Īm ≡ Im in Ω. Similarly as above one can show that
Īb ≡ Ib in Ω. Therefore, (Īb, Īm) = (Ib, Im) := (I∗b , I

∗
m) which is unique solution of

(4) in S.
The above conclusions lead to the following theorem.

Theorem 3.4. Let (Ĩb, Ĩm) and (Îb, Îm) be a pair of ordered upper and lower so-

lutions of (4), respectively, then the sequences {(Ī(n)
b , Ī

(n)
m )} and {(I(n)

b , I(n)
m )} pro-

vided from (22) converge monotonically from above to a maximal solution (Īb, Īm)
and from below to a minimal solution (Ib, Im) in S, respectively, and satisfy the
relation

(Îb, Îm) ≤ (I
(n)
b , I(n)

m ) ≤ (I
(n+1)
b , I(n+1)

m ) ≤ (Ib, Im) ≤ (Īb, Īm) ≤ (Ī
(n+1)
b , Ī(n+1)

m )

≤ (Ī
(n)
b , Ī(n)

m ) ≤ (Ĩb, Ĩm) for n = 1, 2, · · ·
additionally, if Īb = Ib or Īm = Im, then (Īb, Īm) = (Ib, Im)(= (I∗b , I

∗
m)) and

(I∗b , I
∗
m) is the unique solution of (4) in S.

4. Numerical simulation and discussion. In this section, in order to illustrate
our theoretical results, we simulate problem (4) with the following coefficients and
parameters:

d1 = 0.2, d2 = 0.4, α1 = 0.03, α2 = 0.04, γ1 = 1, γ2 = 1,

αb = 1 + 0.88 sin(
π

100
x), αm = 1 + 0.16 sin(

π

100
x),

γb = 1 + 0.6 sin(
π

100
x), dm = 1 + 0.029 sin(

π

100
x),

and βb = 1 + 0.09 sin( π
100x) and we also take the ratio Am/Nb = 20 as in [21].

From Fig. 1, it is easy to see that there exist the upper solution sequence

{(I(n)

b , I
(n)

m )} which is monotone decreasing and the lower solution sequence {(I(n)
b ,

I(n)
m )} which is monotone increasing, then one can see that there exists at least a

coexistence solution of (4).
In this paper, to understand the impact of a cross-diffusion and environmen-

tal heterogeneity on the dynamics of WNv, we consider coexistence states of a
cross-diffusive WNv model in heterogenous environments under Dirichlet boundary
condition. This problem without spatially-dependent coefficients is similar to that
has been studied in [16]. It is worth mentioning that problem (1) is weakly-coupled
parabolic system which only involves the random diffusion in a homogeneous envi-
ronment. However, in addition to the dispersive force, the diffusions of birds and
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Figure 1. Phase diagrams of Ib(x) and Im(x) showing the existence of a positive
solution of (4) for small cross-diffusion (β1 = 0.001 and β2 = 0.002).

mosquitoes are also interacted by each other and reaction depends on spatial het-
erogeneity of the environment. Therefore, we introduce the cross-diffusion terms
∆[(d1 +α1Ib + β1Ib

γ1+Im
)Ib], ∆[(d2 + β2Im

γ2+Ib
+α2Im)Im] to model (1), which can better

describe the interplay between birds and mosquitoes in diffusion.

0
1

2
3

4

0

1

2

3

4
0

2

4

6

8

10

x−axis

Birds I
b
(x,t)

t−axis

(a)

0
1

2
3

4

0

1

2

3

4
0

1

2

3

4

5

x−axis

Mosquitoes I
m

(x,t))

t−axis

(b)

Figure 2. Phase diagrams of Ib(x, t) and Im(x, t) shows that the solution of (3)
exists and stabilizes to a positive steady-state for small cross-diffusion (β1 = 0.132
and β2 = 0.11).

The main result of this paper is twofold. Firstly, we introduce a definition of
RD0 , which is known as the basic reproduction number of problem (4) (Theorem
2.2). In the case that all coefficients are constants, we provide an explicit formula
for RD0 (Theorem 2.3). Secondly, the coexistence of problem (4) is investigated by
using method of upper and lower solutions and its associated monotone iterative
schemes (Theorem 3.2 and Fig. 1) under condition RD0 > 1 provided that β1 and β2

are sufficiently small, whereas if RD0 ≤ 1, problem (4) has no coexistence solution
(Theorem 3.3). Our results show that no existence exists for small WNv transmis-
sion probabilities (αm and αb), and small biting rate of mosquitoes on birds (βb)
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Figure 3. Phase diagrams of Ib(x) and Im(x) shows that the global solution of
(3) does not exist for big cross-diffusion (β1 = 0.133 and β2 = 0.11).

(Remark 2). Moreover, the coexistence solution of problem (4) is between the max-
imal and minimal solution (Īb, Īm) and (Ib, Im), respectively, and the true solution
can be obtained by constructing the monotone iterative sequences (Theorem 3.4).
However, the uniqueness of coexistence solution is still unclear.

We believe that the strongly-coupled problem (4) can produce much more com-
plex dynamics of WNv than the weakly-coupled system (1). Such problems need
further investigations. In fact, even for the corresponding parabolic problems with
cross-diffusion, the existence of the solution is known only for some special cases, see
[24, 32] and references therein. To further investigate the effect of cross-diffusion in
comparison to no cross-diffusion or small cross-diffusion, we come back to problem
(3), Fig. 2 shows that the global solution of problem (3) exists and stabilizes to a
positive steady-state for small cross-diffusion (β1 = 0.132 and β2 = 0.11), we can
also see that the global solution of (3) exists for β1 ≤ 0.132 and β2 ≤ 0.11 by sim-
ulations. However, if we choose a little big cross-diffusion, for example, β1 = 0.133
and β2 = 0.11, we can see from Fig. 3 that the global solution of problem (3) does
not exist. We leave it for future work.
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